1. **Repeated Squaring** Compute $3^{383} \pmod{7}$. (Via repeated squaring!)

2. **Modular Potpourri**

 (a) Evaluate $4^{96} \pmod{5}$

 (b) Prove or Disprove: There exists some $x \in \mathbb{Z}$ such that $x \equiv 3 \pmod{16}$ and $x \equiv 4 \pmod{6}$.

 (c) Prove or Disprove: $2x \equiv 4 \pmod{12} \iff x \equiv 2 \pmod{12}$

3. **Just a Little Proof**

 Suppose that p and q are distinct odd primes and a is an integer such that $\gcd(a, pq) = 1$. Prove that $a^{(p-1)(q-1)+1} \equiv a \pmod{pq}$.

4. **Euler’s totient function**

 Euler’s totient function is defined as follows:

 $$\phi(n) = |\{i : 1 \leq i \leq n, \gcd(n, i) = 1\}|$$

 In other words, $\phi(n)$ is the total number of positive integers less than n which are relatively prime to it. Here is a property of Euler’s totient function that you can use without proof:

 For m, n such that $\gcd(m, n) = 1$, $\phi(mn) = \phi(m) \cdot \phi(n)$.

 (a) Let p be a prime number. What is $\phi(p)$?

 (b) Let p be a prime number and k be some positive integer. What is $\phi(p^k)$?

 (c) Let p be a prime number and a be a positive integer smaller than p. What is $a^{\phi(p)} \pmod{p}$?

 (Hint: use Fermat’s Little Theorem.)

 (d) Let b be a number whose prime factors are p_1, p_2, \ldots, p_k. We can write $b = p_1^{a_1} \cdot p_2^{a_2} \cdot \ldots \cdot p_k^{a_k}$.

 Show that for any a relatively prime to b, the following holds:

 $$\forall i \in \{1, 2, \ldots, k\}, \quad a^{\phi(b)} \equiv 1 \pmod{p_i}$$