Distributions; Independent RVs
Distributions; Independent RVs
1. Review: Expectation
2. Distributions
3. Independent RVs
Review: Expectation
Review: Expectation

\[E[X] := \sum_x x \Pr[X = x] = \sum_\omega X(\omega) \Pr[\omega]. \]
Review: Expectation

- $E[X] := \sum_x x Pr[X = x] = \sum_\omega X(\omega) Pr[\omega]$.

- $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$
Review: Expectation

- \(E[X] := \sum_x xPr[X = x] = \sum_\omega X(\omega)Pr[\omega]. \)

- \(E[g(X, Y)] = \sum_{x,y} g(x, y)Pr[X = x, Y = y] \)
 \[= \sum_\omega g(X(\omega), Y(\omega))Pr[\omega] \]
Review: Expectation

\(E[X] := \sum_x xPr[X = x] = \sum_\omega X(\omega)Pr[\omega]. \)

\(E[g(X, Y)] = \sum_{x,y} g(x, y)Pr[X = x, Y = y] \)
\(= \sum_\omega g(X(\omega), Y(\omega))Pr[\omega] \)

\(E[aX + bY + c] = aE[X] + bE[Y] + c. \)
Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is uniformly distributed in $\{1, 2, \ldots, 6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, \ldots, n\}$ if

$$\Pr[X = m] = \frac{1}{n}$$

for $m = 1, 2, \ldots, n$. In that case,

$$E[X] = \frac{n}{2} \sum_{m=1}^{n} \frac{m}{n} = \frac{1}{n} \sum_{m=1}^{n} m = \frac{n+1}{2}.$$
Roll a six-sided balanced die. Let X be the number of pips (dots).
Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$.
Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is *uniformly distributed* in $\{1, 2, \ldots, 6\}$.
Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is uniformly distributed in $\{1, 2, \ldots, 6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, \ldots, n\}$ if $Pr[X = m] = 1/n$ for $m = 1, 2, \ldots, n$.

\[E[X] = \sum_{m=1}^{n} m \cdot \frac{1}{n} = \frac{n}{2} + \frac{1}{2} \]
Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is uniformly distributed in $\{1, 2, \ldots, 6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, \ldots, n\}$ if $Pr[X = m] = 1/n$ for $m = 1, 2, \ldots, n$.

In that case,

$$E[X] = \sum_{m=1}^{n} m Pr[X = m]$$
Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is uniformly distributed in $\{1, 2, \ldots, 6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, \ldots, n\}$ if $Pr[X = m] = 1/n$ for $m = 1, 2, \ldots, n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n}$$
Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values \{1, 2, \ldots, 6\}. We say that X is uniformly distributed in \{1, 2, \ldots, 6\}.

More generally, we say that X is uniformly distributed in \{1, 2, \ldots, n\} if $Pr[X = m] = 1/n$ for $m = 1, 2, \ldots, n$.

In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$
Geometric Distribution

Let's flip a coin with $\Pr[\text{H}] = p$ until we get H. For instance:

$\omega_1 = \text{H}$, or $\omega_2 = \text{T H}$, or $\omega_3 = \text{T T H}$, or $\omega_n = \text{T T T T \cdots T H}$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also, $\Pr[X = n] = (1 - p)^{n-1}p$, $n \geq 1$.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.
Geometric Distribution
Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

- $\omega_1 = H$, or
- $\omega_2 = TH$, or
- $\omega_3 = TTTH$, or
- $\omega_n = TTTT \ldots T H$.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T H$, or
$\omega_3 = T T H$, or
Geometric Distribution

Let's flip a coin with $Pr[H] = p$ until we get H.

For instance:

- $\omega_1 = H$, or
- $\omega_2 = T \ H$, or
- $\omega_3 = T \ T \ H$, or
- $\omega_n = T \ T \ T \ T \ \cdots \ T \ H$.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

- $\omega_1 = H$, or
- $\omega_2 = T \ H$, or
- $\omega_3 = T \ T \ H$, or
- $\omega_n = T \ T \ T \ T \ \cdots \ T \ H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.
Geometric Distribution

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \).

For instance:

\[\omega_1 = H, \text{ or} \]
\[\omega_2 = T \ H, \text{ or} \]
\[\omega_3 = T \ T \ H, \text{ or} \]
\[\omega_n = T \ T \ T \ T \ \cdots \ T \ H. \]

Note that \(\Omega = \{ \omega_n, n = 1, 2, \ldots \} \).

Let \(X \) be the number of flips until the first \(H \). Then, \(X(\omega_n) = \)
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$$\omega_1 = H, \text{ or}$$
$$\omega_2 = T \ H, \text{ or}$$
$$\omega_3 = T \ T \ H, \text{ or}$$
$$\omega_n = T \ T \ T \ T \ \cdots \ T \ H.$$

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n.$
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T\ H$, or
$\omega_3 = T\ T\ H$, or
$\omega_n = T\ T\ T\ T\ \cdots\ T\ H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also,

$$Pr[X = n] =$$
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T\ H$, or
$\omega_3 = T\ T\ H$, or
$\omega_n = T\ T\ T\ T\ \cdots\ T\ H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also,

$Pr[X = n] = (1 - p)^{n-1}p, \ n \geq 1.$
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]
Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1} p, n \geq 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] =$$
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p =
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1}
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \; n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n. \]

