Today.

Polynomials.
Erasure Codes.
Error Correcting Codes.
 Heads will explode.
Finite Fields

Modular Fact!!!
Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime m is a **finite field** denoted by F_m or $GF(m)$.
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.
Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree \(\leq d \) over \(GF(p) \), \(P(x) \), that hits \(d + 1 \) points.

Shamir’s \(k \) out of \(n \) Scheme:

Secret \(s \in \{0, \ldots, p - 1\} \)

1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0 \) with \(a_0 = s \).
3. Share \(i \) is point \((i, P(i) \mod p) \).

Roublustness: Any \(k \) knows secret.
Knowing \(k \) pts, only one \(P(x) \), evaluate \(P(0) \).

Secrecy: Any \(k - 1 \) knows nothing.
Knowing \(\leq k - 1 \) pts, any \(P(0) \) is possible.
Need \(p > n \) to hand out \(n \) shares: \(P(1) \ldots P(n) \).

For an \(b \)-bit secret, must choose a prime \(p > 2^b \).

Theorem: There is always a prime between \(n \) and \(2n \).

Working over numbers within 1 bit of secret size. **Minimality**.

With \(k \) shares, reconstruct polynomial, \(P(x) \).

With \(k - 1 \) shares, any of \(p \) values possible for \(P(0) \)!

(Almost) any \(b \)-bit string possible!

(Almost) the same as what is missing: one \(P(i) \).
Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $k - 1$ polynomial n times using $\log p$-bit numbers.

2. Reconstruct secret by solving system of k equations using $\log p$-bit arithmetic.
What is the number of degree d polynomials over $GF(m)$?

- m^{d+1}: $d+1$ coefficients from $\{0, \ldots, m-1\}$.
- m^{d+1}: $d+1$ points with y-values from $\{0, \ldots, m-1\}$

Infinite number for reals, rationals, complex numbers!
Polynomials and Coding theory.
Erasure Codes.

Satellite

3 packet message. So send 6!

Lose 3 out 6 packets.

GPS device

Gets packets 1, 1, and 3.
Solution Idea.

n packet message, channel that loses k packets.
Must send $n + k$ packets!

- Any n packets should allow reconstruction of n packet message.
- Any n point values allow reconstruction of degree $n - 1$ polynomial.

Alright!!!!!!

Use polynomials.
Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n+k$ packets and recover message?
A degree $n−1$ polynomial determined by any n points!
Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n−1}$.

2. $P(x) = m_{n−1}x^{n−1} + \cdots m_0 \pmod p$.
3. Send $P(1), \ldots, P(n+k)$.

Any n of the $n+k$ packets gives polynomial ...and message!
Erasure Codes.

Satellite

1 2 \ldots \ n + k

\[\begin{array}{c}
1 \\
2 \\
\ldots \\
\end{array}\]

GPS device

Lose \(k\) packets.

Any \(n\) packets is enough!

Optimal.

\(n\) packet message. So send \(n + k\)!
Information Theory.

Size: Can choose a prime between 2^{b-1} and 2^b. (Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields $GF(2^n)$ where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, $O(n)$ operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

 Secret Sharing: each share is size of whole secret.
 Coding: Each packet has size $1/n$ of the whole message.
Erasure Code: Example.

Send message of 1, 4, and 4.

Make polynomial with $P(1) = 1$, $P(2) = 4$, $P(3) = 4$.

How?

Lagrange Interpolation.

Linear System.

Work modulo 5.

$P(x) = x^2 \pmod{5}$

$P(1) = 1$, $P(2) = 4$, $P(3) = 9 = 4 \pmod{5}$

Send $(0, P(0)) \ldots (5, P(5))$.

6 points. Better work modulo 7 at least!

