1. CRT Decomposition

In this problem we use the Chinese Remainder Theorem to compute $3^{302} \mod 385$.

(a) Write 385 as a product of prime numbers in the form $385 = p_1 \times p_2 \times p_3$.

(b) Use Fermat’s Little Theorem to find $3^{302} \mod p_1$, $3^{302} \mod p_2$, and $3^{302} \mod p_3$.

(c) Let $x = 3^{302}$. Use part (b) to express the problem as a system of congruences. Argue that there is a unique solution mod 385, and find it. What is the final answer $3^{302} \mod 385$?

2. Roots

Let’s make sure you’re comfortable with roots of polynomials in the familiar real numbers \mathbb{R}. Recall that a polynomial of degree d has at most d roots. In this problem, assume we are working with polynomials over \mathbb{R}.

(a) Suppose $p(x)$ and $q(x)$ are two different nonzero polynomials with degrees d_1 and d_2 respectively. What can you say about the number of solutions of $p(x) = q(x)$? How about $p(x) \cdot q(x) = 0$?

(b) Consider the degree 2 polynomial $f(x) = x^2 + ax + b$. Show that, if f has exactly one root, then $a^2 = 4b$.
(c) What is the minimal number of real roots that a nonzero polynomial of degree d can have? How does the answer depend on d?

3. Roots: The Next Generations

Which of the facts from Problem 2 stay true when \mathbb{R} is replaced by $GF(p)$ (i.e., if you are working modulo a prime number p)? Which change, and how?

4. Interpolation Practice

(a) Find a linear polynomial $p(x)$ over \mathbb{R} such that $p(1) = 1$ and $p(3) = 4$.

(b) Find a linear polynomial $q(x)$ over $GF(5)$ such that $q(1) \equiv 1 \pmod{5}$ and $q(3) \equiv 4 \pmod{5}$.