Programming Computers
70: Discrete Math and Probability.

Programming Computers ≡ Superpower!
Programming Computers ≡ Superpower!

What are your super powerful programs doing?
Programming Computers ≡ Superpower!

What are your super powerful programs doing?
Logic and Proofs!
Programming Computers ≡ Superpower!

What are your super powerful programs doing?
 Logic and Proofs!
 Induction ≡ Recursion.
Programming Computers \equiv Superpower!

What are your super powerful programs doing?
 Logic and Proofs!
 Induction \equiv Recursion.

What can computers do?
Programming Computers ≡ Superpower!

What are your super powerful programs doing?
 Logic and Proofs!
 Induction ≡ Recursion.

What can computers do?
 Work with discrete objects.
Programming Computers ≡ Superpower!

What are your super powerful programs doing?
 Logic and Proofs!
 Induction ≡ Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math
Programming Computers \equiv Superpower!

What are your super powerful programs doing?
 Logic and Proofs!
 Induction \equiv Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math \implies immense application.
Programming Computers \equiv Superpower!

What are your super powerful programs doing?
 Logic and Proofs!
 Induction \equiv Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math \implies immense application.

Computers learn and interact with the world?
70: Discrete Math and Probability.

Programming Computers ≡ Superpower!

What are your super powerful programs doing?
 Logic and Proofs!
 Induction ≡ Recursion.

What can computers do?
 Work with discrete objects.
 \textbf{Discrete Math} → immense application.

Computers learn and interact with the world?
 E.g. machine learning, data analysis.
Programming Computers ≡ Superpower!

What are your super powerful programs doing?
 Logic and Proofs!
 Induction ≡ Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math → immense application.

Computers learn and interact with the world?
 E.g. machine learning, data analysis.
 Probability!
70: Discrete Math and Probability.

Programming Computers ≡ Superpower!

What are your super powerful programs doing?
 Logic and Proofs!
 Induction ≡ Recursion.

What can computers do?
 Work with discrete objects.
 Discrete Math ⇒ immense application.

Computers learn and interact with the world?
 E.g. machine learning, data analysis.
 Probability!

See note 1, for more discussion.
Admin.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16
Admin.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.
Admin.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16
Explains policies, has homework, midterm dates, etc.
Two midterms, final.
Admin.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final.
midterm 1 before drop date. (2/16)
Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final.
 midterm 1 before drop date. (2/16)
 midterm 2 before grade option change. (3/29)
Course Webpage: inst.cs.berkeley.edu/~cs70/sp16
Explains policies, has homework, midterm dates, etc.

Two midterms, final.
 midterm 1 before drop date. (2/16)
 midterm 2 before grade option change. (3/29)

Questions
Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final.
 midterm 1 before drop date. (2/16)
 midterm 2 before grade option change. (3/29)

Questions \rightarrow piazza:
Admin.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final.
 midterm 1 before drop date. (2/16)
 midterm 2 before grade option change. (3/29)

Questions ⇒ piazza:
 piazza.com/berkeley/spring2016/cs70
Admin.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16
 Explains policies, has homework, midterm dates, etc.

Two midterms, final.
 midterm 1 before drop date. (2/16)
 midterm 2 before grade option change. (3/29)

Questions ➞ piazza:
 piazza.com/berkeley/spring2016/cs70
Also: Available after class.
Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final.
 midterm 1 before drop date. (2/16)
 midterm 2 before grade option change. (3/29)

Questions ➞ piazza:
 piazza.com/berkeley/spring2016/cs70

Also: Available after class.

Assessment:
Course Webpage: inst.cs.berkeley.edu/~cs70/sp16
Explains policies, has homework, midterm dates, etc.

Two midterms, final.
midterm 1 before drop date. (2/16)
midterm 2 before grade option change. (3/29)

Questions ⦿ piazza:
 piazza.com/berkeley/spring2016/cs70
Also: Available after class.
Assessment: Two options:
Admin.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16

Explains policies, has homework, midterm dates, etc.

Two midterms, final.
midterm 1 before drop date. (2/16)
midterm 2 before grade option change. (3/29)

Questions ⇒ piazza:
piazza.com/berkeley/spring2016/cs70
Also: Available after class.
Assessment: Two options:
Course Webpage: inst.cs.berkeley.edu/~cs70/sp16
Explains policies, has homework, midterm dates, etc.

Two midterms, final.
midterm 1 before drop date. (2/16)
midterm 2 before grade option change. (3/29)

Questions ➔ piazza:
piazza.com/berkeley/spring2016/cs70
Also: Available after class.
Assessment: Two options:

Test Only.
 Midterm 1: 25%
 Midterm 2: 25%
 Final: 49%
 Sundry: 1%
Admin.

Course Webpage: inst.cs.berkeley.edu/~cs70/sp16
Explains policies, has homework, midterm dates, etc.

Two midterms, final.
midterm 1 before drop date. (2/16)
midterm 2 before grade option change. (3/29)

Questions ⇒ piazza:
Piazza.com/berkeley/spring2016/cs70
Also: Available after class.
Assessment: Two options:

Test Only.
 Midterm 1: 25%
 Midterm 2: 25%
 Final: 49%
 Sundry: 1%

Test plus Homework.
 Test Only Score: 85%
 Homework Score: 15%
Instructors: Satish Rao and Jean Walrand.
Instructors: Satish Rao and Jean Walrand. Both are available throughout the course.
Instructor/Admin

Instructors: Satish Rao and Jean Walrand.
Both are available throughout the course.
 Office hours or by email, technical and administrative.
Instructors: Satish Rao and Jean Walrand. Both are available throughout the course. Office hours or by email, technical and administrative. Satish Rao: mostly discrete math.
Instructors: Satish Rao and Jean Walrand. Both are available throughout the course. Office hours or by email, technical and administrative.
Satish Rao: mostly discrete math.
Jean Walrand: mostly probability.
Jean Walrand – Prof. of EECS – UCB
257 Cory Hall – walrand@berkeley.edu

I was born in Belgium\(^{(1)}\) and came to Berkeley for my PhD. I have been teaching at UCB since 1982.

My wife and I live in Berkeley. We have two daughters (UC alumni – Go Bears!). We like to ski and play tennis (both poorly). We enjoy classical music and jazz.

My research interests include stochastic systems, networks and game theory.

\(^{(1)}\)
17th year at Berkeley.
Satish Rao

17th year at Berkeley.
PhD: Long time ago,
17th year at Berkeley.
PhD: Long time ago, far
17th year at Berkeley.
PhD: Long time ago, far far away.
Satish Rao

17th year at Berkeley.
PhD: Long time ago, far far away.
Research: Theory
Satish Rao

17th year at Berkeley.
PhD: Long time ago, far far away.
Research: Theory (Algorithms)
17th year at Berkeley.
PhD: Long time ago, far far away.
Research: Theory (Algorithms)
Taught: 170, 174, 70, 270, 273, 294,
17th year at Berkeley.
PhD: Long time ago, far far away.
Research: Theory (Algorithms)
Taught: 170, 174, 70, 270, 273, 294, 375, ...
Satish Rao

17th year at Berkeley.
PhD: Long time ago, far far away.
Research: Theory (Algorithms)
Taught: 170, 174, 70, 270, 273, 294, 375, ...

Recovering Helicopter(ish) parent of 3 College(ish) kids.
17th year at Berkeley.
PhD: Long time ago, far far away.
Research: Theory (Algorithms)
Taught: 170, 174, 70, 270, 273, 294, 375, ...

Recovering Helicopter(ish) parent of 3 College(ish) kids.
Wason’s experiment:1

Suppose we have four cards on a table:

1. 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
Wason’s experiment: 1

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person’s destination on one side, and mode of travel.
Wason’s experiment:1

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person’s destination on one side, and mode of travel.
- Consider the theory:
Wason’s experiment:1

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person’s destination on one side, and mode of travel.
- Consider the theory:
 “If a person travels to Chicago, he/she flies.”
Wason’s experiment:1

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person’s destination on one side, and mode of travel.
- Consider the theory: “If a person travels to Chicago, he/she flies.”
Wason’s experiment:1

Suppose we have four cards on a table:

▶ 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
▶ Card contains person’s destination on one side, and mode of travel.
▶ Consider the theory: “If a person travels to Chicago, he/she flies.”
▶ Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.
Wason’s experiment:1

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person’s destination on one side, and mode of travel.
- Consider the theory: “If a person travels to Chicago, he/she flies.”
- Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?
Wason’s experiment:1

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person’s destination on one side, and mode of travel.
- Consider the theory: “If a person travels to Chicago, he/she flies.”
- Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Answer:
Wason’s experiment:1

Suppose we have four cards on a table:

- 1st about Alice, 2nd about Bob, 3rd Charlie, 4th Donna.
- Card contains person’s destination on one side, and mode of travel.
- Consider the theory: “If a person travels to Chicago, he/she flies.”
- Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

Answer: Later.
CS70: Lecture 1. Outline.

Today: Note 1.
Today: Note 1. Note 0 is background.
Today: Note 1. Note 0 is background. Do read/skim it.
Today: Note 1. Note 0 is background. Do read/skim it.
The language of proofs!
CS70: Lecture 1. Outline.

Today: Note 1. Note 0 is background. Do read/skim it.

The language of proofs!

1. Propositions.
2. Propositional Forms.
3. Implication.
4. Truth Tables
5. Quantifiers
6. More De Morgan’s Laws
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
\[2 + 2 = 4 \]
\[2 + 2 = 3 \]
\[826 \text{th digit of } \pi \text{ is } 4 \]
\[\text{Johny Depp is a good actor} \]
\[\text{All evens } > 2 \text{ are sums of 2 primes} \]
\[4 + 5 \]
\[x + x \]
\[\text{Alice travelled to Chicago} \]
Propositions: Statements that are true or false.

\sqrt{2} \text{ is irrational}
2 + 2 = 4
2 + 2 = 3
826th digit of \pi \text{ is 4}
Johny Depp is a good actor
All evens > 2 are sums of 2 primes
4 + 5
x + x
Alice travelled to Chicago
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
\[2 + 2 = 4 \]
\[2 + 2 = 3 \]
\[826\text{th digit of pi is 4} \]
\[\text{Johny Depp is a good actor} \]
\[\text{All evens} > 2 \text{ are sums of 2 primes} \]
\[4 + 5 \]
\[x + x \]
\[\text{Alice travelled to Chicago} \]
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \]
\[2+2 = 4 \]
\[2+2 = 3 \]
\[826th \text{ digit of pi is 4} \]
\[\text{Johny Depp is a good actor} \]
\[\text{All evens} > 2 \text{ are sums of 2 primes} \]
\[4 + 5 \]
\[x + x \]
\[\text{Alice travelled to Chicago} \]
Propositions: Statements that are true or false.

<table>
<thead>
<tr>
<th>Proposition</th>
<th>True/False</th>
</tr>
</thead>
<tbody>
<tr>
<td>√2 is irrational</td>
<td>True</td>
</tr>
<tr>
<td>2+2 = 4</td>
<td>True</td>
</tr>
<tr>
<td>2+2 = 3</td>
<td>True</td>
</tr>
<tr>
<td>826th digit of pi is 4</td>
<td>False</td>
</tr>
<tr>
<td>Johny Depp is a good actor</td>
<td>False</td>
</tr>
<tr>
<td>All evens > 2 are sums of 2 primes</td>
<td>False</td>
</tr>
<tr>
<td>4 + 5</td>
<td>False</td>
</tr>
<tr>
<td>x + x</td>
<td>False</td>
</tr>
<tr>
<td>Alice travelled to Chicago</td>
<td>False</td>
</tr>
<tr>
<td>Proposition</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>(\sqrt{2}) is irrational</td>
<td>True</td>
</tr>
<tr>
<td>(2+2=4)</td>
<td>True</td>
</tr>
<tr>
<td>(2+2=3)</td>
<td>False</td>
</tr>
<tr>
<td>826th digit of pi is 4</td>
<td></td>
</tr>
<tr>
<td>Johny Depp is a good actor</td>
<td></td>
</tr>
<tr>
<td>All evens > 2 are sums of 2 primes</td>
<td></td>
</tr>
<tr>
<td>(4+5)</td>
<td></td>
</tr>
<tr>
<td>(x+x)</td>
<td></td>
</tr>
<tr>
<td>Alice travelled to Chicago</td>
<td>False</td>
</tr>
<tr>
<td>Proposition</td>
<td>True/False</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>(\sqrt{2}) is irrational</td>
<td>True</td>
</tr>
<tr>
<td>(2 + 2 = 4)</td>
<td>True</td>
</tr>
<tr>
<td>(2 + 2 = 3)</td>
<td>False</td>
</tr>
<tr>
<td>826th digit of pi is 4</td>
<td>False</td>
</tr>
<tr>
<td>Johny Depp is a good actor</td>
<td>False</td>
</tr>
<tr>
<td>All evens (\geq 2) are sums of 2 primes</td>
<td>False</td>
</tr>
<tr>
<td>(4 + 5)</td>
<td></td>
</tr>
<tr>
<td>(x + x)</td>
<td></td>
</tr>
<tr>
<td>Alice travelled to Chicago</td>
<td>False</td>
</tr>
</tbody>
</table>
Propositions: Statements that are true or false.