Why? $(0, P(0)) = (5, P(5)) \pmod{5}$
Example

Make polynomial with $P(1) = 1$, $P(2) = 4$, $P(3) = 4$.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

\[
P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}
\]
\[
P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}
\]
\[
P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}
\]

\[6a_1 + 3a_0 = 2 \pmod{7}, \quad 5a_1 + 4a_0 = 0 \pmod{7}\]

\[a_1 = 2a_0, \quad a_0 = 2 \pmod{7}, \quad a_1 = 4 \pmod{7}, \quad a_2 = 2 \pmod{7}\]

\[P(x) = 2x^2 + 4x + 2\]

\[P(1) = 1, \quad P(2) = 4, \quad \text{and} \quad P(3) = 4\]

Send

Packets: (1, 1), (2, 4), (3, 4), (4, 7), (5, 2), (6, 0)

Notice that packets contain “x-values”.

Bad reception!

Send: (1, 1), (2, 4), (3, 4), (4, 7), (5, 2), (6, 0)

Recieve: (1,1) (3,4), (6,0)

Reconstruct?

Format: (i, R(i)).

Lagrange or linear equations.

\[
P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}
\]
\[
P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}
\]
\[
P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}
\]

Channeling Sahai ...

\[P(x) = 2x^2 + 4x + 2\]

Message? \[P(1) = 1, P(2) = 4, P(3) = 4.\]
You want to encode a secret consisting of 1,4,4.

How big should modulus be?
Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0 through a noisy channel that loses 3 packets.

How big should modulus be?
Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
Modulus should be larger than $n + k$ and also larger than 2^b.
Polynomials.

- give Secret Sharing.
- give Erasure Codes.

Error Correction:

Noisy Channel: corruptions k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.
Error Correction

Satellite

3 packet message. Send 5.

Corrupts 1 packets.
At least...

To correct k errors need $2k$ extra packets.

Encoding(m) = $p_1, p_2, \ldots, p_n, \ldots p_{n+2k-1}$.

Encoding(m') = $p_1, p_2, \ldots, p'_n, \ldots p'_{n+2k-1}$.

k changes from either can make following message

$p_1, p_2, \ldots, p_n, \ldots, p_{n+k-1}, p'_{n+k} \ldots, p'_{n+2k-1}$

Which message did received word come from???

Can’t tell which message is which with k errors!

Information theory intuition:

m packets sent

n units of information need to be transmitted.

k units of information/packets destroyed by channel.

k units of information added by channel!!!!!!

which k packets are destroyed.

Better have $m - k \geq n + k$. $\implies m \geq n + 2k$.
The Scheme.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, $P(x)$ of degree $n-1$, that encodes message.
 - $P(1) = m_1, \ldots, P(n) = m_n$.
 - Comment: could encode with packets as coefficients.

2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

(1) $P(i) = R(i)$ for at least $n+k$ points i,
(2) $P(x)$ is unique degree $n-1$ polynomial that contains $\geq n+k$ received points.
Properties: proof.

\(P(x) \): degree \(n - 1 \) polynomial.
Send \(P(1), \ldots, P(n+2k) \)
Receive \(R(1), \ldots, R(n+2k) \)
At most \(k \) \(i \)'s where \(P(i) \neq R(i) \).

Properties:
(1) \(P(i) = R(i) \) for at least \(n+k \) points \(i \),
(2) \(P(x) \) is unique degree \(n - 1 \) polynomial
 that contains \(\geq n+k \) received points.

Proof: (1) Sure. Only \(k \) corruptions.
(2) Degree \(n - 1 \) polynomial \(Q(x) \) consistent with \(n+k \) points.
\(Q(x) \) and \(P(x) \) agrees with \(R(i) \), \(n+k \) times.
Total agreements with \(R(i) \) : \(2n+2k \). \(P \) Pigeons.
Total points to agree : \(n+2k \). \(H \) Holes.
Collisions : \(\geq n \). \(\geq P - H \) Collisions.
Agreements per point : \(2 \). 1 collision per hole.
Points \(Q(x) \) and \(P(x) \) agree : \(\geq n \). \(\geq P - H \) holes w/collision.
\(\implies Q(i) = P(i) \) at \(n \) points. \(\implies Q(x) = P(x) \).
Example.

Message: 3, 0, 6.

Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has

$P(1) = 3, P(2) = 0, P(3) = 6$ modulo 7.

Send: $P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3$.