Now, if \(|a| < 1 \), then \(S := \sum_{n=0}^{\infty} a^n = \)
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n. \]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \).
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \). Indeed,

\[
S = 1 + a + a^2 + a^3 + \cdots
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n. \]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \). Indeed,

\[
\begin{align*}
S & = 1 + a + a^2 + a^3 + \cdots \\
\begin{array}{c}
aS \\
\end{array} & = a + a^2 + a^3 + a^4 + \cdots
\end{align*}
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n. \]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \). Indeed,

\[
\begin{align*}
S &= 1 + a + a^2 + a^3 + \cdots \\
aS &= a + a^2 + a^3 + a^4 + \cdots \\
(1-a)S &= 1 + a - a + a^2 - a^2 + \cdots = 1.
\end{align*}
\]
Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1}p, n \geq 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1}p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^{n}.$$

Now, if $|a| < 1$, then $S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}$. Indeed,

$$S = 1 + a + a^2 + a^3 + \cdots$$
$$aS = a + a^2 + a^3 + a^4 + \cdots$$
$$(1 - a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.$$

Hence,

$$\sum_{n=1}^{\infty} Pr[X_n] =$$
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X_n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a} \). Indeed,

\[
S = 1 + a + a^2 + a^3 + \cdots
\]
\[
aS = a + a^2 + a^3 + a^4 + \cdots
\]
\[
(1 - a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.
\]

Hence,

\[
\sum_{n=1}^{\infty} Pr[X_n] = p \frac{1}{1 - (1 - p)} = \frac{1}{1 - (1 - p)}.
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\begin{align*}
\sum_{n=1}^{\infty} Pr[X_n] &= \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\end{align*}
\]

Now, if \(|a| < 1\), then \(S := \sum_{n=0}^{\infty} a^n = \frac{1}{1-a}\). Indeed,

\[
\begin{align*}
S &= 1 + a + a^2 + a^3 + \cdots \\
aS &= a + a^2 + a^3 + a^4 + \cdots \\
(1 - a)S &= 1 + a - a + a^2 - a^2 + \cdots = 1.
\end{align*}
\]

Hence,

\[
\begin{align*}
\sum_{n=1}^{\infty} Pr[X_n] &= p \frac{1}{1 - (1 - p)} = 1.
\end{align*}
\]
Geometric Distribution: Expectation

\[X =_{D} G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \]
Geometric Distribution: Expectation

\[X =_{D} G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} n Pr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]
Geometric Distribution: Expectation

\(X \overset{d}{=} G(p), \) i.e., \(Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \)

One has

\[
E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2 p + 4(1 - p)^3 p + \cdots
\]
Geometric Distribution: Expectation

\[X \overset{D}{=} G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]

Thus,

\[E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \]

\[(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots \]
Geometric Distribution: Expectation

\[X \sim_d G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \]

One has

\[
E[X] = \sum_{n=1}^{\infty} n Pr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots
\]

\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots
\]

\[
pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots
\]
Geometric Distribution: Expectation

\[X = \mathcal{D} \ G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, \ n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]

Thus,

\[E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \]
\[(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots \]
\[pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots \]

by subtracting the previous two identities
Geometric Distribution: Expectation

\(X \stackrel{D}{=} G(p) \), i.e., \(\Pr[X = n] = (1 - p)^{n-1}p, \ n \geq 1. \)

One has

\[
E[X] = \sum_{n=1}^{\infty} n\Pr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
\begin{align*}
E[X] &= p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \\
(1 - p)E[X] &= (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots \\
pE[X] &= p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots
\end{align*}
\]

by subtracting the previous two identities

\[
= \sum_{n=1}^{\infty} \Pr[X = n] =
\]
Geometric Distribution: Expectation

\[X = D G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \]

One has

\[
E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots
\]

\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots
\]

\[
pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots
\]

by subtracting the previous two identities

\[
= \sum_{n=1}^{\infty} Pr[X = n] = 1.
\]
Geometric Distribution: Expectation

\[X =_{D} G(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p. \]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^{2}p + 4(1 - p)^{3}p + \cdots \\
(1 - p)E[X] = (1 - p)p + 2(1 - p)^{2}p + 3(1 - p)^{3}p + \cdots \\
pE[X] = p + (1 - p)p + (1 - p)^{2}p + (1 - p)^{3}p + \cdots \\
\text{by subtracting the previous two identities}
\]

\[= \sum_{n=1}^{\infty} Pr[X = n] = 1. \]

Hence,

\[E[X] = \frac{1}{p}. \]
Experiment: Get coupons at random from \(n \) until collect all \(n \) coupons.
Experiment: Get coupons at random from n until collect all n coupons.
Outcomes: \{123145..., 56765...\}
Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: X - length of outcome.
Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: X - length of outcome.
Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: X - length of outcome.

Before: $Pr[X \geq n\ln 2n] \leq \frac{1}{2}$.
Experiment: Get coupons at random from \(n \) until collect all \(n \) coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: \(X \) - length of outcome.

Before: \(Pr[X \geq n \ln 2n] \leq \frac{1}{2} \).

Today: \(E[X] \)?
Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: X - length of outcome.

Before: $Pr[X \geq n\ln2n] \leq \frac{1}{2}$.

Today: $E[X]$?
Time to collect coupons

\(X\)-time to get \(n\) coupons.
Time to collect coupons

\(X\) - time to get \(n\) coupons.