<table>
<thead>
<tr>
<th>Proposition</th>
<th>True/False</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{2}$ is irrational</td>
<td>True</td>
</tr>
<tr>
<td>$2 + 2 = 4$</td>
<td>True</td>
</tr>
<tr>
<td>$2 + 2 = 3$</td>
<td>False</td>
</tr>
<tr>
<td>826th digit of pi is 4</td>
<td>False</td>
</tr>
<tr>
<td>Johny Depp is a good actor</td>
<td></td>
</tr>
<tr>
<td>All evens > 2 are sums of 2 primes</td>
<td>False</td>
</tr>
<tr>
<td>$4 + 5$</td>
<td></td>
</tr>
<tr>
<td>$x + x$</td>
<td></td>
</tr>
<tr>
<td>Alice travelled to Chicago</td>
<td></td>
</tr>
</tbody>
</table>
Propositions: Statements that are true or false.

\sqrt{2} \text{ is irrational} \quad \text{Proposition} \quad \text{True}

2 + 2 = 4 \quad \text{Proposition} \quad \text{True}

2 + 2 = 3 \quad \text{Proposition} \quad \text{False}

826th digit of pi is 4 \quad \text{Proposition} \quad \text{False}

Johny Depp is a good actor \quad \text{Not a Proposition}

All evens \geq 2 \text{ are sums of 2 primes} \quad \text{Proposition} \quad \text{False}

4 + 5 \quad \text{Not a Proposition}

x + x \quad \text{Not a Proposition}

Alice travelled to Chicago \quad \text{Proposition} \quad \text{False}
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \quad \text{Proposition} \quad \text{True} \]
\[2+2 = 4 \quad \text{Proposition} \quad \text{True} \]
\[2+2 = 3 \quad \text{Proposition} \quad \text{False} \]
\[\text{826th digit of pi is 4} \quad \text{Proposition} \quad \text{False} \]
\[\text{Johny Depp is a good actor} \quad \text{Not a Proposition} \]
\[\text{All evens} \cdot 2 \text{ are sums of 2 primes} \quad \text{Not a Proposition} \]
\[4 + 5 \quad \text{Proposition} \quad \text{True} \]
\[x + x \quad \text{Proposition} \quad \text{False} \]
\[\text{Alice travelled to Chicago} \quad \text{Proposition} \quad \text{False} \]
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \quad \text{Proposition} \quad \text{True} \]
\[2+2 = 4 \quad \text{Proposition} \quad \text{True} \]
\[2+2 = 3 \quad \text{Proposition} \quad \text{False} \]
\[826\text{th digit of pi is 4} \quad \text{Proposition} \quad \text{False} \]
\[\text{Johny Depp is a good actor} \quad \text{Not a Proposition} \]
\[\text{All evens } > 2 \text{ are sums of 2 primes} \quad \text{Proposition} \]
\[4 + 5 \quad \text{Proposition} \]
\[x + x \quad \text{Not a Proposition} \]
\[\text{Alice travelled to Chicago} \quad \text{Proposition} \]
Propositions: Statements that are true or false.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sqrt{2}) is irrational</td>
<td>Proposition</td>
<td>True</td>
</tr>
<tr>
<td>(2 + 2 = 4)</td>
<td>Proposition</td>
<td>True</td>
</tr>
<tr>
<td>(2 + 2 = 3)</td>
<td>Proposition</td>
<td>False</td>
</tr>
<tr>
<td>826th digit of pi is 4</td>
<td>Proposition</td>
<td>False</td>
</tr>
<tr>
<td>Johny Depp is a good actor</td>
<td>Not a Proposition</td>
<td></td>
</tr>
<tr>
<td>All evens (> 2) are sums of 2 primes</td>
<td>Proposition</td>
<td>False</td>
</tr>
<tr>
<td>(4 + 5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x + x)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alice travelled to Chicago</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Propositions: Statements that are true or false.

\[\sqrt{2} \text{ is irrational} \quad \text{Proposition} \quad \text{True} \]
\[2+2 = 4 \quad \text{Proposition} \quad \text{True} \]
\[2+2 = 3 \quad \text{Proposition} \quad \text{False} \]
\[\text{826th digit of pi is 4} \quad \text{Proposition} \quad \text{False} \]
\[\text{Johny Depp is a good actor} \quad \text{Not a Proposition} \]
\[\text{All evens > 2 are sums of 2 primes} \quad \text{Proposition} \quad \text{False} \]
\[4 + 5 \quad \text{Not a Proposition.} \]
\[x + x \quad \text{Not a Proposition.} \]
\[\text{Alice travelled to Chicago} \]
Propositions: Statements that are true or false.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{2}$ is irrational</td>
<td>Proposition</td>
<td>True</td>
</tr>
<tr>
<td>$2 + 2 = 4$</td>
<td>Proposition</td>
<td>True</td>
</tr>
<tr>
<td>$2 + 2 = 3$</td>
<td>Proposition</td>
<td>False</td>
</tr>
<tr>
<td>826th digit of pi is 4</td>
<td>Proposition</td>
<td>False</td>
</tr>
<tr>
<td>Johny Depp is a good actor</td>
<td>Not a Proposition</td>
<td></td>
</tr>
<tr>
<td>All evens > 2 are sums of 2 primes</td>
<td>Proposition</td>
<td>False</td>
</tr>
<tr>
<td>$4 + 5$</td>
<td>Not a Proposition</td>
<td></td>
</tr>
<tr>
<td>$x + x$</td>
<td>Not a Proposition</td>
<td></td>
</tr>
<tr>
<td>Alice travelled to Chicago</td>
<td>Proposition</td>
<td>False</td>
</tr>
</tbody>
</table>
Propositions: Statements that are true or false.

\[
\begin{array}{l|l|l}
\text{\(\sqrt{2}\) is irrational} & \text{Proposition} & \text{True} \\
\text{2+2 = 4} & \text{Proposition} & \text{True} \\
\text{2+2 = 3} & \text{Proposition} & \text{False} \\
\text{826th digit of pi is 4} & \text{Proposition} & \text{False} \\
\text{Johny Depp is a good actor} & \text{Not a Proposition} & \\
\text{All evens \(>\) 2 are sums of 2 primes} & \text{Proposition} & \text{False} \\
\text{4 + 5} & \text{Not a Proposition.} & \\
\text{x + x} & \text{Not a Proposition.} & \\
\text{Alice travelled to Chicago} & \text{Proposition.} & \\
\end{array}
\]

Again: “value” of a proposition is ...
Propositions: Statements that are true or false.

<table>
<thead>
<tr>
<th>Proposition</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sqrt{2}$ is irrational</td>
<td>True</td>
</tr>
<tr>
<td>$2 + 2 = 4$</td>
<td>True</td>
</tr>
<tr>
<td>$2 + 2 = 3$</td>
<td>False</td>
</tr>
<tr>
<td>826th digit of pi is 4</td>
<td>False</td>
</tr>
<tr>
<td>Johny Depp is a good actor</td>
<td>Not a Proposition</td>
</tr>
<tr>
<td>All evens > 2 are sums of 2 primes</td>
<td>False</td>
</tr>
<tr>
<td>$4 + 5$</td>
<td>Not a Proposition</td>
</tr>
<tr>
<td>$x + x$</td>
<td>Not a Proposition</td>
</tr>
<tr>
<td>Alice travelled to Chicago</td>
<td>False</td>
</tr>
</tbody>
</table>

Again: “value” of a proposition is ... **True or False**
Propositional Forms.

Put propositions together to make another...
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): \(P \land Q \)

"\(P \land Q \)" is True when both \(P \) and \(Q \) are True. Else False.
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): $P \land Q$

“$P \land Q$” is True when both P and Q are True. Else False.

Disjunction (“or”): $P \lor Q$

"2 + 2 = 4" ∧ "2 + 2 = 3" – a proposition that is False.

"2 + 2 = 3" ∨ "2 + 2 = 4" – a proposition that is True.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

"$P \lor Q$" is True when at least one P or Q is True.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): \(P \land Q \)

"\(P \land Q \)" is True when both \(P \) and \(Q \) are True. Else False.

Disjunction ("or"): \(P \lor Q \)

"\(P \lor Q \)" is True when at least one \(P \) or \(Q \) is True. Else False.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

"$P \lor Q$" is True when at least one P or Q is True. Else False.

Negation ("not"): $\neg P$
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): \(P \land Q \)

“\(P \land Q \)” is True when both \(P \) and \(Q \) are True. Else False.

Disjunction (“or”): \(P \lor Q \)

“\(P \lor Q \)” is True when at least one \(P \) or \(Q \) is True. Else False.

Negation (“not”): \(\neg P \)

“\(\neg P \)” is True when \(P \) is False.
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): \(P \land Q \)

“\(P \land Q \)” is True when both \(P \) and \(Q \) are True. Else False.

Disjunction (“or”): \(P \lor Q \)

“\(P \lor Q \)” is True when at least one \(P \) or \(Q \) is True. Else False.

Negation (“not”): \(\neg P \)

“\(\neg P \)” is True when \(P \) is False. Else False.
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): \(P \land Q \)

"\(P \land Q \)" is True when both \(P \) and \(Q \) are True. Else False.

Disjunction ("or"): \(P \lor Q \)

"\(P \lor Q \)" is True when at least one \(P \) or \(Q \) is True. Else False.

Negation ("not"): \(\neg P \)

"\(\neg P \)" is True when \(P \) is False. Else False.

Examples:
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): \(P \land Q \)

“\(P \land Q \)” is **True** when both \(P \) and \(Q \) are **True**. Else **False**.

Disjunction (“or”): \(P \lor Q \)

“\(P \lor Q \)” is **True** when at least one \(P \) or \(Q \) is **True**. Else **False**.

Negation (“not”): \(\neg P \)

“\(\neg P \)” is **True** when \(P \) is **False**. Else **False**.

Examples:

\(\neg "(2 + 2 = 4)" \) – a proposition that is ...
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): \(P \land Q \)

"\(P \land Q \)" is True when both \(P \) and \(Q \) are True. Else False.

Disjunction ("or"): \(P \lor Q \)

"\(P \lor Q \)" is True when at least one \(P \) or \(Q \) is True. Else False.

Negation ("not"): \(\neg P \)

"\(\neg P \)" is True when \(P \) is False. Else False.

Examples:

\(\neg \) "\((2 + 2 = 4) \)" – a proposition that is ... False
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): \(P \land Q \)

"\(P \land Q \)" is True when both \(P \) and \(Q \) are True. Else False.

Disjunction ("or"): \(P \lor Q \)

"\(P \lor Q \)" is True when at least one \(P \) or \(Q \) is True. Else False.

Negation ("not"): \(\neg P \)

"\(\neg P \)" is True when \(P \) is False. Else False.

Examples:

\(\neg "(2 + 2 = 4)" \) – a proposition that is ... False

"2 + 2 = 3" \(\land "2 + 2 = 4" \) – a proposition that is ...
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

"$P \lor Q$" is True when at least one P or Q is True. Else False.

Negation ("not"): $\neg P$

"$\neg P$" is True when P is False. Else False.

Examples:

$\neg "(2 + 2 = 4)"$ – a proposition that is ... False

"$2 + 2 = 3" \land "2 + 2 = 4$" – a proposition that is ... False
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): \(P \land Q \)

\(P \land Q \) is True when both \(P \) and \(Q \) are True. Else False.

Disjunction ("or"): \(P \lor Q \)

\(P \lor Q \) is True when at least one \(P \) or \(Q \) is True. Else False.

Negation ("not"): \(\neg P \)

\(\neg P \) is True when \(P \) is False. Else False.

Examples:

\(\neg \ "(2 + 2 = 4)" \) – a proposition that is ... False

\(2 + 2 = 3 \) \(\land \) \(2 + 2 = 4 \) – a proposition that is ... False

\(2 + 2 = 3 \) \(\lor \) \(2 + 2 = 4 \) – a proposition that is ...
Propositional Forms.

