Modeling Uncertainty: Probability Space
Modeling Uncertainty: Probability Space

1. Key Points
2. Random Experiments
3. Probability Space
Key Points

- Uncertainty does not mean "nothing is known".
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use 'artificial' uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability models knowledge about uncertainty.
 - Discovers best way to use that knowledge in making decisions.
Key Points

- Uncertainty does not mean “nothing is known”
Key Points

▶ Uncertainty does not mean “nothing is known”
▶ How to best make decisions under uncertainty?

Examples:
- Buying stocks
- Detecting signals (transmitted bits, speech, images, radar, diseases, etc.)
- Controlling systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- Playing games of chance
- Designing randomized algorithms.
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
 - Play games of chance
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
 - Play games of chance
 - Design randomized algorithms.
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability
 - Models knowledge about uncertainty
Key Points

▶ Uncertainty does not mean “nothing is known”
▶ How to best make decisions under uncertainty?
 ▶ Buy stocks
 ▶ Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 ▶ Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
▶ How to best use ‘artificial’ uncertainty?
 ▶ Play games of chance
 ▶ Design randomized algorithms.
▶ Probability
 ▶ Models knowledge about uncertainty
 ▶ Discovers best way to use that knowledge in making decisions
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: a precise, unambiguous, simple way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.
The Magic of Probability

Uncertainty:

vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.
The Magic of Probability

Uncertainty: vague,
The Magic of Probability

Uncertainty: vague, fuzzy,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.
Probability:
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!)
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

![Uncertainty = Fear](image_url)
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.
Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost:
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.
Random Experiment: Flip one Fair Coin

Flip a fair coin:

▶ Possible outcomes: Heads (H) and Tails (T)

▶ Likelihoods: H: 50% and T: 50%
Random Experiment: Flip one Fair Coin

Flip a fair coin:
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: *(One flips or tosses a coin)*
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: (*One flips or tosses a coin*)
Random Experiment: Flip one Fair Coin

Flip a fair coin: (One flips or tosses a coin)

- Possible outcomes:

 ▶ H: 50% and T: 50%
Random Experiment: Flip one Fair Coin

Flip a fair coin: (One flips or tosses a coin)

Possible outcomes: Heads (H)
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: *(One flips or tosses a coin)*

- Possible outcomes: Heads (*H*) and Tails (*T*)
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: *(One flips or tosses a coin)*

- **Possible outcomes**: Heads (*H*) and Tails (*T*)
 (One flip yields either ‘heads’ or ‘tails’)
Random Experiment: Flip one Fair Coin

Flip a *fair* coin: (*One flips or tosses a coin*)

- Possible outcomes: Heads \((H) \) and Tails \((T) \)
 (*One flip yields either ‘heads’ or ‘tails’.*)
- Likelihoods:
Random Experiment: Flip one Fair Coin

Flip a fair coin: (*One flips or tosses a coin*)

- Possible outcomes: Heads (H) and Tails (T)
 (*One flip yields either ‘heads’ or ‘tails’.*)
- Likelihoods: $H : 50\%$ and $T : 50\%$
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:
- Single coin flip: 50% chance of 'tails' [subjectivist]
 - Willingness to bet on the outcome of a single flip
- Many coin flips: About half yield 'tails' [frequentist]
 - Makes sense for many flips

Question:
Why does the fraction of tails converge to the same value every time?

Statistical Regularity! Deep!
Random Experiment: Flip one Fair Coin

Flip a *fair* coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- **Single coin flip:** 50% chance of 'tails'
 (subjectivist)
 - *Willingness to bet on the outcome of a single flip*

- **Many coin flips:** About half yield 'tails'
 (frequentist)
 - Makes sense for many flips

Question:

Why does the fraction of tails converge to the same value every time?

Statistical Regularity!