\(X_1\) - time to get first coupon.
Time to collect coupons

\(X \)-time to get \(n \) coupons.

\(X_1 \) - time to get first coupon. Note: \(X_1 = 1 \).
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.
Time to collect coupons

X-time to get n coupons.
X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.
X_2 - time to get second coupon after getting first.
$Pr[\text{“get second coupon”|“got milk”}]$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr["get second coupon"|"got first coupon"] = \frac{n-1}{n}$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$?
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric
Time to collect coupons

\(X \) - time to get \(n \) coupons.

\(X_1 \) - time to get first coupon. Note: \(X_1 = 1. \ E(X_1) = 1. \)

\(X_2 \) - time to get second coupon after getting first.

\[Pr[\text{“get second coupon”|“got milk first coupon”}] = \frac{n-1}{n} \]

\(E[X_2]? \) Geometric!
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”}|\text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric!!
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!!
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[“get second coupon”|“got milk first coupon”] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} =$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”}|\text{“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}}$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{"get second coupon"|\text{"got first coupon"}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\Rightarrow E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

$Pr[\text{“getting ith coupon|“got $i-1$st coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$
Time to collect coupons

\(X\) - time to get \(n\) coupons.

\(X_1\) - time to get first coupon. Note: \(X_1 = 1\). \(E(X_1) = 1\).

\(X_2\) - time to get second coupon after getting first.

\(Pr[\text{“get second coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}\)

\(E[X_2]\) ? Geometric ! ! ! \(\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}\).

\(Pr[\text{“getting } i\text{th coupon”} | \text{“got } i-1\text{rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}\)

\(E[X_i]\)
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1. \ E(X_1) = 1.$

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”}|\text{“got milk first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}.$

$Pr[\text{“getting i^{th} coupon”}|\text{“got $i-1^{rst}$ coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p}$
Time to collect coupons

X-time to get n coupons.
X1 - time to get first coupon. Note: X1 = 1. E(X1) = 1.
X2 - time to get second coupon after getting first.
Pr[“get second coupon”|“got first coupon”] = \(\frac{n-1}{n} \)
E[X2]? Geometric ! ! ! \(\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}. \)
Pr[“getting ith coupon|“got i – 1rst coupons”] = \(\frac{n-(i-1)}{n} = \frac{n-i+1}{n} \)
E[Xi] = \(\frac{1}{p} = \frac{n}{n-i+1}, \)
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr[\text{“getting ith coupon|“got $i-1$rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}.$

$Pr[\text{“getting ith coupon”} | \text{“got $i-1$st coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$$E[X] = E[X_1] + \cdots + E[X_n] =$$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr["get second coupon"|"got first coupon"] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr["getting i^{th} coupon"|"got (i-1)rst coupons"] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}$
Time to collect coupons

\(X\)-time to get \(n\) coupons.

\(X_1\) - time to get first coupon. Note: \(X_1 = 1\). \(E(X_1) = 1\).

\(X_2\) - time to get second coupon after getting first.

\(Pr[\text{“get second coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}\)

\(E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}\).

\(Pr[\text{“getting } i\text{th coupon”} | \text{“got } i-1\text{rst coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}\)

\(E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.\)

\[E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1} = n(1 + \frac{1}{2} + \cdots + \frac{1}{n}) =: nH(n)\]
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second coupon after getting first.

$Pr[\text{“get second coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr[\text{“getting ith coupon”} | \text{“got $(i-1)$st coupons”}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$$
E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}
$$

$$
= n(1 + \frac{1}{2} + \cdots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma)
$$
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} \, dx = \ln(n). \]
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]
Review: Harmonic sum

\[H(n) = 1 \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_{1}^{n} \frac{1}{x} \, dx = \ln(n). \]

A good approximation is

\[H(n) \approx \ln(n) + \gamma \text{ where } \gamma \approx 0.58 \text{ (Euler-Mascheroni constant)}. \]
Harmonic sum: Paradox

Consider this stack of cards (no glue!):
Harmonic sum: Paradox

Consider this stack of cards (no glue!):
Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table.
Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table. As n increases, you can go as far as you want!
Paradox

par·a·dox
/ˈperəˌdoks/

noun

a statement or proposition that, despite sound (or apparently sound) reasoning from acceptable premises, leads to a conclusion that seems senseless, logically unacceptable, or self-contradictory.
"a potentially serious conflict between quantum mechanics and the general theory of relativity known as the information paradox"

- a seemingly absurd or self-contradictory statement or proposition that when investigated or explained may prove to be well founded or true.
"in a paradox, he has discovered that stepping back from his job has increased the rewards he gleans from it"

synonyms: contradiction, contradiction in terms, self-contradiction, inconsistency, incongruity; More

- a situation, person, or thing that combines contradictory features or qualities.
"the mingling of deciduous trees with elements of desert flora forms a fascinating ecological paradox"
Stacking

Induction shows that the center of gravity after n cards is $H(n)$ away from the right-most edge.