Put propositions together to make another...

Conjunction ("and"): $P \land Q$

"$P \land Q$" is True when both P and Q are True. Else False.

Disjunction ("or"): $P \lor Q$

"$P \lor Q$" is True when at least one P or Q is True. Else False.

Negation ("not"): $\neg P$

"$\neg P$" is True when P is False. Else False.

Examples:

$\neg "(2 + 2 = 4)"$ – a proposition that is ... False

"$2 + 2 = 3" \land "2 + 2 = 4$" – a proposition that is ... False

"$2 + 2 = 3" \lor "2 + 2 = 4$" – a proposition that is ... True
Propositional Forms.

Put propositions together to make another...

Conjunction (“and”): \(P \land Q \)

“\(P \land Q \)" is True when both \(P \) and \(Q \) are True. Else False.

Disjunction (“or”): \(P \lor Q \)

“\(P \lor Q \)" is True when at least one \(P \) or \(Q \) is True. Else False.

Negation (“not”): \(\neg P \)

“\(\neg P \)" is True when \(P \) is False. Else False.

Examples:

\(\neg "(2 + 2 = 4)" \) — a proposition that is ... False

“2 + 2 = 3” \(\land \) “2 + 2 = 4” — a proposition that is ... False

“2 + 2 = 3” \(\lor \) “2 + 2 = 4” — a proposition that is ... True
Propositional Forms: quick check!

\[P = \text{“} \sqrt{2} \text{ is rational”} \]
Propositional Forms: quick check!

\[P = \text{“} \sqrt{2} \text{ is rational”} \]
\[Q = \text{“} 826\text{th digit of pi is 2”} \]
Propositional Forms: quick check!

\[P = \text{“} \sqrt{2} \text{ is rational”} \]
\[Q = \text{“} 826\text{th digit of pi is 2”} \]
Propositional Forms: quick check!

\(P = \text{“} \sqrt{2} \text{ is rational”} \)
\(Q = \text{“} 826\text{th digit of pi is 2”} \)

\(P \) is ...
Propositional Forms: quick check!

\[P = \text{"\(\sqrt{2}\) is rational"} \]
\[Q = \text{"826th digit of pi is 2"} \]

\[P \text{ is ...} \text{False .} \]
Propositional Forms: quick check!

$P = \text{“} \sqrt{2} \text{ is rational”}$
$Q = \text{“} 826\text{th digit of pi is 2”}$

P is ... True.
Q is ... False.
Propositional Forms: quick check!

\[P = \text{"sqrt\(2\) is rational"} \]
\[Q = \text{"826th digit of pi is 2"} \]

\[P \text{ is ... } \text{False} . \]
\[Q \text{ is ... } \text{True} . \]
Propositional Forms: quick check!

\[P = \text{“} \sqrt{2} \text{ is rational”} \]
\[Q = \text{“} 826\text{th digit of pi is 2”} \]

\[P \] is ... False .
\[Q \] is ... True .

\[P \land Q \] ...
Propositional Forms: quick check!

\[P = \text{“} \sqrt{2} \text{ is rational} \]
\[Q = \text{“} 826\text{th digit of } \pi \text{ is 2} \]

\[P \] is ... False .
\[Q \] is ... True .

\[P \land Q \] ... False
Propositional Forms: quick check!

\[P = \text{“} \sqrt{2} \text{ is rational”} \]
\[Q = \text{“} 826 \text{th digit of pi is 2”} \]

\[P \text{ is ...False .} \]
\[Q \text{ is ...True .} \]

\[P \land Q \text{ ... False} \]
\[P \lor Q \text{ ...} \]
Propositional Forms: quick check!

\(P = \text{“} \sqrt{2} \text{ is rational”} \)
\(Q = \text{“} 826\text{th digit of pi is 2”} \)

\(P \) is ... **False**.
\(Q \) is ... **True**.

\(P \land Q \) ... **False**
\(P \lor Q \) ... **True**
Propositional Forms: quick check!

\(P = \text{“}\sqrt{2} \text{ is rational”} \)
\(Q = \text{“}826\text{th digit of pi is 2”} \)

\(P \) is ... \text{False} .
\(Q \) is ... \text{True} .

\(P \land Q \) ... False
\(P \lor Q \) ... True
\(\neg P \) ...
Propositional Forms: quick check!

\(P = \text{“}\sqrt{2} \text{ is rational”} \)
\(Q = \text{“826th digit of pi is 2”} \)

\(P \) is ...\text{False} .
\(Q \) is ...\text{True} .

\(P \land Q \) ... False
\(P \lor Q \) ... True
\(\neg P \) ... True
Put them together.

Propositions:

P_1 - Person 1 rides the bus.
Put them together..

Propositions:

- P_1 - Person 1 rides the bus.
- P_2 - Person 2 rides the bus.

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:

$$\neg ((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5))$$

Can person 3 ride the bus?
Can person 3 and person 4 ride the bus together?
This seems complicated.
We can program!!!!
We need a way to keep track!
Put them together..

Propositions:

\(P_1\) - Person 1 rides the bus.
\(P_2\) - Person 2 rides the bus.
....
Put them together..

Propositions:
\(P_1 \) - Person 1 rides the bus.
\(P_2 \) - Person 2 rides the bus.

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
\[
\neg ((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5))
\]

Can person 3 ride the bus?
Can person 3 and person 4 ride the bus together?
This seems complicated.
We can program!!!!
We need a way to keep track!
Propositions:
\(P_1 \) - Person 1 rides the bus.
\(P_2 \) - Person 2 rides the bus.
....

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
\[\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5))) \]
Propositions:
P_1 - Person 1 rides the bus.
P_2 - Person 2 rides the bus.

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
$\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$

Can person 3 ride the bus?
Put them together..

Propositions:

P_1 - Person 1 rides the bus.

P_2 - Person 2 rides the bus.

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:

$$\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$$

Can person 3 ride the bus?

Can person 3 and person 4 ride the bus together?
Propositions:

\[P_1 \] - Person 1 rides the bus.
\[P_2 \] - Person 2 rides the bus.

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:

\[
\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))
\]

Can person 3 ride the bus?
Can person 3 and person 4 ride the bus together?
Put them together..

Propositions:
\(P_1 \) - Person 1 rides the bus.
\(P_2 \) - Person 2 rides the bus.

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
\[
\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))
\]

Can person 3 ride the bus?
Can person 3 and person 4 ride the bus together?

This seems ...
Propositions:

\(P_1 \) - Person 1 rides the bus.
\(P_2 \) - Person 2 rides the bus.

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:

\[\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5))) \]

Can person 3 ride the bus?
Can person 3 and person 4 ride the bus together?

This seems ...complicated.
Put them together..

Propositions:

P_1 - Person 1 rides the bus.
P_2 - Person 2 rides the bus.

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:

$\neg(((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5)))$

Can person 3 ride the bus?
Can person 3 and person 4 ride the bus together?

This seems ...complicated.

We can program!!!!
Put them together..

Propositions:
P_1 - Person 1 rides the bus.
P_2 - Person 2 rides the bus.
....

But we can’t have either of the following happen; That either person 1 or person 2 ride the bus and person 3 or 4 ride the bus. Or that person 2 or person 3 ride the bus and that either person 4 ride the bus or person 5 doesn’t.

Propositional Form:
\neg ((P_1 \lor P_2) \land (P_3 \lor P_4)) \lor ((P_2 \lor P_3) \land (P_4 \lor \neg P_5))

Can person 3 ride the bus?
Can person 3 and person 4 ride the bus together?
This seems ...complicated.

We can program!!!!
We need a way to keep track!
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

DeMorgan's Law's for Negation: distribute and flip!

$\neg (P \land Q) \equiv \neg P \lor \neg Q$

$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

DeMorgan's Law's for Negation:
- $\neg(P \land Q) \equiv \neg P \lor \neg Q$
- $\neg(P \lor Q) \equiv \neg P \land \neg Q$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

One use for truth tables: Logical Equivalence of propositional forms!

Example:

$\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$...

DeMorgan's Law's for Negation: distribute and flip!

$\neg (P \land Q) \equiv \neg P \lor \neg Q$

$\neg (P \lor Q) \equiv \neg P \land \neg Q$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \lor Q)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \land \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>P ∧ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: ∧ and ∨ are commutative.

One use for truth tables: Logical Equivalence of propositional forms!
Example: \(\neg(P ∧ Q) \) logically equivalent to \(\neg P ∨ \neg Q \)
...because the two propositional forms have the same...
...Truth Table!

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>(\neg(P ∨ Q))</th>
<th>(\neg P ∧ \neg Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td></td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td></td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \lor Q)$</th>
<th>$\neg P \land \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg (P \lor Q)$</th>
<th>$\neg P \land \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>P ∧ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>P ∨ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: ∧ and ∨ are commutative.

One use for truth tables: Logical Equivalence of propositional forms!
Example: \(\neg(P ∧ Q) \) logically equivalent to \(\neg P ∨ \neg Q \)
...because the two propositional forms have the same...

....Truth Table!

<table>
<thead>
<tr>
<th></th>
<th>P</th>
<th>Q</th>
<th>(\neg(P ∨ Q))</th>
<th>(\neg P ∧ \neg Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg (P \lor Q)$</th>
<th>$\neg P \land \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg (P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg (P \lor Q)$</th>
<th>$\neg P \land \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \lor Q)$</th>
<th>$\neg P \land \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!
Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$
...because the two propositional forms have the same...
...Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \lor Q)$</th>
<th>$\neg P \land \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

DeMorgan’s Law’s for Negation: distribute and flip!
$\neg(P \land Q)$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \land Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \land and \lor are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: $\neg(P \land Q)$ logically equivalent to $\neg P \lor \neg Q$

...because the two propositional forms have the same...

....Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg(P \lor Q)$</th>
<th>$\neg P \land \neg Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

DeMorgan’s Law’s for Negation: distribute and flip!

$\neg(P \land Q) \equiv \neg P \lor \neg Q$
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(P \land Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(P \lor Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \(\land \) and \(\lor \) are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: \(\neg(P \land Q) \) logically equivalent to \(\neg P \lor \neg Q \)

...because the two propositional forms have the same...

....Truth Table!

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>(\neg(P \lor Q))</th>
<th>(\neg P \land \neg Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

DeMorgan’s Law’s for Negation: distribute and flip!

\[\neg(P \land Q) \equiv \neg P \lor \neg Q \]

\[\neg(P \lor Q) \equiv \neg P \land \neg Q \]
Truth Tables for Propositional Forms.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \land Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P \lor Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Notice: \(\land \) and \(\lor \) are commutative.

One use for truth tables: Logical Equivalence of propositional forms!

Example: \(\neg(P \land Q) \) logically equivalent to \(\neg P \lor \neg Q \)

...because the two propositional forms have the same...

...Truth Table!

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>\neg(P \lor Q)</th>
<th>\neg P \land \neg Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

DeMorgan’s Law’s for Negation: distribute and flip!

\[\neg(P \land Q) \equiv \neg P \lor \neg Q \]
\[\neg(P \lor Q) \equiv \neg P \land \neg Q \]
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) ? \]

Simplify: \((T \land Q) \equiv Q , \)
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) ? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F \).
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F.\]

Cases:

- \(P\) is \textbf{True}.
 - LHS: \(T \land (Q \lor R)\)
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F\).

Cases:

\(P \) is \textbf{True} .

LHS: \(T \land (Q \lor R) \equiv (Q \lor R) \).
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) \, ? \]

Simplify: \((T \land Q) \equiv Q\), \((F \land Q) \equiv F\).

Cases:

\(P\) is True.

LHS: \(T \land (Q \lor R) \equiv (Q \lor R)\).

RHS: \((T \land Q) \lor (T \land R)\)
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) ? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F.\)

Cases:

\(P\) is True.

LHS: \(T \land (Q \lor R) \equiv (Q \lor R).\)

RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R).\)
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F.\]

Cases:

- \(P\) is True .
 - LHS: \(T \land (Q \lor R) \equiv (Q \lor R).\)
 - RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R).\)

- \(P\) is False .
Distributive?

\(P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) ? \)

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F \).

Cases:

\(P \) is True .

LHS: \(T \land (Q \lor R) \equiv (Q \lor R) . \)

RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R) . \)

\(P \) is False .

LHS: \(F \land (Q \lor R) \)
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F\).

Cases:

- \(P\) is True.
 - LHS: \(T \land (Q \lor R) \equiv (Q \lor R)\).
 - RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R)\).