Deep!
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’

Statistical Regularity!
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by *the likelihood of tails is 50%*?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]
Random Experiment: Flip one Fair Coin

Flip a *fair* coin:

What do we mean by the likelihood of tails is 50%? Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [*subjectivist*]

 Willingness to bet on the outcome of a single flip
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ [frequentist]
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ [frequentist]

 Makes sense for many flips
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ [frequentist]

 Makes sense for many flips

Question:
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ [frequentist]

 Makes sense for many flips

- Question: Why does the fraction of tails converge to the same value every time?
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ **[subjectivist]**

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ **[frequentist]**

 Makes sense for many flips

- Question: Why does the fraction of tails converge to the same value every time? **Statistical Regularity!**
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ [frequentist]

 Makes sense for many flips

- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity! Deep!
Random Experiment: Flip one Fair Coin

Flip a fair coin:
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: model
Random Experiment: Flip one Fair Coin

Flip a fair coin: model

Physical Experiment

Probability Model

\[\Omega = \{H, T\} \]

\[Pr[H] = 0.5, \quad Pr[T] = 0.5. \]
Random Experiment: Flip one Fair Coin

Flip a *fair* coin: model

The physical experiment is complex.
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: model

- The physical experiment is complex. (Shape, density, initial momentum and position, ...)

![Physical Experiment](image.png) ![Probability Model](probability_model.png)
Random Experiment: Flip one Fair Coin

Flip a fair coin: model

- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: model

- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - A set Ω of **outcomes**: $\Omega = \{H, T\}$.
Random Experiment: Flip one Fair Coin

Flip a fair coin: model

- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
 - A set Ω of outcomes: $\Omega = \{H, T\}$.
 - A probability assigned to each outcome: $Pr[H] = 0.5, Pr[T] = 0.5$.
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods:
 - H: \(p \in (0, 1) \)
 - T: \(1 - p \)

Frequentist Interpretation:
Flip many times \(\Rightarrow \) Fraction \(1 - p \) of tails

Question:
How can one figure out \(p \)?

Flip many times

Tautology?
No: Statistical regularity!
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Heads (H): 45%
- Tails (T): 55%
Random Experiment: Flip one Unfair Coin

Flip an **unfair** (biased, loaded) coin:

- Possible outcomes:
 - H: 45%
 - T: 55%

Frequentist Interpretation: Flip many times ⇒ Fraction $1 - p$ of tails

Question: How can one figure out p? Flip many times

Tautology? No: Statistical regularity!
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

Possible outcomes: Heads (H) and Tails (T)
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods:
 - H: $p \in (0, 1)$, and T: $1 - p$

Frequentist Interpretation: Flip many times ⇒ Fraction $1 - p$ of tails

Question: How can one figure out p?

Flip many times

Tautology? No: Statistical regularity!
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H : p \in (0,1)$ and $T : 1 - p$
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

Possible outcomes: Heads \((H)\) and Tails \((T)\)

Likelihoods: \(H : p \in (0, 1)\) and \(T : 1 - p\)

Frequentist Interpretation:
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H : p \in (0, 1)$ and $T : 1 - p$
- Frequentist Interpretation:
 Flip many times \Rightarrow Fraction $1 - p$ of tails
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H : p \in (0, 1)$ and $T : 1 - p$
- Frequentist Interpretation:
 Flip many times \Rightarrow Fraction $1 - p$ of tails
- Question:
Random Experiment: Flip one Unfair Coin

Flip an **unfair** (biased, loaded) coin:

- Possible outcomes: Heads \((H)\) and Tails \((T)\)
- Likelihoods: \(H : p \in (0, 1)\) and \(T : 1 - p\)
- Frequentist Interpretation:
 - Flip many times \(\Rightarrow\) Fraction \(1 - p\) of tails
- Question: How can one figure out \(p\)?
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H : p \in (0, 1)$ and $T : 1 - p$
- Frequentist Interpretation:

 Flip many times \Rightarrow Fraction $1 - p$ of tails
- Question: How can one figure out p? Flip many times
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H : p \in (0, 1)$ and $T : 1 - p$
- Frequentist Interpretation:
 - Flip many times \Rightarrow Fraction $1 - p$ of tails
- Question: How can one figure out p? Flip many times
- Tautolgy?
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H: p \in (0, 1)$ and $T: 1 - p$
- Frequentist Interpretation:
 Flip many times \Rightarrow Fraction $1 - p$ of tails
- Question: How can one figure out p? Flip many times
- Tautology? No: Statistical regularity!
Random Experiment: Flip one Unfair Coin
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model

Physical Experiment

Probability Model

Ω

$H \circ p$

$T \circ 1 - p$
Flip Two Fair Coins

Possible outcomes:

\{HH, HT, TH, TT\} ≡ \{H, T\}^2.