$nx = 1 - x \
\Rightarrow x = 1/(n+1)$
The cards have width 2.
The cards have width 2. Induction shows that the center of gravity after n cards is $H(n)$ away from the right-most edge.
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$\Pr[X > n] = \Pr[\text{first } n \text{ flips are T}] = (1 - p)^n.$$

Theorem

$$\Pr[X > n + m | X > n] = \Pr[X > m], \quad m, n \geq 0.$$

Proof:

$$\Pr[X > n + m | X > n] = \Pr[X > n + m, X > n] = \Pr[X > n + m] \Pr[X > n] = (1 - p)^{n+m} = (1 - p)^m = \Pr[X > m].$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{ first } n \text{ flips are } T] = (1-p)^n.$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{ first } n \text{ flips are } T] = (1 - p)^n.$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{ first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$
Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m|X > n] = Pr[X > m], \ m, n \geq 0.$$

Proof:

$$Pr[X > n + m|X > n] =$$
Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$
Geometric Distribution: Memoryless

Let X be $G(\rho)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - \rho)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n}$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n} = (1 - p)^m$$
Geometric Distribution: Memoryless

Let X be $G(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m|X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m|X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n} = (1 - p)^m$$

$$= Pr[X > m].$$
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0. \]
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0. \]
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0. \]

\[Pr[X > n + m | X > n] = Pr[A|B] = Pr[A] = Pr[X > m]. \]
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m | X > n] = Pr[X > m], \quad m, n \geq 0. \]

The coin is memoryless, therefore, so is \(X \).
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]
Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]

If $X = G(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$.
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]

If $X = G(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i.$$
Theorem: For a r.v. \(X\) that takes the values \(\{0, 1, 2, \ldots\}\), one has

\[
E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i].
\]

[See later for a proof.]

If \(X = G(p)\), then \(\Pr[X \geq i] = \Pr[X > i - 1] = (1 - p)^{i-1}\).

Hence,

\[
E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i = \frac{1}{1 - (1 - p)} =
\]
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]

If $X = G(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$.

Hence,

$$E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i = \frac{1}{1 - (1 - p)} = \frac{1}{p}.$$
Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots \}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{Pr[X \geq i] - Pr[X \geq i+1]\}. $$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{Pr[X \geq i] - Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - i \times Pr[X \geq i + 1]\}$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots \}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{Pr[X \geq i] - Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - i \times Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - (i - 1) \times Pr[X \geq i]\}$$
Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i \{Pr[X \geq i] - Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - i \times Pr[X \geq i + 1]\}$$

$$= \sum_{i=1}^{\infty} \{i \times Pr[X \geq i] - (i - 1) \times Pr[X \geq i]\}$$

$$= \sum_{i=1}^{\infty} Pr[X \geq i].$$
Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots \}$, one has

$$E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i].$$

Probability mass at i, counted i times.

\[\ldots \quad \text{Same as } \sum_{i=1}^{\infty} i \times \Pr[X = i]. \]
Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \frac{\lambda}{n} \).
Random Variable: \(X \) - number of heads.
Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \frac{\lambda}{n} \).
Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \frac{\lambda}{n}) \).
Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$. Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”
Poisson Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \lambda / n \).

Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \lambda / n) \).

Poisson Distribution is distribution of \(X \) “for large \(n \).”
Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$.
Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.
Poisson Distribution is distribution of X “for large n.”
Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$. Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$. **Poisson Distribution** is distribution of X “for large n.” We expect $X \ll n$.
Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda/n$.
Random Variable: X - number of heads. Thus, $X = B(n, \lambda/n)$.

Poisson Distribution is distribution of X “for large n.”
We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \left(\frac{n}{m}\right) p^m (1 - p)^{n-m},$$
where $p = \lambda/n = n\left(n - 1\right) \cdots \left(n - m + 1\right) / m!$$
$$\approx \left(\frac{1}{2}\right) \lambda^m m! \left(1 - \lambda n\right)^{n-m} \approx \left(\frac{1}{2}\right) \lambda^m m! e^{-\lambda}.$$
Poisson

Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \lambda / n \).
Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \lambda / n) \).
Poisson Distribution is distribution of \(X \) “for large \(n \).”
We expect \(X \ll n \). For \(m \ll n \) one has

\[
Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p =
\]

Poisson

Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \lambda / n \).
Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \lambda / n) \).

Poisson Distribution is distribution of \(X \) “for large \(n \).”
We expect \(X \ll n \). For \(m \ll n \) one has

\[
Pr[X = m] = \binom{n}{m}p^m(1-p)^{n-m}, \text{ with } p = \lambda / n
\]
Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$. Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$. **Poisson Distribution** is distribution of X “for large n.” We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda / n$$

$$= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1 - \frac{\lambda}{n}\right)^{n-m}$$
Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”

We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda / n$$

$$= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}$$

$$= \frac{n(n-1) \cdots (n-m+1) \lambda^m}{n^m} \frac{1}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m}$$
Poisson

Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”

We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda / n$$

$$= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n}\right)^m \left(1 - \frac{\lambda}{n}\right)^{n-m}$$

$$= \frac{n(n-1) \cdots (n-m+1) \lambda^m}{n^m} \frac{1}{m!} \left(1 - \frac{\lambda}{n}\right)^{n-m}$$

$$\approx (1) \frac{1}{m!} \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n}\right)^{n-m}$$

$$\approx (2) \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n}\right)^{n-m}$$
Poisson

Experiment: flip a coin \(n\) times. The coin is such that \(Pr[H] = \lambda/n\). Random Variable: \(X\) - number of heads. Thus, \(X = B(n, \lambda/n)\).

Poisson Distribution is distribution of \(X\) “for large \(n\).”

We expect \(X \ll n\). For \(m \ll n\) one has

\[
Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda/n
\]

\[
= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
= \frac{n(n-1) \cdots (n-m+1) \lambda^m}{n^m m!} \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
\approx (1) \quad \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m} \quad \approx (2) \quad \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^n
\]
Poisson

Experiment: flip a coin \(n \) times. The coin is such that \(Pr[H] = \lambda / n \).