- \(P\) is False.
 - LHS: \(F \land (Q \lor R) \equiv F\).
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F.\)

Cases:

\(P\) is True.
- LHS: \(T \land (Q \lor R) \equiv (Q \lor R).\)
- RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R).\)

\(P\) is False.
- LHS: \(F \land (Q \lor R) \equiv F.\)
- RHS: \((F \land Q) \lor (F \land R)\)
Distributive?

\(P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) \)?

Simplify: \(T \land Q \equiv Q \), \(F \land Q \equiv F \).

Cases:

\(P \) is True.

LHS: \(T \land (Q \lor R) \equiv (Q \lor R) \).

RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R) \).

\(P \) is False.

LHS: \(F \land (Q \lor R) \equiv F \).

RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \)
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) ? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F \).

Cases:

\(P \) is True.
- LHS: \(T \land (Q \lor R) \equiv (Q \lor R) \).
- RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R) \).

\(P \) is False.
- LHS: \(F \land (Q \lor R) \equiv F \).
- RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F \).
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) \]?

Simplify: \(T \land Q \equiv Q \), \(F \land Q \equiv F \).

Cases:

\(P \) is True .

LHS: \(T \land (Q \lor R) \equiv (Q \lor R) \).

RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R) \).

\(P \) is False .

LHS: \(F \land (Q \lor R) \equiv F \).

RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F \).
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) ? \]

Simplify: \((T \land Q) \equiv Q, \ (F \land Q) \equiv F. \)

Cases:

- **P** is **True** .
 - LHS: \(T \land (Q \lor R) \equiv (Q \lor R). \)
 - RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R). \)

- **P** is **False** .
 - LHS: \(F \land (Q \lor R) \equiv F. \)
 - RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F. \)

\[P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R) ? \]
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F.\)

Cases:

\(P\) is True .

LHS: \(T \land (Q \lor R) \equiv (Q \lor R).\)
RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R).\)

\(P\) is False .

LHS: \(F \land (Q \lor R) \equiv F.\)
RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.\)

\[P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)? \]

Simplify: \(T \lor Q \equiv T,\)
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F.\)

Cases:

\(P\) is \textbf{True}.

LHS: \(T \land (Q \lor R) \equiv (Q \lor R).\)
RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R).\)

\(P\) is \textbf{False}.

LHS: \(F \land (Q \lor R) \equiv F.\)
RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.\)

\[P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)? \]

Simplify: \(T \lor Q \equiv T, F \lor Q \equiv Q.\)
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) ? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F. \)

Cases:

- **P is True**.
 - LHS: \(T \land (Q \lor R) \equiv (Q \lor R). \)
 - RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R). \)

- **P is False**.
 - LHS: \(F \land (Q \lor R) \equiv F. \)
 - RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F. \)

\[P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R) ? \]

Simplify: \(T \lor Q \equiv T, F \lor Q \equiv Q. \)

Foil 1:
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F. \)

Cases:

\(P \) is True.

LHS: \(T \land (Q \lor R) \equiv (Q \lor R). \)

RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R). \)

\(P \) is False.

LHS: \(F \land (Q \lor R) \equiv F. \)

RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F. \)

\[P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)? \]

Simplify: \(T \lor Q \equiv T, F \lor Q \equiv Q. \)

Foil 1:

\[(A \lor B) \land (C \lor D) \equiv (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D)? \]
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R) ? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F\).

Cases:

\(P \) is True .

LHS: \(T \land (Q \lor R) \equiv (Q \lor R) \).

RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R)\).

\(P \) is False .

LHS: \(F \land (Q \lor R) \equiv F \).

RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F\).

\[P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R) ? \]

Simplify: \(T \lor Q \equiv T, F \lor Q \equiv Q \).

Foil 1:

\((A \lor B) \land (C \lor D) \equiv (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D) ? \)

Foil 2:
Distributive?

\[P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)? \]

Simplify: \((T \land Q) \equiv Q, (F \land Q) \equiv F.\)

Cases:
- **P is True** .
 - LHS: \(T \land (Q \lor R) \equiv (Q \lor R).\)
 - RHS: \((T \land Q) \lor (T \land R) \equiv (Q \lor R).\)
- **P is False** .
 - LHS: \(F \land (Q \lor R) \equiv F.\)
 - RHS: \((F \land Q) \lor (F \land R) \equiv (F \lor F) \equiv F.\)

\[P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)? \]

Simplify: \(T \lor Q \equiv T, F \lor Q \equiv Q.\)

Foil 1:
\[
(A \lor B) \land (C \lor D) \equiv (A \land C) \lor (A \land D) \lor (B \land C) \lor (B \land D)?
\]

Foil 2:
\[
(A \land B) \lor (C \land D) \equiv (A \lor C) \land (A \lor D) \land (B \lor C) \land (B \lor D)?
\]
Implication.

\[P \implies Q \text{ interpreted as} \]

\[P \implies Q \]
Implication.

\[P \implies Q \text{ interpreted as} \]

If \(P \), then \(Q \).
Implication.

\[P \implies Q \text{ interpreted as} \]

If \(P \), then \(Q \).
Implication.

\[P \implies Q \text{ interpreted as} \]

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).

Examples:

Statement: If you stand in the rain, then you'll get wet.

\(P = \) "you stand in the rain"

\(Q = \) "you will get wet."

Statement: "Stand in the rain"

Can conclude: "you'll get wet."

Statement: If a right triangle has sidelengths \(a \leq b \leq c \), then \(a^2 + b^2 = c^2 \).

\(P = \) "a right triangle has sidelengths \(a \leq b \leq c \),"

\(Q = \) "\(a^2 + b^2 = c^2 \)."
Implication.

\[P \implies Q \] interpreted as

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.
Implication.

\[P \implies Q \text{ interpreted as } \]

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Examples:
Implication.

\[P \implies Q \] interpreted as
If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Examples:
Statement: If you stand in the rain, then you’ll get wet.

\(P = \text{“you stand in the rain”} \)
\(Q = \text{“you will get wet”} \).

Statement: If a right triangle has sidelengths \(a \leq b \leq c \), then \(a^2 + b^2 = c^2 \).

\(P = \text{“a right triangle has sidelengths } a \leq b \leq c \text{”}, \)
\(Q = \text{“} a^2 + b^2 = c^2 \text{”}. \)
Implication.

\[P \implies Q \text{ interpreted as} \]

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Examples:

Statement: If you stand in the rain, then you’ll get wet.

\[P = \text{“you stand in the rain”} \]
Implication.

\[P \implies Q \] interpreted as
If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Examples:

Statement: If you stand in the rain, then you’ll get wet.
\[P = \text{“you stand in the rain”} \]
\[Q = \text{“you will get wet”} \]
Implication.

\[P \implies Q \] interpreted as

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Examples:

Statement: If you stand in the rain, then you’ll get wet.
\(P = \) “you stand in the rain”
\(Q = \) “you will get wet”
Statement: “Stand in the rain”
Implication.

\[P \implies Q \] interpreted as

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Examples:

Statement: If you stand in the rain, then you’ll get wet.
\[
\begin{align*}
P &= \text{“you stand in the rain”} \\
Q &= \text{“you will get wet”}
\end{align*}
\]
Statement: “Stand in the rain”
Can conclude: “you’ll get wet.”
Implication.

\[P \implies Q \] interpreted as

If \(P \), then \(Q \).

True Statements: \(P, P \implies Q \).
Conclude: \(Q \) is true.

Examples:

Statement: If you stand in the rain, then you’ll get wet.
\[P = \text{“you stand in the rain”} \]
\[Q = \text{“you will get wet”} \]

Statement: “Stand in the rain”
Can conclude: “you’ll get wet.”

Statement: If a right triangle has sidelengths \(a \leq b \leq c \), then \(a^2 + b^2 = c^2 \).
Implication.

\[P \implies Q \] interpreted as
If \(P \), then \(Q \).

True Statements: \(P, \ P \implies Q \).
Conclude: \(Q \) is true.

Examples:

Statement: If you stand in the rain, then you’ll get wet.
\(P = \) “you stand in the rain”
\(Q = \) “you will get wet”
Statement: “Stand in the rain”
Can conclude: “you’ll get wet.”

Statement: If a right triangle has sidelengths \(a \leq b \leq c \), then
\[a^2 + b^2 = c^2. \]
\(P = \) “a right triangle has sidelengths \(a \leq b \leq c \),
Implication.

\(P \implies Q \) interpreted as

If \(P \), then \(Q \).

True Statements: \(P \), \(P \implies Q \).
Conclude: \(Q \) is true.

Examples:

Statement: If you stand in the rain, then you’ll get wet.
\(P = \) “you stand in the rain”
\(Q = \) “you will get wet”

Statement: “Stand in the rain”
Can conclude: “you’ll get wet.”

Statement: If a right triangle has sidelengths \(a \leq b \leq c \), then
\(a^2 + b^2 = c^2 \).

\(P = \) “a right triangle has sidelengths \(a \leq b \leq c \)”,
\(Q = \) “\(a^2 + b^2 = c^2 \)”.
Non-Consequences/consequences of Implication

The statement \(P \implies Q \) only is False if \(P \) is True and \(Q \) is False. False implies nothing. \(P \) False means \(Q \) can be True or False. Anything implies true. \(P \) can be True or False when \(Q \) is True. If chemical plant pollutes river, fish die. If fish die, did chemical plant pollute river? Not necessarily. \(P \implies Q \) and \(Q \) are True does not mean \(P \) is True. Be careful! Instead we have: \(P \implies Q \) and \(P \) are True does mean \(Q \) is True. The chemical plant pollutes river. Can we conclude fish die? Some Fun: use propositional formulas to describe implication? \(((P \implies Q) \land P) \implies Q \).
Non-Consequences/consequences of Implication

The statement “$P \implies Q$” only is False if P is True and Q is False.
Non-Consequences/Consequences of Implication

The statement "\(P \implies Q \)"

only is **False** if \(P \) is **True** and \(Q \) is **False**.

False implies nothing
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing

P False means

$P \implies Q$ and P are True does not mean Q is True.
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True or False
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True or False
Anything implies true.
The statement \(P \implies Q \) only is False if \(P \) is True and \(Q \) is False.

False implies nothing

\(P \) False means \(Q \) can be True or False

Anything implies true.

\(P \) can be True or False when
Non-Consequences/consequences of Implication

The statement “\(P \implies Q \)”

only is \textbf{False} if \(P \) is \textbf{True} and \(Q \) is \textbf{False}.

False implies nothing

\(P \) \textbf{False} means \(Q \) can be \textbf{True} or \textbf{False}

Anything implies true.

\(P \) \textbf{can be True or False} when \(Q \) is \textbf{True}
Non-Consequences/consequences of Implication

The statement \(P \implies Q \)

only is False if \(P \) is True and \(Q \) is False.

False implies nothing
\(P \) False means \(Q \) can be True or False
Anything implies true.
\(P \) can be True or False when \(Q \) is True

If chemical plant pollutes river, fish die.
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is *False* if P is *True* and Q is *False*.

False implies nothing

P *False* means Q can be *True* or *False*

Anything implies true.

P can be *True* or *False* when Q is *True*

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?
The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True or False
Anything implies true.
P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?
Not necessarily.
Non-Consequences/consequences of Implication

The statement \(P \implies Q \)

only is \textbf{False} if \(P \) is \textbf{True} and \(Q \) is \textbf{False}.

False implies nothing
\(P \) \textbf{False} means \(Q \) can be \textbf{True} or \textbf{False}
Anything implies true.
\(P \) can be \textbf{True} or \textbf{False} when \(Q \) is \textbf{True}

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?
Not necessarily.

\(P \implies Q \) and \(Q \) are \textbf{True} does not mean \(P \) is \textbf{True}
Non-Consequences/consequences of Implication

The statement “\(P \implies Q \)”

only is False if \(P \) is True and \(Q \) is False.

False implies nothing
P False means \(Q \) can be True or False
Anything implies true.
\(P \) can be True or False when \(Q \) is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?
Not necessarily.
\(P \implies Q \) and \(Q \) are True does not mean \(P \) is True

Be careful!
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing

P False means Q can be True or False

Anything implies true.

P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?

Not necessarily.

$P \implies Q$ and Q are True does not mean P is True

Be careful!

Instead we have:
Non-Consequences/consequences of Implication

The statement \(P \implies Q \)

only is False if \(P \) is True and \(Q \) is False.

False implies nothing
\(P \) False means \(Q \) can be True or False
Anything implies true.
\(P \) can be True or False when \(Q \) is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?
Not necessarily.
\(P \implies Q \) and \(Q \) are True does not mean \(P \) is True

Be careful!