(Aside: Message in plain text!)

Receive $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$.

$P(i) = R(i)$ for $n + k = 3 + 1 = 4$ points.
Slow solution.

Brute Force:
For each subset of $n+k$ points
Fit degree $n-1$ polynomial, $Q(x)$, to n of them.
Check if consistent with $n+k$ of the total points.
If yes, output $Q(x)$.

- For subset of $n+k$ pts where $R(i) = P(i)$, method will reconstruct $P(x)$!
- For any subset of $n+k$ pts,
 1. there is unique degree $n-1$ polynomial $Q(x)$ that fits n of them
 2. and where $Q(x)$ is consistent with $n+k$ points
 \[\implies P(x) = Q(x). \]

Reconstructs $P(x)$ and only $P(x)$!!
Example.

Received $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$

Find $P(x) = p_2 x^2 + p_1 x + p_0$ that contains $n + k = 3 + 1$ points.

All equations..

\[
\begin{align*}
p_2 + p_1 + p_0 &\equiv 3 \pmod{7} \\
4p_2 + 2p_1 + p_0 &\equiv 1 \pmod{7} \\
2p_2 + 3p_1 + p_0 &\equiv 6 \pmod{7} \\
2p_2 + 4p_1 + p_0 &\equiv 0 \pmod{7} \\
1p_2 + 5p_1 + p_0 &\equiv 3 \pmod{7}
\end{align*}
\]

Assume point 1 is wrong and solve..no consistent solution!
Assume point 2 is wrong and solve...consistent solution!
In general..

\[P(x) = p_{n-1}x^{n-1} + \cdots + p_0 \text{ and receive } R(1), \ldots, R(m = n + 2k). \]

\[
\begin{align*}
p_{n-1} + \cdots + p_0 & \equiv R(1) \pmod{p} \\
p_{n-1}2^{n-1} + \cdots + p_0 & \equiv R(2) \pmod{p} \\
\quad \quad \vdots \\
p_{n-1}i^{n-1} + \cdots + p_0 & \equiv R(i) \pmod{p} \\
\quad \quad \vdots \\
p_{n-1}(m)^{n-1} + \cdots + p_0 & \equiv R(m) \pmod{p}
\end{align*}
\]

Error!! Where???
Could be anywhere!!! ...so try everywhere.

Runtime: \(\binom{n+2k}{k} \) possibilities.

Something like \(\frac{n}{k}^k \) ...Exponential in \(k \!).

How do we find where the bad packets are efficiently?!?!?!
Oh where, Oh where has my little dog gone?
Oh where, oh where can he be

With his ears cut short
And his tail cut long
Oh where, oh where can he be?

Where oh where have my little packets gone ...bad.
Where oh where can my bad packets be?

\[E(1)(\rho_{n-1} + \cdots \rho_0) \equiv R(1)E(1) \pmod{p} \]

\[0 \times E(2)(\rho_{n-1}2^{n-1} + \cdots \rho_0) \equiv R(2)E(2) \pmod{p} \]

\[\vdots \]

\[E(m)(\rho_{n-1}(m)^{n-1} + \cdots \rho_0) \equiv R(n+2k)E(m) \pmod{p} \]

Idea: Multiply equation \(i \) by 0 if and only if \(P(i) \neq R(i) \). All equations satisfied!!!!!

But which equations should we multiply by 0? Where oh where...??

We will use a polynomial!!! That we don't know. But can find!

Errors at points \(e_1, \ldots, e_k \). (In diagram above, \(e_1 = 2 \).)

Error locator polynomial: \(E(x) = (x - e_1)(x - e_2)\cdots(x - e_k) \).

\(E(i) = 0 \) if and only if \(e_j = i \) for some \(j \)

Multiply equations by \(E(\cdot) \). (Above \(E(x) = (x-2) \).

All equations satisfied!!
Example.

Received $R(1) = 3$, $R(2) = 1$, $R(3) = 6$, $R(4) = 0$, $R(5) = 3$

Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.