Random Variable: \(X \) - number of heads. Thus, \(X = B(n, \lambda / n) \).

Poisson Distribution is distribution of \(X \) “for large \(n \).”

We expect \(X \ll n \). For \(m \ll n \) one has

\[
Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda / n
\]

\[
= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
= \frac{n(n-1) \cdots (n-m+1) \lambda^m}{n^m} \frac{1}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m}
\]

\[
\approx (1) \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m} \approx (2) \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.
\]
Experiment: flip a coin n times. The coin is such that $\Pr[H] = \lambda / n$.

Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”

We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda / n$$

$$= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}$$

$$= \frac{n(n-1) \cdots (n-m+1) \lambda^m}{n^m} \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m}$$

$$\approx (1) \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m} \approx (2) \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$

For (1) we used $m \ll n$;
Experiment: flip a coin n times. The coin is such that $Pr[H] = \lambda / n$. Random Variable: X - number of heads. Thus, $X = B(n, \lambda / n)$.

Poisson Distribution is distribution of X “for large n.”
We expect $X \ll n$. For $m \ll n$ one has

$$Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, \text{ with } p = \lambda / n$$

$$= \frac{n(n-1) \cdots (n-m+1)}{m!} \left(\frac{\lambda}{n} \right)^m \left(1 - \frac{\lambda}{n} \right)^{n-m}$$

$$= \frac{n(n-1) \cdots (n-m+1)}{n^m} \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m}$$

$$\approx (1) \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^{n-m} \approx (2) \frac{\lambda^m}{m!} \left(1 - \frac{\lambda}{n} \right)^n \approx \frac{\lambda^m}{m!} e^{-\lambda}.$$
Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$
Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda}$$
Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}.$$
Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!}$$
Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \Leftrightarrow Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$
Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff \Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

$$= e^{-\lambda} \lambda e^\lambda$$
Poisson Distribution: Definition and Mean

Definition Poisson Distribution with parameter $\lambda > 0$

$$X = P(\lambda) \iff Pr[X = m] = \frac{\lambda^m}{m!} e^{-\lambda}, m \geq 0.$$

Fact: $E[X] = \lambda$.

Proof:

$$E[X] = \sum_{m=1}^{\infty} m \times \frac{\lambda^m}{m!} e^{-\lambda} = e^{-\lambda} \sum_{m=1}^{\infty} \frac{\lambda^m}{(m-1)!}$$

$$= e^{-\lambda} \sum_{m=0}^{\infty} \frac{\lambda^{m+1}}{m!} = e^{-\lambda} \lambda \sum_{m=0}^{\infty} \frac{\lambda^m}{m!}$$

$$= e^{-\lambda} \lambda e^{\lambda} = \lambda.$$
Simeon Poisson

The Poisson distribution is named after:
Simeon Poisson

The Poisson distribution is named after:
The geometric distribution is named after:
Equal Time: B. Geometric

The geometric distribution is named after:

B. Geometric (b. 300 BC)
The geometric distribution is named after:

Prof. Walrand could not find a picture of D. Binomial,
The geometric distribution is named after:

Prof. Walrand could not find a picture of D. Binomial, sorry.
Review: Distributions
Review: Distributions

- $U[1, \ldots, n]$:

 - $\Pr\{X = m\} = \frac{1}{n}, m = 1, \ldots, n$;
 - $E[X] = \frac{n+1}{2}$;

- $B(n, p)$:
 - $\Pr\{X = m\} = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, \ldots, n$;
 - $E[X] = np$;

- $G(p)$:
 - $\Pr\{X = n\} = (1-p)^{n-1} p, n = 1, 2, \ldots$;
 - $E[X] = \frac{1}{p}$;

- $P(\lambda)$:
 - $\Pr\{X = n\} = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0$;
 - $E[X] = \lambda$.

Review: Distributions

- $U[1, \ldots, n]: \Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n;$

$E[X] = \frac{n+1}{2};$

$B(n, p): \Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, 1, \ldots, n;$

$E[X] = np;$

$G(p): \Pr[X = n] = (1-p)^{n-1} p, n = 1, 2, \ldots;$

$E[X] = \frac{1}{p};$

$P(\lambda): \Pr[X = n] = \lambda^n \frac{1}{n!} e^{-\lambda}, n \geq 0;$

$E[X] = \frac{1}{\lambda}.$
Review: Distributions

- $U[1, \ldots, n]$: $Pr[X = m] = \frac{1}{n}$, $m = 1, \ldots, n$;

 $E[X] =$

Review: Distributions

- $U[1, \ldots, n] : \Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;

 $E[X] = \frac{n+1}{2}$;
Review: Distributions

- $U[1, \ldots, n]: Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;

 $E[X] = \frac{n+1}{2}$;

- $B(n, p)$:
Review: Distributions

- **$U[1, \ldots, n]$**: $\Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;

 $E[X] = \frac{n+1}{2}$;

- **$B(n, p)$**: $\Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}$,
Review: Distributions

- $U[1, \ldots, n]: Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;

 $E[X] = \frac{n+1}{2}$;

- $B(n, p): Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;
Review: Distributions

- **U[1, ..., n]**: \(Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n; \)
 \(E[X] = \frac{n+1}{2}; \)

- **B(n, p)**: \(Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n; \)
 \(E[X] = \)
Review: Distributions

