Today.

Polynomials.

Secret Sharing.
Secret Sharing.

Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.

Robustness: Any k knows secret.

Efficient: minimize storage.
A polynomial

\[P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0. \]

is specified by coefficients \(a_d, \ldots, a_0 \).

\(P(x) \) contains point \((a, b)\) if \(b = P(a) \).

Polynomials over reals: \(a_1, \ldots, a_d \in \mathbb{R} \), use \(x \in \mathbb{R} \).

Polynomials \(P(x) \) with arithmetic modulo \(p \): \(^1\) \(a_i \in \{0, \ldots, p-1\} \) and

\[P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0 \pmod{p}, \]

for \(x \in \{0, \ldots, p-1\} \).

\(^1\) A field is a set of elements with addition and multiplication operations, with inverses. \(GF(p) = (\{0, \ldots, p-1\}, + \pmod{p}, \ast \pmod{p}) \).
Polynomial: \(P(x) = a_d x^4 + \cdots + a_0 \)

Line: \(P(x) = a_1 x + a_0 = mx + b \)

Parabola: \(P(x) = a_2 x^2 + a_1 x + a_0 = ax^2 + bx + c \)
Polynomial: \(P(x) = a_d x^4 + \cdots + a_0 \pmod{p} \)

Finding an intersection.

\[x + 2 \equiv 3x + 1 \pmod{5} \]

\[\implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5} \]

3 is multiplicative inverse of 2 modulo 5.

Good when modulus is prime!!
Two points make a line.

Fact: Exactly 1 degree \(\leq d \) polynomial contains \(d + 1 \) points. \(^2\)

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

\(^2\)Points with different \(x \) values.
3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d + 1$ points. ³

³Points with different x values.
2 points not enough.

There is $P(x)$ contains blue points and any $(0, y)$!
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Roubustness: Any k shares gives secret.
Knowing k pts \implies only one $P(x) \implies$ evaluate $P(0)$.

Secrecy: Any $k - 1$ shares give nothing.
Knowing $\leq k - 1$ pts \implies any $P(0)$ is possible.
We will work with polynomials with arithmetic modulo p.
Delta Polynomials: Concept.

For set of \(x\)-values, \(x_1, \ldots, x_{d+1}\).

\[
\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i. \\
0, & \text{if } x = x_j \text{ for } j \neq i. \\
?, & \text{otherwise.}
\end{cases}
\] (1)

Given \(d + 1\) points, use \(\Delta_i\) functions to go through points?
\((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\).

Will \(y_1 \Delta_1(x)\) contain \((x_1, y_1)\)?

Will \(y_2 \Delta_2(x)\) contain \((x_2, y_2)\)?

Does \(y_1 \Delta_1(x) + y_2 \Delta_2(x)\) contain \((x_1, y_1)\) and \((x_2, y_2)\)?

See the idea? Function that contains all points?

\[
P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \ldots + y_{d+1} \Delta_{d+1}(x).
\]

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.

Proof of at least one polynomial:
Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})\).

\[
\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.
\]

Numerator is 0 at \(x_j \neq x_i \).
Denominator makes it 1 at \(x_i \).
And..

\[
P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).
\]

hits points \((x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})\). Degree \(d \) polynomial!

Construction proves the existence of a polynomial!
Example.

$$\Delta_i(x) = \frac{\prod_{j \neq i}(x-x_j)}{\prod_{j \neq i}(x_i-x_j)};$$

Degree 1 polynomial, $P(x)$, that contains $(1,3)$ and $(3,4)$?

Work modulo 5.

$\Delta_1(x)$ contains $(1,1)$ and $(3,0)$.

$$\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{-2}$$
$$= 2(x - 3) = 2x - 6 = 2x + 4 \pmod{5}.$$

For a quadratic, $a_2 x^2 + a_1 x + a_0$ hits $(1,3); (2,4); (3,0)$.

Work modulo 5.