Plugin points...

$$(1 - 2)(p_2 + p_1 + p_0) \equiv (3)(1 - 2) \pmod{7}$$

$$(2 - 2)(4p_2 + 2p_1 + p_0) \equiv (1)(2 - 2) \pmod{7}$$

$$(3 - 2)(2p_2 + 3p_1 + p_0) \equiv (3)(3 - 2) \pmod{7}$$

$$(4 - 2)(2p_2 + 4p_1 + p_0) \equiv (0)(4 - 2) \pmod{7}$$

$$(5 - 2)(4p_2 + 5p_1 + p_0) \equiv (3)(5 - 2) \pmod{7}$$

Error locator polynomial: $(x - 2)$.

Multiply equation i by $(i - 2)$. All equations satisfied!

But don’t know error locator polynomial! Do know form: $(x - e)$.

4 unknowns (p_0, p_1, p_2 and e), 5 nonlinear equations.
..turn their heads each day,

\[
E(1)(p_{n-1} + \cdots + p_0) \equiv R(1)E(1) \pmod{p} \\
\vdots \\
E(i)(p_{n-1}i^{n-1} + \cdots + p_0) \equiv R(i)E(i) \pmod{p} \\
\vdots \\
E(m)(p_{n-1}(n+2k)^{n-1} + \cdots + p_0) \equiv R(m)E(m) \pmod{p}
\]

...so satisfied, I’m on my way.

\(m = n + 2k\) satisfied equations, \(n + k\) unknowns. But nonlinear!

Let \(Q(x) = E(x)P(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0\).

Equations:

\[Q(i) = R(i)E(i).\]

and linear in \(a_i\) and coefficients of \(E(x)\)!
Finding $Q(x)$ and $E(x)$?

- $E(x)$ has degree k ...

\[E(x) = x^k + b_{k-1}x^{k-1} \cdots b_0. \]

$\implies k$ (unknown) coefficients. Leading coefficient is 1.

- $Q(x) = P(x)E(x)$ has degree $n + k - 1$...

\[Q(x) = a_{n+k-1}x^{n+k-1} + a_{n+k-2}x^{n+k-2} + \cdots a_0 \]

$\implies n + k$ (unknown) coefficients.

Total unknown coefficient: $n + 2k$.
Solving for $Q(x)$ and $E(x)$...and $P(x)$

For all points $1, \ldots, i, n+2k$,

$$Q(i) = R(i)E(i) \pmod{p}$$

Gives $n+2k$ linear equations.

$$a_{n+k-1} + \ldots + a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$

$$a_{n+k-1}(2)^{n+k-1} + \ldots + a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$$

$$\vdots$$

$$a_{n+k-1}(m)^{n+k-1} + \ldots + a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}$$

..and $n+2k$ unknown coefficients of $Q(x)$ and $E(x)$!

Solve for coefficients of $Q(x)$ and $E(x)$.

Find $P(x) = Q(x)/E(x)$.

Example.

Received $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$

$Q(x) = E(x)P(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

$E(x) = x - b_0$

$Q(i) = R(i)E(i)$.

\[
\begin{align*}
 a_3 + a_2 + a_1 + a_0 & \equiv 3(1 - b_0) \pmod{7} \\
 a_3 + 4a_2 + 2a_1 + a_0 & \equiv 1(2 - b_0) \pmod{7} \\
 6a_3 + 2a_2 + 3a_1 + a_0 & \equiv 6(3 - b_0) \pmod{7} \\
 a_3 + 2a_2 + 4a_1 + a_0 & \equiv 0(4 - b_0) \pmod{7} \\
 6a_3 + 4a_2 + 5a_1 + a_0 & \equiv 3(5 - b_0) \pmod{7}
\end{align*}
\]

$a_3 = 1, a_2 = 6, a_1 = 6, a_0 = 5$ and $b_0 = 2$.

$Q(x) = x^3 + 6x^2 + 6x + 5$.