Instead we have:
\(P \implies Q \) and \(P \) are True does mean \(Q \) is True.
The statement “$P \implies Q$”

only is **False** if P is **True** and Q is **False**.

False implies nothing

P **False** means Q can be **True** or **False**

Anything implies true.

P can be **True** or **False** when Q is **True**

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?

Not necessarily.

$P \implies Q$ and Q are **True** does not mean P is **True**

Be careful!

Instead we have:

$P \implies Q$ and P are **True** does mean Q is **True**.

The chemical plant pollutes river.
Non-Consequences/consequences of Implication

The statement “\(P \implies Q \)”

only is False if \(P \) is True and \(Q \) is False.

False implies nothing
\(P \) False means \(Q \) can be True or False
Anything implies true.
\(P \) can be True or False when \(Q \) is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?
Not necessarily.
\(P \implies Q \) and \(Q \) are True does not mean \(P \) is True

Be careful!
Instead we have:
\(P \implies Q \) and \(P \) are True does mean \(Q \) is True.

The chemical plant pollutes river. Can we conclude fish die?
Non-Consequences/consequences of Implication

The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True or False
Anything implies true.
P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?
Not necessarily.

$P \implies Q$ and Q are True does not mean P is True

Be careful!

Instead we have:

$P \implies Q$ and P are True does mean Q is True.

The chemical plant pollutes river. Can we conclude fish die?
The statement “$P \implies Q$”

only is False if P is True and Q is False.

False implies nothing
P False means Q can be True or False
Anything implies true.
P can be True or False when Q is True

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?

Not necessarily.
$P \implies Q$ and Q are True does not mean P is True

Be careful!

Instead we have:
$P \implies Q$ and P are True does mean Q is True.

The chemical plant pollutes river. Can we conclude fish die?

Some Fun: use propositional formulas to describe implication?
Non-Consequences/consequences of Implication

The statement \(P \implies Q \)

only is \textbf{False} if \(P \) is \textbf{True} and \(Q \) is \textbf{False}.

- False implies nothing
- \(P \) \textbf{False} means \(Q \) can be \textbf{True} or \textbf{False}
- Anything implies true.
- \(P \) can be \textbf{True} or \textbf{False} when \(Q \) is \textbf{True}

If chemical plant pollutes river, fish die.
If fish die, did chemical plant pollute river?
Not necessarily.

\(P \implies Q \) and \(Q \) are \textbf{True} does not mean \(P \) is \textbf{True}

Be careful!

Instead we have:
\(P \implies Q \) and \(P \) are \textbf{True} \textit{does} mean \(Q \) is \textbf{True}.

The chemical plant pollutes river. Can we conclude fish die?

Some Fun: use propositional formulas to describe implication?
\(((P \implies Q) \land P) \implies Q\).
Implication and English.

\[P \implies Q \]

- If \(P \), then \(Q \).

Just reversing the order.

\[P \iff Q \]

- \(P \) only if \(Q \).

Remember if \(P \) is true then \(Q \) must be true. This suggests that \(P \) can only be true if \(Q \) is true. Since if \(Q \) is false \(P \) must have been false.

\[P \] is sufficient for \(Q \).

This means that proving \(P \) allows you to conclude that \(Q \) is true.

\[Q \] is necessary for \(P \).

For \(P \) to be true it is necessary that \(Q \) is true. Or if \(Q \) is false then we know that \(P \) is false.
Implication and English.

\[P \implies Q \]

- If \(P \), then \(Q \).
- \(Q \) if \(P \).
 Just reversing the order.

\(P \) only if \(Q \).

This means that proving \(P \) allows you to conclude that \(Q \) is true.

\(Q \) is necessary for \(P \).

For \(P \) to be true it is necessary that \(Q \) is true.

Or if \(Q \) is false then we know that \(P \) is false.
Implication and English.

\[P \implies Q \]

- If \(P \), then \(Q \).
- \(Q \) if \(P \).
 Just reversing the order.

\[P \iff Q \]

Remember if \(P \) is true then \(Q \) must be true.
This suggests that \(P \) can only be true if \(Q \) is true.
Since if \(Q \) is false \(P \) must have been false.

\[P \text{ is sufficient for } Q \]
This means that proving \(P \) allows you to conclude that \(Q \) is true.

\[Q \text{ is necessary for } P \]
For \(P \) to be true it is necessary that \(Q \) is true.
Or if \(Q \) is false then we know that \(P \) is false.
Implication and English.

\[P \Rightarrow Q \]

- If \(P \), then \(Q \).
- \(Q \) if \(P \).
 - Just reversing the order.
- \(P \) only if \(Q \).
 - Remember if \(P \) is true then \(Q \) must be true.
 - this suggests that \(P \) can only be true if \(Q \) is true.
 - since if \(Q \) is false \(P \) must have been false.
Implication and English.

\[P \implies Q \]

- If \(P \), then \(Q \).
- \(Q \) if \(P \).
 Just reversing the order.
- \(P \) only if \(Q \).
 Remember if \(P \) is true then \(Q \) must be true.
 this suggests that \(P \) can only be true if \(Q \) is true.
 since if \(Q \) is false \(P \) must have been false.
- \(P \) is sufficient for \(Q \).
 This means that proving \(P \) allows you to conclude that \(Q \) is true.
Implication and English.

\[P \implies Q \]

- If \(P \), then \(Q \).
- \(Q \) if \(P \).
 Just reversing the order.
- \(P \) only if \(Q \).
 Remember if \(P \) is true then \(Q \) must be true.
 this suggests that \(P \) can only be true if \(Q \) is true.
 since if \(Q \) is false \(P \) must have been false.
- \(P \) is sufficient for \(Q \).
 This means that proving \(P \) allows you to conclude that \(Q \) is true.
- \(Q \) is necessary for \(P \).
 For \(P \) to be true it is necessary that \(Q \) is true.
 Or if \(Q \) is false then we know that \(P \) is false.
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

These two propositional forms are logically equivalent!
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

These two propositional forms are logically equivalent!
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

These two propositional forms are logically equivalent!
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

$\neg P \lor Q \equiv P \implies Q$.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>
Truth Table: implication.

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$P \implies Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>$\neg P \lor Q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

$\neg P \lor Q \equiv P \implies Q$.

These two propositional forms are logically equivalent!
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.

- Converse of $P \implies Q$ is $Q \implies P$.
 - If fish die the plant pollutes.

- Not logically equivalent!
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)

 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)

- Converse of $P \implies Q$ is $Q \implies P$.
 - If fish die the plant pollutes.

- Not logically equivalent!

- Definition: If $P \implies Q$ and $Q \implies P$ is P if and only if Q.
 (Logically Equivalent: \iff.)
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute. (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \(\equiv \).
\[P \implies Q \]
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.

$P \implies Q \equiv \neg P \lor Q$
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.

$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P$
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \(\equiv \).

\[
P \implies Q \equiv \neg P \lor Q \equiv \neg(\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.
\]
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.

$P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P$.

- Converse of $P \implies Q$ is $Q \implies P$.
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!)
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \(\equiv \).
\[
P \implies Q \equiv \neg P \lor Q \equiv \neg(\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.
\]

- Converse of \(P \implies Q \) is \(Q \implies P \).
 - If fish die the plant pollutes.
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.

$P \implies Q \equiv \neg P \lor Q \equiv \neg(\neg Q) \lor \neg P \equiv \neg Q \implies \neg P$.

- Converse of $P \implies Q$ is $Q \implies P$.
 If fish die the plant pollutes.
Contrapositive, Converse

- Contrapositive of \(P \implies Q \) is \(\neg Q \implies \neg P \).
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute. (contrapositive)

- If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet. (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain. (contrapositive.)

Logically equivalent! Notation: \(\equiv \).
\[
P \implies Q \equiv \neg P \lor Q \equiv \neg (\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.
\]

- Converse of \(P \implies Q \) is \(Q \implies P \).
 - If fish die the plant pollutes.
 - Not logically equivalent!
Contrapositive, Converse

- Contrapositive of $P \implies Q$ is $\neg Q \implies \neg P$.
 - If the plant pollutes, fish die.
 - If the fish don’t die, the plant does not pollute.
 (contrapositive)
 - If you stand in the rain, you get wet.
 - If you did not stand in the rain, you did not get wet.
 (not contrapositive!) converse!
 - If you did not get wet, you did not stand in the rain.
 (contrapositive.)

Logically equivalent! Notation: \equiv.

\[
P \implies Q \equiv \neg P \lor Q \equiv \neg(\neg Q) \lor \neg P \equiv \neg Q \implies \neg P.
\]

- Converse of $P \implies Q$ is $Q \implies P$.
 - If fish die the plant pollutes.
 - Not logically equivalent!

- **Definition:** If $P \implies Q$ and $Q \implies P$ is P if and only if Q or
 $P \iff Q$.
 (Logically Equivalent: \iff.)
Variables.

Propositions?

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \]
Variables.

Propositions?

- \[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \]
- \[x > 2 \]
Variables.

Propositions?

- \[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \]
- \(x > 2 \)
- \(n \) is even and the sum of two primes
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.
Variables.

Propositions?

- \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).
- \(x > 2 \)
- \(n \) is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = "x \text{ is even}" \)
Variables.

Propositions?

- \[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]
- \[x > 2 \]
- \[n \text{ is even and the sum of two primes} \]

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = \text{“}x \text{ is even} \)“

Same as boolean valued functions from 61A or 61AS!
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., $Q(x) =$ “x is even”

Same as boolean valued functions from 61A or 61AS!

- $P(n) =$ “$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.”
Variables.

Propositions?

- \[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \]
- \[x > 2 \]
- \[n \text{ is even and the sum of two primes} \]

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = "x \text{ is even}" \)

Same as boolean valued functions from 61A or 61AS!

- \(P(n) = "\sum_{i=1}^{n} i = \frac{n(n+1)}{2}." \)
- \(R(x) = "x > 2" \)

Theory from Wason's.

If person \(x \) goes to Chicago then person \(x \) flew.

Next:

Statements about boolean valued functions!!
Variables.
Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.
We call them predicates, e.g., $Q(x) = \text{“}x$ is even\text{”}$
Same as boolean valued functions from 61A or 61AS!

- $P(n) = \text{“}\sum_{i=1}^{n} i = \frac{n(n+1)}{2}\text{”}$.
- $R(x) = \text{“}x > 2\text{”}$
- $G(n) = \text{“}n$ is even and the sum of two primes\text{”}$
Variables.

Propositions?

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \]

\[x > 2 \]

\[n \text{ is even and the sum of two primes} \]

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = \text{“} x \text{ is even”} \)

Same as boolean valued functions from 61A or 61AS!

\[P(n) = \text{“} \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{.”} \]

\[R(x) = \text{“} x > 2 \text{”} \]

\[G(n) = \text{“} n \text{ is even and the sum of two primes”} \]

Remember Wason’s experiment!

\[F(x) = \text{“} \text{Person} \ x \text{ flew.”} \]
Variables.
Propositions?

- \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).
- \(x > 2 \)
- \(n \) is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = \text{“} x \text{ is even} \text{”} \)
Same as boolean valued functions from 61A or 61AS!

- \(P(n) = \text{“} \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{”} \)
- \(R(x) = \text{“} x > 2 \text{”} \)
- \(G(n) = \text{“} n \text{ is even and the sum of two primes} \text{”} \)
- Remember Wason’s experiment!
 \(F(x) = \text{“} \text{Person } x \text{ flew.} \text{”} \)
 \(C(x) = \text{“} \text{Person } x \text{ went to Chicago} \text{”} \)
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., $Q(x) = \text{“}x$ is even\text{”}$

Same as boolean valued functions from 61A or 61AS!

- $P(n) = \text{“}$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}”
- $R(x) = \text{“}x > 2\text{”}$
- $G(n) = \text{“}n$ is even and the sum of two primes\text{”}$
- Remember Wason’s experiment!
 $F(x) = \text{“}Person$ x flew.”
 $C(x) = \text{“}Person$ x went to Chicago”
- $C(x) \implies F(x)$.
Variables.

Propositions?

- $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- $x > 2$
- n is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., $Q(x) = \text{“}x \text{ is even}\text{”}$

Same as boolean valued functions from 61A or 61AS!

- $P(n) = \text{“}\sum_{i=1}^{n} i = \frac{n(n+1)}{2}\text{”}\text{.}$
- $R(x) = \text{“}x > 2\text{”}$
- $G(n) = \text{“}n \text{ is even and the sum of two primes}\text{”}$
- Remember Wason’s experiment!
 - $F(x) = \text{“}Person x flew.\text{”}$
 - $C(x) = \text{“}Person x went to Chicago\text{”}$
- $C(x) \implies F(x)$. Theory from Wason’s.
Variables.