Find $\Delta_1(x)$ polynomial contains $(1,1); (2,0); (3,0)$.

$$\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = 3(x - 2)(x - 3)$$
$$= 3x^2 + 1 \pmod{5}$$

Put the delta functions together.
From $d + 1$ points to degree d polynomial?

For a line, $a_1 x + a_0 = mx + b$ contains points $(1,3)$ and $(2,4)$.

$$P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5}$$
$$P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5}$$

Subtract first from second..

$$m + b \equiv 3 \pmod{5}$$
$$m \equiv 1 \pmod{5}$$

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

And the line is...

$$x + 2 \pmod{5}.$$
For a quadratic polynomial, \(a_2x^2 + a_1x + a_0\) hits \((1,2);(2,4);(3,0)\). Plug in points to find equations.

\[
\begin{align*}
P(1) &= a_2 + a_1 + a_0 \equiv 2 \pmod{5} \\
P(2) &= 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5} \\
P(3) &= 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}
\end{align*}
\]

\[
\begin{align*}
a_2 + a_1 + a_0 &\equiv 2 \pmod{5} \\
3a_1 + 2a_0 &\equiv 1 \pmod{5} \\
4a_1 + 2a_0 &\equiv 2 \pmod{5}
\end{align*}
\]

Subtracting 2nd from 3rd yields: \(a_1 = 1\).
\[
a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}
\]
\[
a_2 = 2 - 1 - 4 \equiv 2 \pmod{5}.
\]

So polynomial is \(2x^2 + 1x + 4 \pmod{5}\)
In general..

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

Solve...

\[
a_{k-1}x_1^{k-1} + \cdots + a_0 \equiv y_1 \pmod{p}
\]
\[
a_{k-1}x_2^{k-1} + \cdots + a_0 \equiv y_2 \pmod{p}
\]
\[
\vdots
\]
\[
a_{k-1}x_k^{k-1} + \cdots + a_0 \equiv y_k \pmod{p}
\]

Will this always work?

As long as solution \textbf{exists} and it is \textbf{unique}! And...

\textbf{Modular Arithmetic Fact:} Exactly 1 degree \(\leq d\) polynomial with arithmetic modulo prime \(p\) contains \(d + 1\) pts.
Another Construction: Interpolation!

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits (1,3); (2,4); (3,0).
Find \(\Delta_1(x) \) polynomial contains (1,1); (2,0); (3,0).
Try \((x-2)(x-3) \pmod{5}\).
Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
\(\Delta_1(x) = (x-2)(x-3)(3) \pmod{5} \) contains (1,1); (2,0); (3,0).
\(\Delta_2(x) = (x-1)(x-3)(4) \pmod{5} \) contains (1,0); (2,1); (3,0).
\(\Delta_3(x) = (x-1)(x-2)(3) \pmod{5} \) contains (1,0); (2,0); (3,1).
But wanted to hit (1,3); (2,4); (3,0)!
\(P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x) \) works.
Same as before?
...after a lot of calculations... \(P(x) = 2x^2 + 1x + 4 \pmod{5} \).
The same as before!
In general.

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

\[
\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.
\]

Numerator is 0 at \(x_j \neq x_i\).
Denominator makes it 1 at \(x_i\).

And..

\[
P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).
\]

hits points \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

Construction proves the existence of the polynomial!
Uniqueness Fact. At most one degree d polynomial hits $d + 1$ points.

Proof:

Roots fact: Any degree d polynomial has at most d roots.

Assume two different polynomials $Q(x)$ and $P(x)$ hit the points.

$R(x) = Q(x) - P(x)$ has $d + 1$ roots and is degree d.

Contradiction.