Note:

\(A \times B := \{(a, b) | a \in A, b \in B\}\) and \(A^2 := A \times A\).

Likelihoods:

\(1/4\) each.
Flip Two Fair Coins

- Possible outcomes:
 - \{HH, HT, TH, TT\}
 - \equiv \{H, T\}^2

Note:
- \(A \times B := \{(a, b) | a \in A, b \in B\}\)
- \(A^2 := A \times A\)
- Likelihoods: 1/4 each.
Flip Two Fair Coins

- Possible outcomes: \(\{HH, HT, TH, TT\}\)
Flip Two Fair Coins

- Possible outcomes: \(\{HH, HT, TH, TT\} \equiv \{H, T\}^2 \).
Flip Two Fair Coins

- Possible outcomes: \(\{ HH, HT, TH, TT \} \equiv \{ H, T \}^2 \).
- Note: \(A \times B := \{(a, b) \mid a \in A, b \in B\} \)
Flip Two Fair Coins

- Possible outcomes: \(\{HH, HT, TH, TT\} \equiv \{H, T\}^2 \).
- Note: \(A \times B := \{(a, b) \mid a \in A, b \in B\} \) and \(A^2 := A \times A \).
Flip Two Fair Coins

- Possible outcomes: \{HH, HT, TH, TT\} \equiv \{H, T\}^2.
- Note: \(A \times B := \{(a, b) \mid a \in A, b \in B\}\) and \(A^2 := A \times A\).
- Likelihoods: \(\frac{1}{4}\) each.
Flip Two Fair Coins

- Possible outcomes: \(\{HH, HT, TH, TT\} \equiv \{H, T\}^2 \).
- Note: \(A \times B := \{(a, b) \mid a \in A, b \in B\} \) and \(A^2 := A \times A \).
- Likelihoods: \(1/4\) each.
Flip Two Fair Coins

- Possible outcomes: \(\{HH, HT, TH, TT\} \equiv \{H, T\}^2 \).
- Note: \(A \times B := \{(a, b) \mid a \in A, b \in B\} \) and \(A^2 := A \times A \).
- Likelihoods: 1/4 each.
Flip Glued Coins

Possible outcomes:
- HH
- TT

Likelihoods:
- HH: 0.5
- TT: 0.5

Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes: \{HH, TT\}.
Likelihoods: HH: 0.5, TT: 0.5.

Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: {HH, TT}
- Likelihoods: HH: 0.5, TT: 0.5

Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flips two coins glued together side by side:

- **Possible outcomes:**
 - HH: 0.5
 - TT: 0.5

Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \{HH, TT\}.

Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \{HH, TT\}.
- Likelihoods:

\[
\begin{align*}
HH &: 0.5, \\
TT &: 0.5.
\end{align*}
\]
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \{HH, TT\}.
- Likelihoods: HH : 0.5, TT : 0.5.
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \{HH, TT\}.
- Likelihoods: \(HH : 0.5, TT : 0.5\).
- Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flips two coins glued together side by side:

▶ Possible outcomes: \{HT, TH\}.

▶ Likelihoods:
 - HT: 0.5
 - TH: 0.5

Note: Coins are glued so that they show different faces.
Flip Glued Coins

Flips two coins glued together side by side:
Flip Glued Coins

Flips two coins glued together side by side:
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes:

- HT: 50%
- TH: 50%

Note: Coins are glued so that they show different faces.
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \{HT, TH\}.

Note: Coins are glued so that they show different faces.
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes: \(\{HT, TH\} \).

Likelihoods:
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \(\{ HT, TH \} \).
- Likelihoods: \(HT : 0.5, TH : 0.5 \).
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes: \(\{ HT, TH \} \).

Likelihoods: \(HT : 0.5, TH : 0.5 \).

Note: Coins are glued so that they show different faces.
Flip two Attached Coins

Possible outcomes:
- HH
- HT
- TH
- TT

Likelihoods:
- HH: 0.4
- HT: 0.1
- TH: 0.1
- TT: 0.4

Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.
Flip two Attached Coins

Flips two coins attached by a spring:

Possible outcomes: {HH, HT, TH, TT}.