Propositions?

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2}. \]

\[x > 2 \]

\[n \text{ is even and the sum of two primes} \]

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = “x \text{ is even}” \)

Same as boolean valued functions from 61A or 61AS!

\[P(n) = “\sum_{i=1}^{n} i = \frac{n(n+1)}{2}. “ \]

\[R(x) = “x > 2” \]

\[G(n) = “n \text{ is even and the sum of two primes}” \]

Remember Wason’s experiment!

\[F(x) = “\text{Person } x \text{ flew}.” \]

\[C(x) = “\text{Person } x \text{ went to Chicago}” \]

\[C(x) \implies F(x). \text{ Theory from Wason’s.} \]

If person \(x \) goes to Chicago then person \(x \) flew.
Variables.

Propositions?

- \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \)
- \(x > 2 \)
- \(n \) is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = \text{“} x \text{ is even”} \)
Same as boolean valued functions from 61A or 61AS!

- \(P(n) = \text{“} \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{”} \)
- \(R(x) = \text{“} x > 2 \text{”} \)
- \(G(n) = \text{“} n \) is even and the sum of two primes”\)
- Remember Wason’s experiment!
 \(F(x) = \text{“} \)Person \(x \) flew.”\)
 \(C(x) = \text{“} \)Person \(x \) went to Chicago”\)
- \(C(x) \implies F(x) \). Theory from Wason’s.
 If person \(x \) goes to Chicago then person \(x \) flew.

Next:
Variables.

Propositions?

- \[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} . \]
- \(x > 2 \)
- \(n \) is even and the sum of two primes

No. They have a free variable.

We call them predicates, e.g., \(Q(x) = \text{“}x\text{ is even}\text{”} \)
Same as boolean valued functions from 61A or 61AS!

- \(P(n) = \text{“} \sum_{i=1}^{n} i = \frac{n(n+1)}{2} \text{”} \).
- \(R(x) = \text{“} x > 2 \text{”} \)
- \(G(n) = \text{“} n \text{ is even and the sum of two primes} \text{”} \)
- Remember Wason’s experiment!
- \(F(x) = \text{“} \text{Person } x \text{ flew.} \text{”} \)
- \(C(x) = \text{“} \text{Person } x \text{ went to Chicago} \text{”} \)

- \(C(x) \implies F(x) \). Theory from Wason’s.
 If person \(x \) goes to Chicago then person \(x \) flew.

Next: Statements about boolean valued functions!!
Quantifiers..

There exists quantifier:

$$\exists x \in S \ (P(x))$$

means "There exists an x in S where $P(x)$ is true."

For example:

$$\exists x \in \mathbb{N} \ (x = x^2)$$

Equivalent to "

$$0 = 0 \lor 1 = 1 \lor 2 = 4 \lor \ldots$$"

Much shorter to use a quantifier!

For all quantifier;

$$\forall x \in S \ (P(x))$$

means "For all x in S, we have $P(x)$ is True."

Examples:

"Adding 1 makes a bigger number."

$$\forall x \in \mathbb{N} \ (x + 1 > x)$$

"the square of a number is always non-negative"

$$\forall x \in \mathbb{N} \ (x^2 \geq 0)$$

Wait!

What is \mathbb{N}?
There exists quantifier:

\((\exists x \in S)(P(x))\) means "There exists an \(x\) in \(S\) where \(P(x)\) is true."

For example:

\((\exists x \in \mathbb{N})(x^2 = x)\)

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!

For all quantifier;

\((\forall x \in S)(P(x))\) means "For all \(x\) in \(S\), we have \(P(x)\) is True."

Examples:

"Adding 1 makes a bigger number."

\((\forall x \in \mathbb{N})(x + 1 > x)\)

"the square of a number is always non-negative"

\((\forall x \in \mathbb{N})(x^2 \geq 0)\)

Wait!

What is \(\mathbb{N}\)?
Quantifiers.

There exists quantifier:

\((\exists x \in S)(P(x))\) means “There exists an \(x\) in \(S\) where \(P(x)\) is true.”

For example:

\((\exists x \in \mathbb{N})(x = x^2)\)

Wait! What is \(\mathbb{N}\)?
Quantifiers..

There exists quantifier:

$(\exists x \in S)(P(x))$ means “There exists an x in S where $P(x)$ is true.”

For example:

$(\exists x \in \mathbb{N})(x = x^2)$

Equivalent to “$(0 = 0)$”
Quantifiers.

There exists quantifier:

\((\exists x \in S)(P(x))\) means "There exists an \(x\) in \(S\) where \(P(x)\) is true."

For example:

\((\exists x \in \mathbb{N})(x = x^2)\)

Equivalent to "\((0 = 0) \lor (1 = 1)\)"

Wait! What is \(\mathbb{N}\)?
Quantifiers..

There exists quantifier:

\((\exists x \in S)(P(x))\) means "There exists an \(x\) in \(S\) where \(P(x)\) is true."

For example:

\((\exists x \in \mathbb{N})(x = x^2)\)

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4)\)"

Wait!

What is \(\mathbb{N}\)?
Quantifiers..

There exists quantifier:

\((\exists x \in S)(P(x))\) means "There exists an x in S where P(x) is true."

For example:

\((\exists x \in \mathbb{N})(x = x^2)\)

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"
Quantifiers..

There exists quantifier:

$$(\exists x \in S)(P(x))$$ means "There exists an x in S where $P(x)$ is true."

For example:

$$(\exists x \in \mathbb{N})(x = x^2)$$

Equivalent to "$(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots$"

Much shorter to use a quantifier!
Quantifiers..

There exists quantifier:

\((\exists x \in S)(P(x))\) means "There exists an \(x\) in \(S\) where \(P(x)\) is true."

For example:

\((\exists x \in \mathbb{N})(x = x^2)\)

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!

For all quantifier;

\((\forall x \in S)(P(x))\). means "For all \(x\) in \(S\), we have \(P(x)\) is True."

Wait!

What is \(\mathbb{N}\)?
Quantifiers.

There exists quantifier:

$(\exists x \in S)(P(x))$ means "There exists an x in S where $P(x)$ is true."

For example:

$(\exists x \in \mathbb{N})(x = x^2)$

Equivalent to “$(0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots$”

Much shorter to use a quantifier!

For all quantifier;

$(\forall x \in S) (P(x))$. means “For all x in S, we have $P(x)$ is True .”

Examples:
Quantifiers..

There exists quantifier:

\((\exists x \in S)(P(x))\) means ”There exists an \(x\) in \(S\) where \(P(x)\) is true.”

For example:

\((\exists x \in \mathbb{N})(x = x^2)\)

Equivalent to “\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)”

Much shorter to use a quantifier!

For all quantifier;

\((\forall x \in S) (P(x))\). means “For all \(x\) in \(S\), we have \(P(x)\) is True.”

Examples:

“Adding 1 makes a bigger number.”
Quantifiers..

There exists quantifier:

\((\exists x \in S)(P(x))\) means "There exists an \(x\) in \(S\) where \(P(x)\) is true."

For example:

\((\exists x \in \mathbb{N})(x = x^2)\)

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!

For all quantifier;

\((\forall x \in S)(P(x))\). means "For all \(x\) in \(S\), we have \(P(x)\) is True ."

Examples:

"Adding 1 makes a bigger number."

\((\forall x \in \mathbb{N})(x + 1 > x)\)
Quantifiers.

There exists quantifier:

\((\exists x \in S)(P(x))\) means "There exists an \(x\) in \(S\) where \(P(x)\) is true."

For example:

\((\exists x \in \mathbb{N})(x = x^2)\)

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!

For all quantifier;

\((\forall x \in S) (P(x))\). means "For all \(x\) in \(S\), we have \(P(x)\) is True."

Examples:

"Adding 1 makes a bigger number."

\((\forall x \in \mathbb{N}) (x + 1 > x)\)

"the square of a number is always non-negative"
Quantifiers.

There exists quantifier:

\((\exists x \in S) (P(x))\) means "There exists an \(x\) in \(S\) where \(P(x)\) is true."

For example:

\((\exists x \in \mathbb{N}) (x = x^2)\)

Equivalent to \((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots \)"

Much shorter to use a quantifier!

For all quantifier;

\((\forall x \in S) (P(x))\). means “For all \(x\) in \(S\), we have \(P(x)\) is True .”

Examples:

“Adding 1 makes a bigger number.”

\((\forall x \in \mathbb{N}) (x + 1 > x)\)

"the square of a number is always non-negative"

\((\forall x \in \mathbb{N})(x^2 \geq 0)\)
Quantifiers..

There exists quantifier:

\((\exists x \in S)(P(x))\) means “There exists an \(x\) in \(S\) where \(P(x)\) is true.”

For example:

\((\exists x \in \mathbb{N})(x = x^2)\)

Equivalent to “\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)”

Much shorter to use a quantifier!

For all quantifier;

\((\forall x \in S)(P(x))\). means “For all \(x\) in \(S\), we have \(P(x)\) is True.”

Examples:

“Adding 1 makes a bigger number.”

\((\forall x \in \mathbb{N})(x + 1 > x)\)

”the square of a number is always non-negative”

\((\forall x \in \mathbb{N})(x^2 \geq 0)\)

Wait!
Quantifiers..

There exists quantifier:

\[(\exists x \in S)(P(x))\] means "There exists an \(x\) in \(S\) where \(P(x)\) is true."

For example:

\[(\exists x \in \mathbb{N})(x = x^2)\]

Equivalent to "\((0 = 0) \lor (1 = 1) \lor (2 = 4) \lor \ldots\)"

Much shorter to use a quantifier!

For all quantifier:

\[(\forall x \in S)(P(x))\] means "For all \(x\) in \(S\), we have \(P(x)\) is True."

Examples:

"Adding 1 makes a bigger number."

\[(\forall x \in \mathbb{N})(x + 1 > x)\]

"the square of a number is always non-negative"

\[(\forall x \in \mathbb{N})(x^2 \geq 0)\]

Wait! What is \(\mathbb{N}\)?
Quantifiers: universes.

Proposition: “For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.”

Proposition has universe:
Quantifiers: universes.

Proposition: “For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.”

Proposition has universe: “the natural numbers”.

Universe examples include:

- $\mathbb{N} = \{0, 1, 2, \ldots\}$ (natural numbers)
- $\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$ (integers)
- $\mathbb{Z}^+ \text{ (positive integers)}$
- \mathbb{R} (real numbers)
- Any set: $S = \{\text{Alice}, \text{Bob}, \text{Charlie}, \text{Donna}\}$

See note 0 for more!
Quantifiers: universes.

Proposition: “For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.”

Proposition has universe: “the natural numbers”.

Universe examples include:...

▶ $\mathbb{N} = \{0, 1, 2, \ldots\}$ (natural numbers).
▶ $\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$ (integers).
▶ $\mathbb{Z}^+ = \{1, 2, 3, \ldots\}$ (positive integers).
▶ \mathbb{R} (real numbers).
▶ Any set: $S = \{Alice, Bob, Charlie, Donna\}$.

▶ See note 0 for more!
Proposition: “For all natural numbers \(n \), \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).”

Proposition has universe: “the natural numbers”.

Universe examples include:

- \(\mathbb{N} = \{0, 1, \ldots\} \) (natural numbers).
Quantifiers: universes.

Proposition: “For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.”

Proposition has universe: “the natural numbers”.

Universe examples include:

- $\mathbb{N} = \{0, 1, \ldots\}$ (natural numbers).
- $\mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers).

See note 0 for more!
Proposition: “For all natural numbers \(n \), \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).”

Proposition has universe: “the natural numbers”.

Universe examples include:

- \(\mathbb{N} = \{0, 1, \ldots\} \) (natural numbers).
- \(\mathbb{Z} = \{\ldots, -1, 0, \ldots\} \) (integers)
- \(\mathbb{Z}^+ \) (positive integers)
Quantifiers: universes.

Proposition: “For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.”

Proposition has universe: “the natural numbers”.

Universe examples include..

- $\mathbb{N} = \{0, 1, \ldots\}$ (natural numbers).
- $\mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)
- \mathbb{Z}^+ (positive integers)
- \mathbb{R} (real numbers)
Proposition: “For all natural numbers n, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.”

Proposition has universe: “the natural numbers”.