Must prove **Roots fact**.
Polynomial Division.
Divide $4x^2 - 3x + 2$ by $(x - 3)$ modulo 5.

\[
\begin{array}{c|ccccc}
\text{4} & x & + & 4 & r & 4 \\
\hline
x - 3 & 4x^2 & - & 3x & + & 2 \\
\uparrow & \downarrow & & \downarrow & & \downarrow \\
4x^2 & - & 2x & & & \\
\hline
4x & + & 2 \\
4x & - & 2 \\
\hline
4
\end{array}
\]

$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$

In general, divide $P(x)$ by $(x - a)$ gives $Q(x)$ and remainder r.
That is, $P(x) = (x - a)Q(x) + r$
Lemma 1: $P(x)$ has root a iff $P(x)/(x - a)$ has remainder 0: $P(x) = (x - a)Q(x)$.

Proof: $P(x) = (x - a)Q(x) + r$. Plugin a: $P(a) = r$. It is a root if and only if $r = 0$.

Lemma 2: $P(x)$ has d roots; r_1, \ldots, r_d then $P(x) = c(x - r_1)(x - r_2) \cdots (x - r_d)$.

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. $Q(x)$ has smaller degree so use the induction hypothesis.

$d + 1$ roots implies degree is at least $d + 1$.

Roots fact: Any degree d polynomial has at most d roots.
Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime m is a **finite field** denoted by F_m or $GF(m)$.
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.
Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree \(\leq d \) over \(GF(p) \), \(P(x) \), that hits \(d + 1 \) points.

Shamir’s k out of n Scheme:
Secret \(s \in \{0, \ldots, p - 1\} \)

1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p) \).

Roubustness: Any \(k \) knows secret.
Knowing \(k \) pts, only one \(P(x) \), evaluate \(P(0) \).

Secrecy: Any \(k - 1 \) knows nothing.
Knowing \(\leq k - 1 \) pts, any \(P(0) \) is possible.
Minimality.

Need $p > n$ to hand out n shares: $P(1) \ldots P(n)$.
For an b-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and $2n$.

Working over numbers within 1 bit of secret size. **Minimality.**

With k shares, reconstruct polynomial, $P(x)$.
With $k - 1$ shares, any of p values possible for $P(0)$!
(Almost) any b-bit string possible!
(Almost) the same as what is missing: one $P(i)$.
Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $k - 1$ polynomial n times using $\log p$-bit numbers.

2. Reconstruct secret by solving system of k equations using $\log p$-bit arithmetic.
A bit more counting.

What is the number of degree d polynomials over $GF(m)$?

- m^{d+1}: $d + 1$ coefficients from $\{0, \ldots, m-1\}$.
- m^{d+1}: $d + 1$ points with y-values from $\{0, \ldots, m-1\}$

Infinite number for reals, rationals, complex numbers!
Erasure Codes.

Satellite

3 packet message. So send 6!

Lose 3 out 6 packets.

GPS device

Gets packets 1, 1, and 3. :(
Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send $n+k$ packets and recover message?

A degree $n−1$ polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n−1}$.

1. Choose prime $p \approx 2^b$ for packet size b.
2. $P(x) = m_{n−1}x^{n−1} + \cdots m_0 \pmod{p}$.
3. Send $P(1), \ldots, P(n+k)$.

Any n of the $n+k$ packets gives polynomial ...and message!
Erasure Codes.

Satellite

$1 \ 2 \ \ldots \ n+k$

$1 \ 2 \ \ldots \ n+k$

GPS device

n packet message. So send $n+k$!

Lose k packets.

Any n packets is enough!

Optimal!
Polynomials.

- give Secret Sharing.
- give Erasure Codes.

Next Time: Error Correction.

Noisy Channel: corrupts \(k \) packets. (rather than loses.)

Additional Challenge: Finding which packets are corrupt.
Erasure Codes.

Satellite

3 packet message. So send 6!

Lose 3 out 6 packets.

GPS device

Gets packets 1, 1, and 3.
Solution Idea.

n packet message, channel that loses k packets.
Must send $n + k$ packets!

Any n packets should allow reconstruction of n packet message.

Any n point values allow reconstruction of degree $n - 1$ polynomial.