Likelihoods: HH: 0.4, HT: 0.1, TH: 0.1, TT: 0.4.

Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.
Flip two Attached Coins

Flips two coins attached by a spring:
Flip two Attached Coins

Flips two coins attached by a spring:

Possible outcomes:

- HH: 0.4
- HT: 0.1
- TH: 0.1
- TT: 0.4

Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.
Flip two Attached Coins

Flips two coins attached by a spring:

- Possible outcomes: \{HH, HT, TH, TT\}.
Flip two Attached Coins

Flips two coins attached by a spring:

- Possible outcomes: \{HH, HT, TH, TT\}.
- Likelihoods:
Flip two Attached Coins

Flips two coins attached by a spring:

- Possible outcomes: \(\{HH, HT, TH, TT\} \).
- Likelihoods: \(HH : 0.4, HT : 0.1, TH : 0.1, TT : 0.4 \).
Flip two Attached Coins

Flips two coins attached by a spring:

- Possible outcomes: \{HH, HT, TH, TT\}.
- Likelihoods: HH : 0.4, HT : 0.1, TH : 0.1, TT : 0.4.
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1];
- Glued coins: [3, 4];
- Spring-attached coins: [2].
Here is a way to summarize the four random experiments:
Flipping Two Coins

Here is a way to summarize the four random experiments:

[1] \(\Omega\) with outcomes:
- TH: 0.25
- TT: 0.25

[2] \(\Omega\) with outcomes:
- TH: 0.1
- TT: 0.4

[3] \(\Omega\) with outcomes:
- TH: 0
- TT: 0.5

[4] \(\Omega\) with outcomes:
- TH: 0.5
- TT: 0
Here is a way to summarize the four random experiments:

1. Ω is the set of possible outcomes;

2. Ω is the set of possible outcomes;
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
Flipping Two Coins

Here is a way to summarize the four random experiments:

1. Ω is the set of possible outcomes;
2. Each outcome has a probability (likelihood);
3. The probabilities are ≥ 0 and add up to 1;
Flipping Two Coins

Here is a way to summarize the four random experiments:

▶ Ω is the set of possible outcomes;
▶ Each outcome has a probability (likelihood);
▶ The probabilities are ≥ 0 and add up to 1;
▶ Fair coins:
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of *possible* outcomes;
- Each outcome has a *probability* (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1];
Flipping Two Coins

Here is a way to summarize the four random experiments:

▶ Ω is the set of possible outcomes;
▶ Each outcome has a probability (likelihood);
▶ The probabilities are ≥ 0 and add up to 1;
▶ Fair coins: [1]; Glued coins:
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4];
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4];
 - Spring-attached coins:
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4];
 - Spring-attached coins: [2];
Flipping Two Coins

Here is a way to summarize the four random experiments:

[Diagram with outcomes and probabilities]
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:

► Each outcome describes the two coins.
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:

- Each outcome describes the **two** coins.
- E.g., HT is **one** outcome of the experiment.
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:

▶ Each outcome describes the two coins.
▶ E.g., HT is one outcome of the experiment.
▶ It is wrong to think that the outcomes are $\{H, T\}$ and that one picks twice from that set.
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:

▶ Each outcome describes the two coins.
▶ E.g., HT is one outcome of the experiment.
▶ It is wrong to think that the outcomes are $\{H, T\}$ and that one picks twice from that set.
▶ Indeed, this viewpoint misses the relationship between the two flips.
Flipping Two Coins
Here is a way to summarize the four random experiments:

Important remarks:

- Each outcome describes the two coins.
- E.g., HT is one outcome of the experiment.
- It is wrong to think that the outcomes are $\{H, T\}$ and that one picks twice from that set.
- Indeed, this viewpoint misses the relationship between the two flips.
- Each $\omega \in \Omega$ describes one outcome of the complete experiment.
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:

▶ Each outcome describes the two coins.
▶ E.g., HT is one outcome of the experiment.
▶ It is wrong to think that the outcomes are $\{H, T\}$ and that one picks twice from that set.
▶ Indeed, this viewpoint misses the relationship between the two flips.
▶ Each $\omega \in \Omega$ describes one outcome of the complete experiment.
▶ Ω and the probabilities specify the random experiment.
Flipping n times

Flip a fair coin n times (some $n \geq 1$):
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes:
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: \{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}.
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: \{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}.