$E(x) = x - 2$.
Example: finishing up.

\[Q(x) = x^3 + 6x^2 + 6x + 5. \]
\[E(x) = x - 2. \]

\[\begin{array}{c}
1 \ x^2 + 1 \ x + 1 \\
\hline
x - 2 \) \ x^3 + 6 \ x^2 + 6 \ x + 5 \\
\hline
x^3 - 2 \ x^2 \\
\hline
1 \ x^2 + 6 \ x + 5 \\
1 \ x^2 - 2 \ x \\
\hline
x + 5 \\
x - 2 \\
\hline
0
\end{array} \]

\[P(x) = x^2 + x + 1 \]
Message is \(P(1) = 3, P(2) = 0, P(3) = 6. \)

What is \(\frac{x-2}{x-2} \)? 1 Except at \(x = 2 \)? Hole there?
Message: m_1, \ldots, m_n.

Sender:
1. Form degree $n - 1$ polynomial $P(x)$ where $P(i) = m_i$.
2. Send $P(1), \ldots, P(n + 2k)$.

Receiver:
1. Receive $R(1), \ldots, R(n + 2k)$.
2. Solve $n + 2k$ equations, $Q(i) = E(i) R(i)$ to find $Q(x) = E(x) P(x)$ and $E(x)$.
3. Compute $P(x) = Q(x)/E(x)$.
4. Compute $P(1), \ldots, P(n)$.
Check your understanding.

You have error locator polynomial!

Where oh where can my bad packets be?...

Factor? Sure.
Check all values? Sure.

Efficiency? Sure. Only $n+k$ values.
 See where it is 0.
Is there one and only one $P(x)$ from Berlekamp-Welsh procedure?

Existence: there is a $P(x)$ and $E(x)$ that satisfy equations.
Unique solution for $P(x)$

Uniqueness: any solution $Q'(x)$ and $E'(x)$ have

$$\frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)} = P(x).$$ \hspace{1cm} (1)

Proof:

We claim

$$Q'(x)E(x) = Q(x)E'(x)$$ on $n + 2k$ values of x. \hspace{1cm} (2)

Equation (2) implies (1):

$Q'(x)E(x)$ and $Q(x)E'(x)$ are degree $n + 2k - 1$ and agree on $n + 2k$ points.

$E(x)$ and $E'(x)$ have at most k zeros each.

Can cross divide at n points.

$$\implies \frac{Q'(x)}{E'(x)} = \frac{Q(x)}{E(x)}$$ equal on n points.

Both degree $\leq n \implies$ Same polynomial!
Fact: $Q'(x)E(x) = Q(x)E'(x)$ on $n + 2k$ values of x.

Proof: Construction implies that

$$Q(i) = R(i)E(i)$$
$$Q'(i) = R(i)E'(i)$$

for $i \in \{1, \ldots n + 2k\}$.

If $E(i) = 0$, then $Q(i) = 0$. If $E'(i) = 0$, then $Q'(i) = 0$.

$$\implies Q(i)E'(i) = Q'(i)E(i)$$

holds when $E(i)$ or $E'(i)$ are zero.

When $E'(i)$ and $E(i)$ are not zero

$$\frac{Q'(i)}{E'(i)} = \frac{Q(i)}{E(i)} = R(i).$$

Cross multiplying gives equality in fact for these points. \qed

Points to polynomials, have to deal with zeros!

Example: dealing with $\frac{x-2}{x-2}$ at $x = 2$.
Berlekamp-Welsh algorithm decodes correctly when k errors!
Summary. Error Correction.

Communicate n packets, with k erasures.

How many packets? $n + k$
How to encode? With polynomial, $P(x)$.
Of degree? $n - 1$
Recover? Reconstruct $P(x)$ with any n points!

Communicate n packets, with k errors.

How many packets? $n + 2k$
Why?
 k changes to make diff. messages overlap
How to encode? With polynomial, $P(x)$. Of degree? $n - 1$.
Recover?
 Reconstruct error polynomial, $E(X)$, and $P(x)$!
 Nonlinear equations.
Reconstruct $E(x)$ and $Q(x) = E(x)P(x)$. Linear Equations.
Polynomial division! $P(x) = Q(x)/E(x)$!

Reed-Solomon codes. Welsh-Berlekamp Decoding. Perfection!