Universe examples include:

- $\mathbb{N} = \{0, 1, \ldots\}$ (natural numbers).
- $\mathbb{Z} = \{\ldots, -1, 0, \ldots\}$ (integers)
- \mathbb{Z}^+ (positive integers)
- \mathbb{R} (real numbers)
- Any set: $S = \{Alice, Bob, Charlie, Donna\}$.
Quantifiers: universes.

Proposition: “For all natural numbers \(n \), \(\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \).”

Proposition has universe: “the natural numbers”.

Universe examples include..

- \(\mathbb{N} = \{0, 1, \ldots\} \) (natural numbers).
- \(\mathbb{Z} = \{\ldots, -1, 0, \ldots\} \) (integers)
- \(\mathbb{Z}^+ \) (positive integers)
- \(\mathbb{R} \) (real numbers)
- Any set: \(S = \{Alice, Bob, Charlie, Donna\} \).
- See note 0 for more!
Theory:

"If a person travels to Chicago, he/she flies."

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew. Which cards do you need to flip to test the theory?

\[P(x) = \text{"Person } x \text{ went to Chicago."} \]
\[Q(x) = \text{"Person } x \text{ flew."} \]

Statement/theory:

\[\forall x \in \{A, B, C, D\}, P(x) \Rightarrow Q(x) \]

\[P(A) = \text{False.} \]
Do we care about \(Q(A) \)? No.

\[P(B) = \text{False.} \]
Do we care about \(P(B) \)? Yes.\[P(B) = \Rightarrow Q(B), \text{ when } P(B) \text{ is False, } Q(B) \text{ can be anything.} \]

\[Q(B) = \text{False.} \]
Do we care about \(P(B) \)? Yes.\[P(B) = \Rightarrow Q(B), \text{ when } P(B) \text{ is False, } Q(B) = \neg P(B). \]
So \(P(B) \) must be False.

\[P(C) = \text{True.} \]
Do we care about \(P(C) \)? Yes.\[P(C) = \Rightarrow Q(C), \text{ means } Q(C) \text{ must be true.} \]

\[Q(D) = \text{True.} \]
Do we care about \(P(D) \)? No.\[P(D) = \Rightarrow Q(D) \text{ holds whatever } P(D) \text{ is when } Q(D) \text{ is true.} \]

Only have to turn over cards for Bob and Charlie.
Back to: Wason’s experiment:1

Theory:
“If a person travels to Chicago, he/she flies.”
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”
Back to: Wason’s experiment:1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Back to: Wason’s experiment:1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \]
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\(P(x) = \) “Person x went to Chicago.” \(Q(x) = \) “Person x flew”
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \)
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{ A, B, C, D \}, P(x) \implies Q(x) \)
Back to: Wason’s experiment:1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\[P(A) = \text{False} . \]
Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = “\text{Person } x \text{ went to Chicago.”} \quad Q(x) = “\text{Person } x \text{ flew}” \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No.
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
 No. \(P(A) \implies Q(A) \), when \(P(A) \) is False, \(Q(A) \) can be anything.
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No. \(P(A) \implies Q(A) \), when \(P(A) \) is False, \(Q(A) \) can be anything.

\(Q(B) = \text{False} \).
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{ A, B, C, D \}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No. \(P(A) \implies Q(A) \), when \(P(A) \) is False , \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No. \(P(A) \implies Q(A) \), when \(P(A) \) is False, \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
Yes.
Back to: Wason’s experiment:1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No. \(P(A) \implies Q(A) \), when \(P(A) \) is False, \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
Yes. \(P(B) \implies Q(B) \)
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No. \(P(A) \implies Q(A) \), when \(P(A) \) is False, \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B) \).
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?

No. \(P(A) \implies Q(A) \), when \(P(A) \) is \text{False} \, Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?

Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B) \).

So \(P(\text{Bob}) \) must be \text{False} \.
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
 No. \(P(A) \implies Q(A) \), when \(P(A) \) is \text{False} , \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
 Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B) \).
 So \(P(\text{Bob}) \) must be \text{False} .

\(P(C) = \text{True} \).
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?

No. \(P(A) \implies Q(A) \), when \(P(A) \) is False, \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?

Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B) \).

So \(P(Bob) \) must be False.

\(P(C) = \text{True} \). Do we care about \(P(C) \)?
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No. \(P(A) \implies Q(A) \), when \(P(A) \) is False, \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B) \).
So \(P(\text{Bob}) \) must be False.

\(P(C) = \text{True} \). Do we care about \(P(C) \)?
Yes.
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{ A, B, C, D \}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
 No. \(P(A) \implies Q(A) \), when \(P(A) \) is False, \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
 Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B) \).
 So \(P(\text{Bob}) \) must be False .

\(P(C) = \text{True} \). Do we care about \(P(C) \)?
 Yes. \(P(C) \implies Q(C) \) means \(Q(C) \) must be true.
Back to: Wason’s experiment:1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No. \(P(A) \implies Q(A) \), when \(P(A) \) is False , \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B) \).
So \(P(\text{Bob}) \) must be False .

\(P(C) = \text{True} \). Do we care about \(P(C) \)?
Yes. \(P(C) \implies Q(C) \) means \(Q(C) \) must be true.

\(Q(D) = \text{True} \).
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No. \(P(A) \implies Q(A) \), when \(P(A) \) is \text{False} , \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B). \)
So \(P(Bob) \) must be \text{False} .

\(P(C) = \text{True} \). Do we care about \(P(C) \)?
Yes. \(P(C) \implies Q(C) \) means \(Q(C) \) must be true.

\(Q(D) = \text{True} \). Do we care about \(P(D) \)?
Back to: Wason’s experiment:1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
- No. \(P(A) \implies Q(A) \), when \(P(A) \) is \text{False} , \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
- Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B) \).
 - So \(P(Bob) \) must be \text{False} .

\(P(C) = \text{True} \). Do we care about \(P(C) \)?
- Yes. \(P(C) \implies Q(C) \) means \(Q(C) \) must be true.

\(Q(D) = \text{True} \). Do we care about \(P(D) \)?
- No.
Back to: Wason’s experiment:1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”} \]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?

No. \(P(A) \implies Q(A) \), when \(P(A) \) is False, \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?

Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B). \)

So \(P(Bob) \) must be False.

\(P(C) = \text{True} \). Do we care about \(P(C) \)?

Yes. \(P(C) \implies Q(C) \) means \(Q(C) \) must be true.

\(Q(D) = \text{True} \). Do we care about \(P(D) \)?

No. \(P(D) \implies Q(D) \) holds whatever \(P(D) \) is when \(Q(D) \) is true.
Back to: Wason’s experiment: 1

Theory:
“If a person travels to Chicago, he/she flies.”

Suppose you see that Alice went to Baltimore, Bob drove, Charlie went to Chicago, and Donna flew.

Which cards do you need to flip to test the theory?

\[
P(x) = \text{“Person } x \text{ went to Chicago.”} \quad Q(x) = \text{“Person } x \text{ flew”}
\]

Statement/theory: \(\forall x \in \{A, B, C, D\}, P(x) \implies Q(x) \)

\(P(A) = \text{False} \). Do we care about \(Q(A) \)?
No. \(P(A) \implies Q(A) \), when \(P(A) \) is \(\text{False} \), \(Q(A) \) can be anything.

\(Q(B) = \text{False} \). Do we care about \(P(B) \)?
Yes. \(P(B) \implies Q(B) \equiv \neg Q(B) \implies \neg P(B). \)
So \(P(\text{Bob}) \) must be \(\text{False} \).

\(P(C) = \text{True} \). Do we care about \(P(C) \)?
Yes. \(P(C) \implies Q(C) \) means \(Q(C) \) must be true.

\(Q(D) = \text{True} \). Do we care about \(P(D) \)?
No. \(P(D) \implies Q(D) \) holds whatever \(P(D) \) is when \(Q(D) \) is true.

Only have to turn over cards for Bob and Charlie.
More for all quantifiers examples.

doubling a number always makes it larger
\[
(\forall x \in \mathbb{N}) \quad (2x > x)
\]

False
Can fix statement...

\[
(\forall x \in \mathbb{N}) \quad (2x \geq x)
\]

True

Square of any natural number greater than 5 is greater than 25.
\[
(\forall x \in \mathbb{N}) \quad (x > 5 \implies x^2 > 25)
\]

Idea alert: Restrict domain using implication.
Note that we may omit universe if clear from context.
More for all quantifiers examples.

- “doubling a number always makes it larger”
More for all quantifiers examples.

- “doubling a number always makes it larger”

\[(\forall x \in N) (2x > x)\]
More for all quantifiers examples.

- “doubling a number always makes it larger”

\[(\forall x \in N) (2x > x) \quad \text{False}\]
More for all quantifiers examples.

- “doubling a number always makes it larger”

\[(\forall x \in \mathbb{N})(2x > x) \quad \text{False} \quad \text{Consider} \ x = 0\]
More for all quantifiers examples.

- “doubling a number always makes it larger”

 \[
 (\forall x \in N) \ (2x > x) \quad \text{False} \quad \text{Consider } x = 0
 \]

 Can fix statement...
More for all quantifiers examples.

- “doubling a number always makes it larger”

\[(\forall x \in N) \ (2x > x) \quad \text{False} \quad \text{Consider} \ x = 0\]

Can fix statement...

\[(\forall x \in N) \ (2x \geq x)\]
More for all quantifiers examples.

- “doubling a number always makes it larger”

\[(\forall x \in N) (2x > x) \quad \text{False} \quad \text{Consider } x = 0\]

Can fix statement...

\[(\forall x \in N) (2x \geq x) \quad \text{True}\]
More for all quantifiers examples.

- “doubling a number always makes it larger”

\[(\forall x \in \mathbb{N}) (2x > x)\] False Consider \(x = 0\)

Can fix statement...

\[(\forall x \in \mathbb{N}) (2x \geq x)\] True

- “Square of any natural number greater than 5 is greater than 25.”
More for all quantifiers examples.

➤ “doubling a number always makes it larger”

\[(\forall x \in N) (2x > x) \quad \text{False} \quad \text{Consider} \quad x = 0\]

Can fix statement...

\[(\forall x \in N) (2x \geq x) \quad \text{True}\]

➤ “Square of any natural number greater than 5 is greater than 25.”

\[(\forall x \in N)\]
More for all quantifiers examples.

- “doubling a number always makes it larger”

 \((\forall x \in N) (2x > x) \) \textbf{False} \textbf{Consider} \(x = 0 \)

 Can fix statement...

 \((\forall x \in N) (2x \geq x) \) \textbf{True}

- “Square of any natural number greater than 5 is greater than 25.”

 \((\forall x \in N)(x > 5) \)
More for all quantifiers examples.

- “doubling a number always makes it larger”

\[(\forall x \in N) \ (2x > x) \quad \text{False Consider } x = 0 \]

Can fix statement...

\[(\forall x \in N) \ (2x \geq x) \quad \text{True} \]

- “Square of any natural number greater than 5 is greater than 25.”

\[(\forall x \in N) \ (x > 5 \implies \)]
More for all quantifiers examples.

- “doubling a number always makes it larger”
 \[(\forall x \in \mathbb{N})(2x > x)\] False Consider \(x = 0\)

 Can fix statement...
 \[(\forall x \in \mathbb{N})(2x \geq x)\] True

- “Square of any natural number greater than 5 is greater than 25.”
 \[(\forall x \in \mathbb{N})(x > 5 \implies x^2 > 25)\]
More for all quantifiers examples.

- "doubling a number always makes it larger"

\[(\forall x \in N) (2x > x)\] \quad \text{False} \quad \text{Consider} \quad x = 0

Can fix statement...

\[(\forall x \in N) (2x \geq x)\] \quad \text{True}

- "Square of any natural number greater than 5 is greater than 25."

\[(\forall x \in N)(x > 5 \implies x^2 > 25)\]

Idea alert:
More for all quantifiers examples.

- “doubling a number always makes it larger”

\[(\forall x \in \mathbb{N}) (2x > x) \quad \text{False}\]
Consider \(x = 0\)

Can fix statement...

\[(\forall x \in \mathbb{N}) (2x \geq x) \quad \text{True}\]

- “Square of any natural number greater than 5 is greater than 25.”

\[(\forall x \in \mathbb{N}) (x > 5 \implies x^2 > 25)\].

Idea alert: Restrict domain using implication.
More for all quantifiers examples.

▶ “doubling a number always makes it larger”

\[(\forall x \in N)(2x > x) \quad \text{False} \quad \text{Consider } x = 0\]

Can fix statement...

\[(\forall x \in N)(2x \geq x) \quad \text{True}\]

▶ “Square of any natural number greater than 5 is greater than 25.”

\[(\forall x \in N)(x > 5 \implies x^2 > 25).\]

Idea alert: Restrict domain using implication.