Thus, 2^n possible outcomes.
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$. Thus, 2^n possible outcomes.

- Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.

\[A^n := \{ (a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A \} \]

\[|A^n| = |A|^n \]
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$. Thus, 2^n possible outcomes.

- Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.

$A^n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}$.
Flipping \(n \) times

Flip a fair coin \(n \) times (some \(n \geq 1 \)):

- Possible outcomes: \(\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} \).

 Thus, \(2^n \) possible outcomes.

- Note: \(\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n \).

\(A^n := \{(a_1, \ldots, a_n) | a_1 \in A, \ldots, a_n \in A\} \). \(|A^n| = |A|^n \).
Flipping n times
Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.

 $A^n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}$. $|A^n| = |A|^n$.

- Likelihoods:
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.

 $A^n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}$. $|A^n| = |A|^n$.
- Likelihoods: $1/2^n$ each.
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

▶ Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$.

Thus, 2^n possible outcomes.

▶ Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.

$A^n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}$. $|A^n| = |A|^n$.

▶ Likelihoods: $1/2^n$ each.
Roll two Dice

Roll a *balanced* 6-sided die twice:
Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes:
Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes:
 \[\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \leq a, b \leq 6\}. \]
Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes:
 \[\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \leq a, b \leq 6\}\.\]
- Likelihoods:
Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes:
 \[\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \leq a, b \leq 6\}. \]
- Likelihoods: 1/36 for each.
Roll two Dice

Roll a **balanced** 6-sided die twice:

- Possible outcomes:
 \[\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \leq a, b \leq 6\} \]

- Likelihoods: 1/36 for each.

![Physical Experiment](image1.png) ![Probability Model](image2.png)
Probability Space.

1. A “random experiment”:

(a) Flip a biased coin;
(b) Flip two fair coins;
(c) Deal a poker hand.

2. A set of possible outcomes: \(\Omega \).

(a) \(\Omega = \{H, T\} \);
(b) \(\Omega = \{HH, HT, TH, TT\} \); \(|\Omega| = 4 \);
(c) \(\Omega = \{A\spadesuit A\heartsuit A\clubsuit A\diamondsuit K\spadesuit, \ldots\} \); \(|\Omega| = \binom{52}{5} \).

3. Assign a probability to each outcome: \(\Pr : \Omega \rightarrow [0, 1] \).

(a) \(\Pr[H] = p, \Pr[T] = 1 - p \) for some \(p \in [0, 1] \);
(b) \(\Pr[HH] = \Pr[HT] = \Pr[TH] = \Pr[TT] = 1/4 \);
(c) \(\Pr[A\spadesuit A\heartsuit A\clubsuit A\diamondsuit K\spadesuit] = \cdots = 1/\binom{52}{5} \).
1. A “random experiment”:
 (a) Flip a biased coin;
1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.

Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$;
1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$; $|\Omega| =$
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$; $|\Omega| = 4$;
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4$;
 (c) $\Omega = \{\text{A♠ A♦ A♣ A♥ K♠, A♠ A♦ A♣ A♥ Q♠, \ldots}\}$
 $|\Omega| = $
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$; $|\Omega| = 4$;
 (c) $\Omega = \{A\spadesuit A\heartsuit A\diamondsuit A\clubsuit K\spadesuit, A\spadesuit A\heartsuit A\diamondsuit A\clubsuit A\heartsuit Q\heartsuit, \ldots\}$
 $|\Omega| = \binom{52}{5}$.

Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4$;
 (c) $\Omega = \{\text{A♠ A♦ A♣ A♥ K♠, A♠ A♦ A♣ A♥ Q♠, ...}\}$
 $|\Omega| = \binom{52}{5}$.

3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0, 1]$.
 (a) $Pr[H] = p, Pr[T] = 1 - p$ for some $p \in [0, 1]$
Probability Space.

1. A “random experiment”:

 (a) Flip a biased coin;

 (b) Flip two fair coins;

 (c) Deal a poker hand.