- **$U[1, \ldots, n]$**: $Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;
 $E[X] = \frac{n+1}{2}$;

- **$B(n, p)$**: $Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;
 $E[X] = np$;
Review: Distributions

- $U[1, \ldots, n] : Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;

 $E[X] = \frac{n+1}{2}$;

- $B(n, p) : Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;

 $E[X] = np$;

- $G(p)$:
Review: Distributions

- $U[1, \ldots, n] : Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;

 $E[X] = \frac{n+1}{2}$;

- $B(n, p) : Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;

 $E[X] = np$;

- $G(p) : Pr[X = n] =$
Review: Distributions

- $U[1, \ldots, n]: Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;
 $E[X] = \frac{n+1}{2}$;

- $B(n, p): Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, \ldots, n$;
 $E[X] = np$;

- $G(p): Pr[X = n] = (1-p)^{n-1} p, n = 1, 2, \ldots$;
Review: Distributions

- $U[1, \ldots, n] : Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;

 \[E[X] = \frac{n+1}{2}; \]

- $B(n, p) : Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;

 \[E[X] = np; \]

- $G(p) : Pr[X = n] = (1 - p)^{n-1} p, n = 1, 2, \ldots$;

 \[E[X] = \]
Review: Distributions

- $U[1, \ldots, n]: Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;

 $E[X] = \frac{n+1}{2}$;

- $B(n, p): Pr[X = m] = \binom{n}{m}p^m(1-p)^{n-m}, m = 0, \ldots, n$;

 $E[X] = np$;

- $G(p): Pr[X = n] = (1-p)^{n-1}p, n = 1, 2, \ldots$;

 $E[X] = \frac{1}{p}$;
Review: Distributions

- **U[1, ..., n]**: \(Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n; \)

 \[E[X] = \frac{n+1}{2}; \]

- **B(n, p)**: \(Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n; \)

 \[E[X] = np; \]

- **G(p)**: \(Pr[X = n] = (1 - p)^{n-1} p, n = 1, 2, \ldots; \)

 \[E[X] = \frac{1}{p}; \]

- **P(\lambda)**:
Review: Distributions

- **U[1, ..., n]**: \(Pr[X = m] = \frac{1}{n}, m = 1, ..., n; \)
 \[E[X] = \frac{n+1}{2}; \]

- **B(n, p)**: \(Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, ..., n; \)
 \[E[X] = np; \]

- **G(p)**: \(Pr[X = n] = (1 - p)^{n-1} p, n = 1, 2, ...; \)
 \[E[X] = \frac{1}{p}; \]

- **P(\lambda)**: \(Pr[X = n] = \)
Review: Distributions

- $U[1, \ldots, n] : Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;
 $E[X] = \frac{n+1}{2}$;

- $B(n, p) : Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;
 $E[X] = np$;

- $G(p) : Pr[X = n] = (1 - p)^{n-1} p, n = 1, 2, \ldots$;
 $E[X] = \frac{1}{p}$;

- $P(\lambda) : Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0$;
Review: Distributions

- **U[1,…,n]**: \(\Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n; \)
 \[E[X] = \frac{n+1}{2}; \]

- **B(n,p)**: \(\Pr[X = m] = \binom{n}{m} p^m (1-p)^{n-m}, m = 0, \ldots, n; \)
 \[E[X] = np; \]

- **G(p)**: \(\Pr[X = n] = (1-p)^{n-1} p, n = 1, 2, \ldots; \)
 \[E[X] = \frac{1}{p}; \]

- **P(λ)**: \(\Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0; \)
 \[E[X] = \]
Review: Distributions

- $U[1, \ldots, n]: Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;
 $E[X] = \frac{n+1}{2}$;

- $B(n, p): Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;
 $E[X] = np$;

- $G(p): Pr[X = n] = (1 - p)^{n-1} p, n = 1, 2, \ldots$;
 $E[X] = \frac{1}{p}$;

- $P(\lambda): Pr[X = n] = \frac{\lambda^n}{n!} e^{-\lambda}, n \geq 0$;
 $E[X] = \lambda$.
Independent Random Variables.

Definition: Independence
Definition: Independence

The random variables X and Y are independent if and only if

$$Pr[Y = b | X = a] = Pr[Y = b],$$

for all a and b.
Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

$$Pr[Y = b | X = a] = Pr[Y = b], \text{ for all } a \text{ and } b.$$

Fact:
Definition: Independence

The random variables X and Y are independent if and only if

$$Pr[Y = b | X = a] = Pr[Y = b], \text{ for all } a \text{ and } b.$$

Fact:

X, Y are independent if and only if

$$Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b], \text{ for all } a \text{ and } b.$$
Independent Random Variables.

Definition: Independence

The random variables X and Y are independent if and only if

$$\Pr[Y = b | X = a] = \Pr[Y = b], \text{ for all } a \text{ and } b.$$

Fact:

X, Y are independent if and only if

$$\Pr[X = a, Y = b] = \Pr[X = a] \Pr[Y = b], \text{ for all } a \text{ and } b.$$

Obvious.
Independence: Examples

Example 1
Roll two die. \(X, Y = \) number of pips on the two dice. \(X, Y \) are independent.

Indeed:
\[
\Pr[X = a, Y = b] = \frac{1}{36}, \quad \Pr[X = a] = \Pr[Y = b] = \frac{1}{6}.
\]

Example 2
Roll two die. \(X = \) total number of pips, \(Y = \) number of pips on die 1 minus number on die 2. \(X \) and \(Y \) are not independent.