Alright!!!!!!

Use polynomials.
Problem: Want to send a message with \(n \) packets.

Channel: Lossy channel: loses \(k \) packets.

Question: Can you send \(n + k \) packets and recover message?

A degree \(n - 1 \) polynomial determined by any \(n \) points!

Erasure Coding Scheme: message = \(m_0, m_2, \ldots, m_{n-1} \).

1. Choose prime \(p \approx 2^b \) for packet size \(b \).
2. \(P(x) = m_{n-1}x^{n-1} + \cdots m_0 \pmod{p} \).
3. Send \(P(1), \ldots, P(n+k) \).

Any \(n \) of the \(n + k \) packets gives polynomial ...and message!
Erasure Codes.

Satellite

1 2 \cdots n+k

\begin{tikzpicture}[node distance=2cm,>=latex]
 \node (satellite) [draw, fill=blue!20] {Satellite};
 \node (gps) [draw, fill=blue!20] at (3,0) {GPS device};
 \draw[->] (satellite) -- (gps);
\end{tikzpicture}

n packet message. So send $n + k$!

Lose k packets.

Any n packets is enough!

n packet message.

Optimal.
Size: Can choose a prime between 2^{b-1} and 2^b. (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, $O(n)$ operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

Secret Sharing: each share is size of whole secret.

Coding: Each packet has size $1/n$ of the whole message.
Erasure Code: Example.

Send message of 1, 4, and 4.

Make polynomial with $P(1) = 1, P(2) = 4, P(3) = 4$.

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

$$P(x) = x^2 \pmod{5}$$

$$P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5}$$

Send $(0, P(0)) \ldots (5, P(5))$.

6 points. Better work modulo 7 at least!

Why? $(0, P(0)) = (5, P(5)) \pmod{5}$
Example

Make polynomial with \(P(1) = 1, P(2) = 4, P(3) = 4 \).
Modulo 7 to accommodate at least 6 packets.
Linear equations:

\[
\begin{align*}
P(1) &= a_2 + a_1 + a_0 &\equiv& 1 \pmod{7} \\
P(2) &= 4a_2 + 2a_1 + a_0 &\equiv& 4 \pmod{7} \\
P(3) &= 2a_2 + 3a_1 + a_0 &\equiv& 4 \pmod{7}
\end{align*}
\]

\[
6a_1 + 3a_0 = 2 \pmod{7}, \quad 5a_1 + 4a_0 = 0 \pmod{7}
\]

\[
a_1 = 2a_0, \quad a_0 = 2 \pmod{7} \quad a_1 = 4 \pmod{7} \quad a_2 = 2 \pmod{7}
\]

\(P(x) = 2x^2 + 4x + 2 \)

\[
P(1) = 1, P(2) = 4, \text{ and } P(3) = 4
\]
Send
Packets: (1, 1), (2, 4), (3, 4), (4, 7), (5, 2), (6, 0)

Notice that packets contain “x-values”.
Bad reception!

Send: (1, 1), (2, 4), (3, 4), (4, 7), (5, 2), (6, 0)

Recieve: (1, 1) (3, 4), (6, 0)
Reconstruct?

Format: (i, R(i)).

Lagrange or linear equations.

\[P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7} \]
\[P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7} \]
\[P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7} \]

Channeling Sahai ...
\[P(x) = 2x^2 + 4x + 2 \]
Message? \(P(1) = 1, P(2) = 4, P(3) = 4. \)
Questions for Review

You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0 through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than $n + k$ and also larger than 2^b.
Polynomials.

- give Secret Sharing.
- give Erasure Codes.

Error Correction:

Noisy Channel: corruptions k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.
Error Correction

3 packet message. Send 5.

Corrupts 1 packets.
The Scheme.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, $P(x)$ of degree $n-1$, that encodes message.
 - $P(1) = m_1, \ldots, P(n) = m_n$.
 - Comment: could encode with packets as coefficients.

