1. **Repeated Squaring** Compute $3^{383} \pmod{7}$. (Via repeated squaring!)

 Solution: Here we go...
 Divide 383 repeatedly by 2, flooring every time. We get the sequence

 $383, 191, 95, 47, 23, 11, 5, 2, 1$.

 So, to compute 3^{383}, we compute:

 $3^1 \mod 7 \equiv 3$
 $3^2 \mod 7 \equiv 2$
 $3^5 \mod 7 \equiv (3^2)^2 \times 3 \equiv 2^2 \times 3 \equiv 12 \equiv 5$
 $3^{11} \mod 7 \equiv 5 \times 5 \times 3 \equiv 4 \times 3 \equiv 5$
 $3^{23} \mod 7 \equiv 5 \times 5 \times 3 \equiv 5$
 $3^{47} \mod 7 \equiv \ldots \equiv 5$
 $3^{95} \mod 7 \equiv \ldots \equiv 5$
 $3^{191} \mod 7 \equiv \ldots \equiv 5$
 $3^{383} \mod 7 \equiv \ldots \equiv 5$

2. **Modular Potpourri**

 (a) Evaluate $4^{96} \pmod{5}$

 Solution: One way: $4 \equiv -1 \pmod{5}$, and $(-1)^{96} \equiv 1$
 Another: $4^2 \equiv 1 \pmod{5}$, so $4^{96} = (4^2)^{48} \equiv 1 \pmod{5}$.
 Mention that it is **invalid** to "apply the mod to the exponent": $4^{96} \neq 4^1 \pmod{5}$

 (b) Prove or Disprove: There exists some $x \in \mathbb{Z}$ such that $x \equiv 3 \pmod{16}$ and $x \equiv 4 \pmod{6}$.

 Solution: Impossible, consider both mod 2 (why is it valid to do so?)

 (c) Prove or Disprove: $2x \equiv 4 \pmod{12} \iff x \equiv 2 \pmod{12}$

 Solution: False, consider $x \equiv 8$.

3. **Just a Little Proof**

 Suppose that p and q are distinct odd primes and a is an integer such that $\gcd(a, pq) = 1$.
 Prove that $a^{(p-1)(q-1)+1} \equiv a \pmod{pq}$.
Solution: Because \(\gcd(a, pq) = 1 \), we have that \(a \) does not divide \(p \) and \(a \) does not divide \(q \).

By Fermat’s Little Theorem,
\[
a^{(p-1)(q-1)+1} = (a^{p-1})^{(q-1)} \cdot a \equiv (1)^{q-1} \cdot a \equiv a \pmod{p}.
\]

Similarly, by Fermat’s Little Theorem, we have
\[
a^{(p-1)(q-1)+1} = (a^{q-1})^{(p-1)} \cdot a \equiv (1)^{p-1} \cdot a \equiv a \pmod{q}.
\]

Now, we want to use this information to conclude that
\[
a^{(p-1)(q-1)+1} \equiv a \pmod{pq}.
\]
We will first take a detour and show a more general result (you could write this out separately as a lemma if you want).

Consider the system of congruences
\[
x \equiv a \pmod{p} \\
x \equiv a \pmod{q}.
\]

Let’s run the CRT symbolically. First off, since \(p \) and \(q \) are relatively prime, we know there exist integers \(g, h \) such that
\[
g \cdot p + h \cdot q = 1.
\]

We could find these via Euclid’s algorithm. By the CRT, the solution to our system of congruences will be
\[
x \equiv a \cdot y_1 \cdot q + a \cdot y_2 \cdot p \pmod{pq}.
\]

To solve for \(y_1 \) and \(y_2 \), we must find \(y_1 \) such that
\[
x_1 \cdot p + y_1 \cdot q = 1
\]

and \(y_2 \) such that
\[
x_2 \cdot q + y_2 \cdot p = 1.
\]

This is easy since we already know \(g \cdot p + h \cdot q = 1 \): the answers are \(y_1 = h \) and \(y_2 = g \). Finally, we can plug in to the solution to get
\[
x \equiv a \cdot h \cdot q + a \cdot g \cdot p \equiv a(h \cdot q + g \cdot p) \equiv a(1) \equiv a \pmod{pq}.
\]

Therefore by the CRT we know that the set of solutions that satisfy both \(x \equiv a \pmod{p} \) and \(x \equiv a \pmod{q} \) is exactly the set of solutions that satisfy \(x \equiv a \pmod{pq} \).