Indeed:
\[
\Pr[X = 12, Y = 1] = 0 \neq \Pr[X = 12] \Pr[Y = 1] > 0.
\]
Independence: Examples

Example 1
Roll two die. X, Y = number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}$, $Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2
Roll two die. X = total number of pips, Y = number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12] Pr[Y = 1] > 0$.

Example 3
Flip a fair coin five times, X = number of Hs in first three flips, Y = number of Hs in last two flips. X and Y are independent.

Indeed: $Pr[X = a, Y = b] = \left(\frac{3}{2}a\right)\left(\frac{2}{5}b\right)\left(\frac{3}{5}a\right)\left(\frac{2}{5}b\right)\left(\frac{3}{5}a\right) = Pr[X = a] Pr[Y = b] = \frac{1}{6}$.

Independence: Examples

Example 1
Roll two die. $X, Y =$ number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2
Roll two die. $X =$ total number of pips, $Y =$ number of pips on die 1 minus number on die 2. X and Y are
Independence: Examples

Example 1
Roll two dice. $X, Y =$ number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2
Roll two dice. $X =$ total number of pips, $Y =$ number of pips on die 1 minus number on die 2. X and Y are not independent.
Independence: Examples

Example 1
Roll two die. \(X, Y = \) number of pips on the two dice. \(X, Y \) are independent.
Indeed: \(Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6} \).

Example 2
Roll two die. \(X = \) total number of pips, \(Y = \) number of pips on die 1 minus number on die 2. \(X \) and \(Y \) are not independent.
Indeed: \(Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0 \).
Independence: Examples

Example 1
Roll two die. $X, Y =$ number of pips on the two dice. X, Y are independent.

Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}$.

Example 2
Roll two die. $X =$ total number of pips, $Y =$ number of pips on die 1 minus number on die 2. X and Y are not independent.

Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0$.

Example 3
Flip a fair coin five times, $X =$ number of Hs in first three flips, $Y =$ number of Hs in last two flips. X and Y are independent.
Independence: Examples

Example 1
Roll two die. $X, Y =$ number of pips on the two dice. X, Y are independent.
Indeed: $Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}.$

Example 2
Roll two die. $X =$ total number of pips, $Y =$ number of pips on die 1 minus number on die 2. X and Y are not independent.
Indeed: $Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0.$

Example 3
Flip a fair coin five times, $X =$ number of Hs in first three flips, $Y =$ number of Hs in last two flips. X and Y are independent.
Indeed:

$$Pr[X = a, Y = b] = \binom{3}{a} \binom{2}{b} 2^{-5}$$
Independence: Examples

Example 1
Roll two die. \(X, Y = \) number of pips on the two dice. \(X, Y \) are independent.

Indeed: \(Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}. \)

Example 2
Roll two die. \(X = \) total number of pips, \(Y = \) number of pips on die 1 minus number on die 2. \(X \) and \(Y \) are not independent.

Indeed: \(Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0. \)

Example 3
Flip a fair coin five times, \(X = \) number of \(Hs \) in first three flips, \(Y = \) number of \(Hs \) in last two flips. \(X \) and \(Y \) are independent.

Indeed:

\[
Pr[X = a, Y = b] = \binom{3}{a} \binom{2}{b} 2^{-5} = \binom{3}{a} 2^{-3} \times \binom{2}{b} 2^{-2}
\]
Independence: Examples

Example 1
Roll two die. \(X, Y = \) number of pips on the two dice. \(X, Y \) are independent.

Indeed: \[Pr[X = a, Y = b] = \frac{1}{36}, Pr[X = a] = Pr[Y = b] = \frac{1}{6}. \]

Example 2
Roll two die. \(X = \) total number of pips, \(Y = \) number of pips on die 1 minus number on die 2. \(X \) and \(Y \) are not independent.

Indeed: \[Pr[X = 12, Y = 1] = 0 \neq Pr[X = 12]Pr[Y = 1] > 0. \]

Example 3
Flip a fair coin five times, \(X = \) number of \(H \)s in first three flips, \(Y = \) number of \(H \)s in last two flips. \(X \) and \(Y \) are independent.

Indeed:

\[
Pr[X = a, Y = b] = \binom{3}{a} \binom{2}{b} 2^{-5} = \binom{3}{a} 2^{-3} \times \binom{2}{b} 2^{-2} = Pr[X = a]Pr[Y = b].
\]
A useful observation about independence

Theorem

Theorem

Theorem
A useful observation about independence

Theorem

X and Y are independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$$

for all $A, B \subset \mathbb{R}$.

Proof:

If (\Leftarrow): Choose $A = \{a\}$ and $B = \{b\}$. This shows that

$$Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b].$$

Only if (\Rightarrow):

$$Pr[X \in A, Y \in B] = \sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b] = \sum_{a \in A} \sum_{b \in B} Pr[X = a]Pr[Y = b] = \sum_{a \in A} \left(\sum_{b \in B} Pr[Y = b] \right) Pr[X = a] = \sum_{a \in A} Pr[X = a]Pr[Y \in B] = \cdots.$$
A useful observation about independence

Theorem

X and Y are independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A] Pr[Y \in B]$$

for all $A, B \subset \mathbb{R}$.