2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

1. $P(i) = R(i)$ for at least $n+k$ points i,
2. $P(x)$ is unique degree $n-1$ polynomial that contains $\geq n+k$ received points.
Properties: proof.

\(P(x) \): degree \(n - 1 \) polynomial.
Send \(P(1), \ldots, P(n+2k) \)
Receive \(R(1), \ldots, R(n+2k) \)
At most \(k \) \(i \)'s where \(P(i) \neq R(i) \).

Properties:
(1) \(P(i) = R(i) \) for at least \(n+k \) points \(i \),
(2) \(P(x) \) is unique degree \(n - 1 \) polynomial
that contains \(\geq n+k \) received points.

Proof:
(1) Sure. Only \(k \) corruptions.
(2) Degree \(n - 1 \) polynomial \(Q(x) \) consistent with \(n+k \) points.
\(Q(x) \) agrees with \(R(i) \), \(n+k \) times.
\(P(x) \) agrees with \(R(i) \), \(n+k \) times.
Total points contained by both: \(2n+2k \).
Pigeons.
Total points to choose from : \(n+2k \).
Holes.
Points contained by both : \(\geq n \).
\(\geq P - H \) Collisions.
\implies Q(i) = P(i) \) at \(n \) points.
\implies Q(x) = P(x).
Example.

Message: $3, 0, 6$.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6$ modulo 7.

Send: $P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3$.

(Aside: Message in plain text!)

Receive $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$.

$P(i) = R(i)$ for $n + k = 3 + 1 = 4$ points.
Slow solution.

Brute Force:
For each subset of \(n + k \) points
Fit degree \(n - 1 \) polynomial, \(Q(x) \), to \(n \) of them.
Check if consistent with \(n + k \) of the total points.
If yes, output \(Q(x) \).

▶ For subset of \(n + k \) pts where \(R(i) = P(i) \), method will reconstruct \(P(x) \)!

▶ For any subset of \(n + k \) pts,
 1. there is unique degree \(n - 1 \) polynomial \(Q(x) \) that fits \(n \) of them
 2. and where \(Q(x) \) is consistent with \(n + k \) points

\[\Rightarrow P(x) = Q(x). \]

Reconstructs \(P(x) \) and only \(P(x) \)!!
Received $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$

Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains $n + k = 3 + 1$ points.

All equations..

\[
\begin{align*}
p_2 + p_1 + p_0 & \equiv 3 \pmod{7} \\
4p_2 + 2p_1 + p_0 & \equiv 1 \pmod{7} \\
2p_2 + 3p_1 + p_0 & \equiv 6 \pmod{7} \\
2p_2 + 4p_1 + p_0 & \equiv 0 \pmod{7} \\
1p_2 + 5p_1 + p_0 & \equiv 3 \pmod{7}
\end{align*}
\]

Assume point 1 is wrong and solve.. no consistent solution!
Assume point 2 is wrong and solve... consistent solution!
In general,

\[P(x) = p_{n-1}x^{n-1} + \cdots p_0 \] and receive \(R(1), \ldots R(m = n + 2k) \).

\[
\begin{align*}
p_{n-1} + \cdots p_0 & \equiv R(1) \pmod{p} \\
p_{n-1}2^{n-1} + \cdots p_0 & \equiv R(2) \pmod{p} \\
& \quad \vdots \\
p_{n-1}i^{n-1} + \cdots p_0 & \equiv R(i) \pmod{p} \\
& \quad \vdots \\
p_{n-1}(m)^{n-1} + \cdots p_0 & \equiv R(m) \pmod{p}
\end{align*}
\]

Error!! Where???
Could be anywhere!!! ...so try everywhere.

Runtime: \(\binom{n+2k}{k} \) possibilities.

Something like \((n/k)^k \) ...Exponential in \(k \!).

How do we find where the bad packets are efficiently?!?!?!
Ditty...

Where oh where can my bad packets be ...
On Monday!!!!