So since \(a^{(p-1)(q-1)+1} \equiv a \pmod{p} \) and \(a^{(p-1)(q-1)+1} \equiv a \pmod{q} \), then by the CRT we know that \(a^{(p-1)(q-1)+1} \) satisfies \(a^{(p-1)(q-1)+1} \equiv a \pmod{pq} \).

4. **Euler’s totient function**

Euler’s totient function is defined as follows:
\[
\phi(n) = \left| \{ i : 1 \leq i \leq n, \gcd(n, i) = 1 \} \right|
\]

In other words, \(\phi(n) \) is the total number of positive integers less than \(n \) which are relatively prime to it. Here is a property of Euler’s totient function that you can use without proof:

For \(m, n \) such that \(\gcd(m, n) = 1 \), \(\phi(mn) = \phi(m) \cdot \phi(n) \).
(a) Let p be a prime number. What is $\phi(p)$?

Solution:

Since p is prime, all the numbers from 1 to $p - 1$ are relatively prime to p.
So, $\phi(p) = p - 1$.

(b) Let p be a prime number and k be some positive integer. What is $\phi(p^k)$?

Solution:

The only positive integers less than p^k which are not relatively prime to p^k are multiples of p.
Why is this true? This is so because the only possible prime factor which can be shared with p^k is p. Hence, if any number is not relatively prime to p^k, it has to have a prime factor of p which means that it is a multiple of p.
The multiples of p which are $\leq p^k$ are $1 \cdot p, 2 \cdot p, \ldots, p^{k-1} \cdot p$. There are p^{k-1} of these.
The total number of positive integers less than or equal to p^k is, obviously, p^k.
So $\phi(p^k) = p^k - p^{k-1} = p^{k-1} \cdot (p - 1)$.

(c) Let p be a prime number and a be a positive integer smaller than p. What is $a^{\phi(p)} \pmod{p}$?

(Hint: use Fermat's Little Theorem.)

Solution:

From Fermat's Little Theorem, and part 1,
$a^{\phi(p)} \equiv a^{p-1} \equiv 1 \pmod{p}$

(d) Let b be a number whose prime factors are p_1, p_2, \ldots, p_k. We can write $b = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k}$.

Show that for any a relatively prime to b, the following holds:

$\forall i \in \{1, 2, \ldots, k\}, \quad a^{\phi(b)} \equiv 1 \pmod{p_i}$

Solution: From the property of the totient function and part 3:

$\phi(b) = \phi(p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k})$

$= \phi(p_1^{a_1}) \cdot \phi(p_2^{a_2}) \cdots \phi(p_k^{a_k})$

$= p_1^{a_1-1} (p_1 - 1) \cdot p_2^{a_2-1} (p_2 - 1) \cdots p_k^{a_k-1} (p_k - 1)$

This shows that, for every p_i, which is a prime factor of b, we can write $\phi(b) = c \cdot (p_i - 1)$, where c is some constant. Since a and b are relatively prime, a is also relatively prime with p_i. From Fermat’s Little Theorem:

$a^{\phi(b)} \equiv a^{c \cdot (p_i - 1)} \equiv (a^{p_i - 1})^c \equiv 1^c \equiv 1 \pmod{p_i}$

Since we picked p_i arbitrarily from the set of prime factors of b, this holds for all such p_i.