2. A set of possible outcomes: \(\Omega \).

 (a) \(\Omega = \{H, T\} \);

 (b) \(\Omega = \{HH, HT, TH, TT\} \); \(|\Omega| = 4 \);

 (c) \(\Omega = \{A\spadesuit A\diamondsuit A\clubsuit A\heartsuit K\spadesuit, A\spadesuit A\diamondsuit A\clubsuit A\heartsuit Q\spadesuit, \ldots\} \)

 \(|\Omega| = \binom{52}{5} \).

3. Assign a probability to each outcome: \(Pr: \Omega \rightarrow [0, 1] \).

 (a) \(Pr[H] = p, Pr[T] = 1 - p \) for some \(p \in [0, 1] \)

 (b) \(Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4} \)
1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: \(\Omega \).
 (a) \(\Omega = \{H, T\} \);
 (b) \(\Omega = \{HH, HT, TH, TT\} \); \(|\Omega| = 4\);
 (c) \(\Omega = \{A\spadesuit A\diamondsuit A\clubsuit A\heartsuit K\spadesuit, A\spadesuit A\diamondsuit A\clubsuit A\heartsuit Q\spadesuit, \ldots\} \)
 \(|\Omega| = \binom{52}{5}\).

3. Assign a probability to each outcome: \(Pr : \Omega \rightarrow [0, 1] \).
 (a) \(Pr[H] = p, Pr[T] = 1 - p \) for some \(p \in [0, 1] \)
 (b) \(Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4} \)
 (c) \(Pr[A\spadesuit A\diamondsuit A\clubsuit A\heartsuit K\spadesuit, \ldots] = \ldots = 1/\binom{52}{5} \)
Probability Space: formalism.

Ω is the **sample space**.
Probability Space: formalism.

Ω is the **sample space**.
ω ∈ Ω is a **sample point**.
Probability Space: formalism.

\(\Omega \) is the \textbf{sample space}.
\(\omega \in \Omega \) is a \textbf{sample point}. (Also called an \textbf{outcome}.)
Probability Space: formalism.

Ω is the **sample space**.
$\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.)
Sample point ω has a probability $Pr[\omega]$ where
Probability Space: formalism.

Ω is the **sample space**.

$\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.)

Sample point ω has a probability $Pr[\omega]$ where

- $0 \leq Pr[\omega] \leq 1$;
Probability Space: formalism.

\(\Omega \) is the **sample space**.
\(\omega \in \Omega \) is a **sample point**. (Also called an **outcome**.) Sample point \(\omega \) has a probability \(Pr[\omega] \) where

- \(0 \leq Pr[\omega] \leq 1 \);
- \(\sum_{\omega \in \Omega} Pr[\omega] = 1 \).
Probability Space: formalism.

Ω is the **sample space**.
$\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.)
Sample point ω has a probability $Pr[\omega]$ where

- $0 \leq Pr[\omega] \leq 1$;
- $\sum_{\omega \in \Omega} Pr[\omega] = 1$.

![Sample Space Diagram](image)
In a **uniform probability space** each outcome ω is **equally probable**: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- Flipping a biased coin is not a uniform probability space.
In a **uniform probability space** each outcome ω is **equally probable**: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

![Uniform Probability Space Diagram](image)
In a **uniform probability space** each outcome \(\omega \) is equally probable: \(Pr[\omega] = \frac{1}{|\Omega|} \) for all \(\omega \in \Omega \).

Examples:
- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
Probability Space: Formalism.

In a **uniform probability space** each outcome ω is **equally probable**: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- Flipping a biased coin is not a uniform probability space.
Probability Space: Formalism

Simplest physical model of a uniform probability space:
Probability Space: Formalism

Simplest physical model of a **uniform** probability space:

- **Physical experiment**
 - A bag of identical balls, except for their color (or a label).
 - If the bag is well shaken, every ball is equally likely to be picked.
 - $\Omega = \{\text{white, red, yellow, grey, purple, blue, maroon, green}\}$

- **Probability model**
 - Ω
 - $Pr[\omega]$
 - - Red: $1/8$
 - - Green: $1/8$
 - - Maroon: $1/8$

A bag of identical balls, except for their color (or a label).