Note that we may omit universe if clear from context.
Quantifiers..not commutative.

- In English: “there is a natural number that is the square of every natural number”.

- In English: “the square of every natural number is a natural number.”
Quantifiers..not commutative.

In English: “there is a natural number that is the square of every natural number”.

\((\exists y \in N)\)
Quantifiers...not commutative.

- In English: “there is a natural number that is the square of every natural number”.

\[(\exists y \in N) \ (\forall x \in N)\]

\[y = x^2\]
Quantifiers...not commutative.

- In English: “there is a natural number that is the square of every natural number”.

\[(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)\]
In English: “there is a natural number that is the square of every natural number”.

\[(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)\] False
Quantifiers..not commutative.

- In English: “there is a natural number that is the square of every natural number”.

\[(\exists y \in N) \, (\forall x \in N) \, (y = x^2)\] False

- In English: “the square of every natural number is a natural number.”
Quantifiers..not commutative.

- In English: “there is a natural number that is the square of every natural number”.

\[(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)\] False

- In English: “the square of every natural number is a natural number.”

\[(\forall x \in \mathbb{N})\]
Quantifiers..not commutative.

In English: “there is a natural number that is the square of every natural number”.

\[(\exists y \in \mathbb{N})(\forall x \in \mathbb{N})(y = x^2)\] False

In English: “the square of every natural number is a natural number.”

\[(\forall x \in \mathbb{N})(\exists y \in \mathbb{N})\]
Quantifiers..not commutative.

- In English: “there is a natural number that is the square of every natural number”.

\[(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)\] False

- In English: “the square of every natural number is a natural number.”

\[(\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) (y = x^2)\]
Quantifiers...not commutative.

► In English: “there is a natural number that is the square of every natural number”.

\[(\exists y \in N) (\forall x \in N) (y = x^2)\] False

► In English: “the square of every natural number is a natural number.”

\[(\forall x \in N)(\exists y \in N) (y = x^2)\] True
Quantifiers..not commutative.

- In English: “there is a natural number that is the square of every natural number”.

\[(\exists y \in \mathbb{N}) (\forall x \in \mathbb{N}) (y = x^2)\] False

- In English: “the square of every natural number is a natural number.”

\[(\forall x \in \mathbb{N})(\exists y \in \mathbb{N}) (y = x^2)\] True
Consider

\[\neg (\forall x \in S)(P(x)), \]

What we do in this course! We consider claims.

Claim:

\[(\forall x) P(x) \]

"For all inputs x the program works."

For False, find \[x \] where \[\neg P(x) \].

Counterexample. Bad input. Case that illustrates bug.

For True: prove claim.

Next lectures...
Consider

\[\neg (\forall x \in S)(P(x)), \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

What we do in this course! We consider claims.

Claim:

\[(\forall x) P(x) \]

"For all inputs \(x \) the program works."

For False, find \(x \), where \(\neg P(x) \).

Counterexample.

Bad input. Case that illustrates bug.

For True: prove claim.

Next lectures...
Consider
\[\neg (\forall x \in S)(P(x)), \]
English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.
That is,
Consider
\[\neg (\forall x \in S)(P(x)), \]
English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.
That is,
\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]
Consider

\[\neg (\forall x \in S)(P(x)) \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

That is,

\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

What we do in this course! We consider claims.

Claim:

\[(\forall x) P(x) \]

"For all inputs \(x \) the program works."

For False, find \(x \), where \(\neg P(x) \).

Counterexample. Bad input. Case that illustrates bug.

For True: prove claim.

Next lectures...
Quantifiers....negation...DeMorgan again.

Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an \(x\) in \(S\) where \(P(x)\) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: \((\forall x) P(x)\)
Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: \((\forall x) P(x) \) “For all inputs \(x \) the program works.”
Quantifiers....negation...DeMorgan again.

Consider

$$\neg(\forall x \in S)(P(x)),$$

English: there is an x in S where $P(x)$ does not hold.

That is,

$$\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)).$$

What we do in this course! We consider claims.

Claim: $(\forall x) P(x)$ “For all inputs x the program works.”

For False , find x, where $\neg P(x)$.
Consider
\[\neg (\forall x \in S)(P(x)), \]
English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.
That is,
\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

What we do in this course! We consider claims.

Claim: \((\forall x) P(x)\) “For all inputs \(x \) the program works.”
For False, find \(x \), where \(\neg P(x) \).
 Counterexample.
Consider

\[\neg (\forall x \in S)(P(x)), \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

That is,

\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

What we do in this course! We consider claims.

Claim: \((\forall x) P(x) \) “For all inputs \(x \) the program works.”

For False, find \(x \), where \(\neg P(x) \).

Counterexample.

Bad input.
Quantifiers...negation...DeMorgan again.

Consider

\[\neg(\forall x \in S)(P(x)) , \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

That is,

\[\neg(\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

What we do in this course! We consider claims.

Claim: \((\forall x) P(x)\) “For all inputs \(x \) the program works.”

For False, find \(x \), where \(\neg P(x) \).

Counterexample.
Bad input.
Case that illustrates bug.
Consider

\[\neg (\forall x \in S)(P(x)), \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

That is,

\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

What we do in this course! We consider claims.

Claim: \((\forall x) P(x) \) “For all inputs \(x \) the program works.”

For **False**, find \(x \), where \(\neg P(x) \).

 - Counterexample.
 - Bad input.
 - Case that illustrates bug.

For **True** : prove claim.
Consider

\[\neg (\forall x \in S)(P(x)), \]

English: there is an \(x \) in \(S \) where \(P(x) \) does not hold.

That is,

\[\neg (\forall x \in S)(P(x)) \iff \exists (x \in S)(\neg P(x)). \]

What we do in this course! We consider claims.

Claim: \((\forall x) P(x)\) “For all inputs \(x \) the program works.”

For **False**, find \(x \), where \(\neg P(x) \).
- Counterexample.
- Bad input.
- Case that illustrates bug.

For **True**: prove claim. Next lectures...
Negation of exists.

Consider

\[\neg \left(\exists x \in S \right) \left(P(x) \right) \]

English: means that for all \(x \) in \(S \), \(P(x) \) does not hold.

That is,

\[\neg \left(\exists x \in S \right) \left(P(x) \right) \iff \forall x \in S \neg P(x) \]
Negation of exists.

Consider

\[\neg (\exists x \in S)(P(x)) \]
Negation of exists.

Consider

$$\neg(\exists x \in S)(P(x))$$

English: means that for all x in S, $P(x)$ does not hold.
Negation of exists.

Consider

\[\neg(\exists x \in S)(P(x)) \]

English: means that for all \(x \) in \(S \), \(P(x) \) does not hold.

That is,

\[\neg(\exists x \in S)(P(x)) \iff \forall (x \in S)\neg P(x). \]
Which Theorem?

Theorem: \((\forall n \in \mathbb{N}) \neg (\exists a, b, c \in \mathbb{N}) \ (n \geq 3 \implies a^n + b^n = c^n)\)
Which Theorem?

Theorem: \((\forall n \in \mathbb{N}) \neg (\exists a, b, c \in \mathbb{N}) (n \geq 3 \implies a^n + b^n = c^n)\)

Which Theorem?
Which Theorem?

Theorem: \((\forall n \in \mathbb{N}) \neg (\exists a, b, c \in \mathbb{N}) (n \geq 3 \implies a^n + b^n = c^n)\)

Which Theorem?
Fermat’s Last Theorem!
Which Theorem?

Theorem: $(\forall n \in \mathbb{N}) \neg(\exists a, b, c \in \mathbb{N})(n \geq 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat’s Last Theorem!

Remember Special Triangles: for $n = 2$, we have 3,4,5 and 5,7, 12 and ...
Which Theorem?

Theorem: \((\forall n \in N) \neg (\exists a, b, c \in N) (n \geq 3 \implies a^n + b^n = c^n)\)

Which Theorem?

Fermat’s Last Theorem!

Remember Special Triangles: for \(n = 2\), we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn’t fit in the margins.
Theorem: $(\forall n \in \mathbb{N}) \neg(\exists a, b, c \in \mathbb{N}) (n \geq 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat’s Last Theorem!

Remember Special Triangles: for $n = 2$, we have 3,4,5 and 5,7, 12 and ...

1637: Proof doesn’t fit in the margins.

1993: Wiles ...(based in part on Ribet’s Theorem)
Theorem: $(\forall n \in N) \neg(\exists a, b, c \in N) (n \geq 3 \implies a^n + b^n = c^n)$

Which Theorem?

Fermat’s Last Theorem!

Remember Special Triangles: for $n = 2$, we have 3, 4, 5 and 5, 7, 12 and ...

1637: Proof doesn’t fit in the margins.

1993: Wiles ...(based in part on Ribet’s Theorem)

DeMorgan Restatement:
Which Theorem?

Theorem: \((\forall n \in \mathbb{N}) \neg(\exists a, b, c \in \mathbb{N}) (n \geq 3 \implies a^n + b^n = c^n)\)

Which Theorem?

Fermat’s Last Theorem!

Remember Special Triangles: for \(n = 2\), we have 3, 4, 5 and 5, 7, 12 and ...

1637: Proof doesn’t fit in the margins.

1993: Wiles ...(based in part on Ribet’s Theorem)

DeMorgan Restatement:

Theorem: \(\neg(\exists n \in \mathbb{N}) (\exists a, b, c \in \mathbb{N}) (n \geq 3 \implies a^n + b^n = c^n)\)
Summary.

Propositions are statements that are true or false.
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.

DeMorgan's Laws: "Flip and Distribute negation"

$\neg(P \lor Q) \iff \neg P \land \neg Q$

$\neg\forall x P(x) \iff \exists x \neg P(x)$.

Next Time: proofs!
Summary.

Propositions are statements that are true or false.

Propositional forms use \(\land, \lor, \lnot \).

Propositional forms correspond to truth tables.
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
Propositional forms correspond to truth tables.
Logical equivalence of forms means same truth tables.
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
Propositional forms correspond to truth tables.
Logical equivalence of forms means same truth tables.
Implication: $P \implies Q$
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

DeMorgan’s Laws: “Flip and Distribute negation”

$\neg(P \lor Q) \iff \neg P \land \neg Q$.

$\neg\forall x P(x) \iff \exists x \neg P(x)$.

Next Time: proofs!
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$
Summary.

Propositions are statements that are true or false.

Propositional forms use \wedge, \vee, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \vee Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

DeMorgans Laws: "Flip and Distribute negation"

$\neg (P \vee Q) \iff \neg P \wedge \neg Q$

$\neg \forall x P(x) \iff \exists x \neg P(x)$

Next Time: proofs!
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q$ $\iff \neg P \lor Q$.

Contrapositive: $\neg Q$ $\implies \neg P$

Converse: Q $\implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x)$, $\exists y \ Q(y)$
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems!
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \lnot.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \lnot P \lor Q$.

Contrapositive: $\lnot Q \implies \lnot P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x)$, $\exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”

$\neg(P \lor Q) \iff$
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”

$\neg(P \lor Q) \iff (\neg P \land \neg Q)$

$\neg\forall x \ P(x) \iff \exists x \ \neg P(x)$
Summary.

Propositions are statements that are true or false.

Propositional forms use \land, \lor, \neg.

Propositional forms correspond to truth tables.

Logical equivalence of forms means same truth tables.

Implication: $P \implies Q \iff \neg P \lor Q$.

Contrapositive: $\neg Q \implies \neg P$

Converse: $Q \implies P$

Predicates: Statements with “free” variables.

Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$

Now can state theorems! And disprove false ones!

DeMorgans Laws: “Flip and Distribute negation”

\[\neg(P \lor Q) \iff (\neg P \land \neg Q) \]
\[\neg \forall x \ P(x) \iff \exists x \ \neg P(x). \]
Summary.

Propositions are statements that are true or false.
Propositional forms use \land, \lor, \neg.
Propositional forms correspond to truth tables.
Logical equivalence of forms means same truth tables.
Implication: $P \implies Q \iff \neg P \lor Q$.
Contrapositive: $\neg Q \implies \neg P$
Converse: $Q \implies P$
Predicates: Statements with “free” variables.
Quantifiers: $\forall x \ P(x), \exists y \ Q(y)$
Now can state theorems! And disprove false ones!
DeMorgan’s Laws: “Flip and Distribute negation”
$\neg(P \lor Q) \iff (\neg P \land \neg Q)$
$\neg \forall x \ P(x) \iff \exists x \neg P(x)$.

Next Time: proofs!