\[
\Omega = \{\text{white, red, yellow, grey, purple, blue, maroon, green}\}
\]

\[
Pr[\omega] = \frac{1}{8}
\]

\[
\begin{aligned}
\bullet \text{ Red} & : \frac{1}{8} \\
\bullet \text{ Green} & : \frac{1}{8} \\
\vdots & \\
\bullet \text{ Maroon} & : \frac{1}{8}
\end{aligned}
\]
Probability Space: Formalism

Simplest physical model of a uniform probability space:

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.
A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

\[\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \} \]
Probability Space: Formalism

Simplest physical model of a uniform probability space:

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

\[\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \} \]

\[Pr[\text{blue}] = 1/8 \]
A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

\[\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \} \]

\[Pr[\text{blue}] = \frac{1}{8}. \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

$\Omega = \{\text{Red, Green, Yellow, Blue}\}$

$\Pr[\text{Red}] = \frac{3}{10}$,

$\Pr[\text{Green}] = \frac{4}{10}$,

etc.

Note: Probabilities are restricted to rational numbers: $\frac{p}{q}$.
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10}, \quad \text{etc.} \]

Note: Probabilities are restricted to rational numbers: \(\mathbb{Q} \).

Physical experiment

Probability model
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \frac{3}{10}, \]

\[Pr[\text{Green}] = \frac{4}{10}, \]

\[Pr[\text{Yellow}] = \frac{2}{10}, \]

\[Pr[\text{Blue}] = \frac{1}{10} \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10}, \quad Pr[\text{Yellow}] = \frac{2}{10}, \quad Pr[\text{Blue}] = \frac{1}{10} \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]
\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10}, \quad \text{etc.} \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \frac{3}{10}, Pr[\text{Green}] = \frac{4}{10}, \text{etc.} \]

Note: Probabilities are restricted to rational numbers: \(\frac{N_k}{N} \).
Probability Space: Formalism

Physical model of a general non-uniform probability space:
Probability Space: Formalism

Physical model of a general non-uniform probability space:

\(\Omega = \{1, 2, 3, \ldots, N\} \),

\(\Pr[\omega] = p_\omega \).

Physical experiment

Probability model

- Green = 1
- Purple = 2
- Yellow = \(\omega \)

\(p_1, p_2, \ldots, p_\omega \)

\(p_1, p_2, \ldots, p_\omega \)

The roulette wheel stops in sector \(\omega \) with probability \(p_\omega \).
Probability Space: Formalism

Physical model of a general non-uniform probability space:

The roulette wheel stops in sector ω with probability p_ω.

\[\Omega = \{1, 2, 3, \ldots, N\} \]

\[Pr[\omega] = p_\omega \]
Probability Space: Formalism

Physical model of a general non-uniform probability space:

The roulette wheel stops in sector ω with probability p_ω.

$$\Omega = \{1, 2, 3, \ldots, N\},$$
Probability Space: Formalism

Physical model of a general non-uniform probability space:

The roulette wheel stops in sector ω with probability p_ω.

$$\Omega = \{1, 2, 3, \ldots, N\}, \Pr[\omega] = p_\omega.$$
An important remark

- The random experiment selects **one and only one** outcome in Ω.
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, it would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, it's would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why?
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects *one* of the elements of Ω.
- In this case, it's would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, it's would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way.
An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects one of the elements of Ω.
- In this case, it's would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets HH or TT with probability 50% each.
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, it’s would be wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets HH or TT with probability 50% each. This is not captured by ‘picking two outcomes.’
Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: \(\Omega; \Pr(\omega) \in [0, 1]; \sum_{\omega} \Pr(\omega) = 1. \)
3. Uniform Probability Space: \(\Pr(\omega) = \frac{1}{|\Omega|} \) for all \(\omega \in \Omega \).
Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: \(\Omega; Pr[\omega] \in [0, 1]; \sum_\omega Pr[\omega] = 1. \)
Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: \(\Omega; Pr[\omega] \in [0, 1]; \sum_\omega Pr[\omega] = 1 \).
3. Uniform Probability Space: \(Pr[\omega] = 1/|\Omega| \) for all \(\omega \in \Omega \).
Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: \(\Omega; Pr[\omega] \in [0, 1]; \sum_{\omega} Pr[\omega] = 1 \).
3. Uniform Probability Space: \(Pr[\omega] = 1/|\Omega| \) for all \(\omega \in \Omega \).