Proof:

If (\Leftarrow):

Choose $A = \{a\}$ and $B = \{b\}$. This shows that

$$Pr[X = a, Y = b] = Pr[X = a] Pr[Y = b].$$
A useful observation about independence

Theorem

X and Y are independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A] Pr[Y \in B]$$

for all $A, B \subset \mathbb{R}$.

Proof:

If (\Leftarrow): Choose $A = \{a\}$ and $B = \{b\}$.
A useful observation about independence

Theorem

X and Y are independent if and only if

\[
Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B] \text{ for all } A, B \subset \mathbb{R}.
\]

Proof:

If (\Leftarrow): Choose $A = \{a\}$ and $B = \{b\}$.

This shows that $Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$.
A useful observation about independence

Theorem

\(X \) and \(Y \) are independent if and only if

\[\Pr[X \in A, Y \in B] = \Pr[X \in A] \Pr[Y \in B] \text{ for all } A, B \subset \mathbb{R}. \]

Proof:
If (\(\Leftarrow \)): Choose \(A = \{a\} \) and \(B = \{b\} \).
This shows that \(\Pr[X = a, Y = b] = \Pr[X = a] \Pr[Y = b] \).

Only if (\(\Rightarrow \)):
A useful observation about independence

Theorem

X and Y are independent if and only if

\[Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B] \text{ for all } A, B \subset \mathbb{R}. \]

Proof:

If \(\iff \): Choose \(A = \{a\} \) and \(B = \{b\} \).

This shows that \(Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b] \).

Only if \(\implies \):

\[
Pr[X \in A, Y \in B] = \sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b]
\]
A useful observation about independence

Theorem

X and Y are independent if and only if

\[Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B] \text{ for all } A, B \subset \mathbb{R}. \]

Proof:

If (\(\Leftarrow\)): Choose \(A = \{a\}\) and \(B = \{b\}\).

This shows that \(Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]\).

Only if (\(\Rightarrow\)):

\[
Pr[X \in A, Y \in B] = \sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b] = \sum_{a \in A} \sum_{b \in B} Pr[X = a]Pr[Y = b]
\]
A useful observation about independence

Theorem

X and Y are independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$$

for all $A, B \subset \mathbb{R}$.

Proof:

If (\Leftarrow): Choose $A = \{a\}$ and $B = \{b\}$.

This shows that $Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$.

Only if (\Rightarrow):

$$Pr[X \in A, Y \in B] = \sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b] = \sum_{a \in A} \sum_{b \in B} Pr[X = a]Pr[Y = b]$$

$$= \sum_{a \in A} [\sum_{b \in B} Pr[X = a]Pr[Y = b]]$$
A useful observation about independence

Theorem

X and Y are independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B] \text{ for all } A, B \subset \mathbb{R}.$$

Proof:

If (\iff): Choose $A = \{a\}$ and $B = \{b\}$.

This shows that $Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$.

Only if (\Rightarrow):

$$Pr[X \in A, Y \in B] = \sum_{a \in A} \left(\sum_{b \in B} Pr[X = a, Y = b] \right) = \sum_{a \in A} Pr[X = a] \left(\sum_{b \in B} Pr[Y = b] \right) = \sum_{a \in A} Pr[X = a] [\sum_{b \in B} Pr[Y = b]]$$
A useful observation about independence

Theorem

X and Y are independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$$

for all $A, B \subset \mathbb{R}$.

Proof:

If (\iff): Choose $A = \{a\}$ and $B = \{b\}$.

This shows that $Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$.

Only if (\Rightarrow):

$$Pr[X \in A, Y \in B]$$

$$= \sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b]$$

$$= \sum_{a \in A} \sum_{b \in B} Pr[X = a]Pr[Y = b]$$

$$= \sum_{a \in A} \left(\sum_{b \in B} Pr[X = a]Pr[Y = b] \right)$$

$$= \sum_{a \in A} Pr[X = a]Pr[Y \in B]$$
A useful observation about independence

Theorem

X and Y are independent if and only if

$$Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$$

for all $A, B \subset \mathbb{R}$.

Proof:

If (\iff): Choose $A = \{a\}$ and $B = \{b\}$.

This shows that $Pr[X = a, Y = b] = Pr[X = a]Pr[Y = b]$.

Only if (\Rightarrow):

$$Pr[X \in A, Y \in B] = \sum_{a \in A} \sum_{b \in B} Pr[X = a, Y = b] = \sum_{a \in A} \sum_{b \in B} Pr[X = a]Pr[Y = b]$$

$$= \sum_{a \in A} \left[\sum_{b \in B} Pr[X = a]Pr[Y = b] \right] = \sum_{a \in A} Pr[X = a] \left[\sum_{b \in B} Pr[Y = b] \right]$$

$$= \sum_{a \in A} Pr[X = a]Pr[Y \in B] = Pr[X \in A]Pr[Y \in B].$$

\blacksquare
Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

\[f(X) \text{ and } g(Y) \text{ are independent, for all } f(\cdot), g(\cdot). \]
Functions of Independent random Variables

Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

$$f(X) \text{ and } g(Y) \text{ are independent, for all } f(\cdot), g(\cdot).$$

Proof:
Recall the definition of inverse image:
Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

$$f(X) \text{ and } g(Y) \text{ are independent, for all } f(\cdot), g(\cdot).$$

Proof:
Recall the definition of inverse image:

$$h(z) \in C \iff z \in h^{-1}(C) := \{ z \mid h(z) \in C \}. \quad (1)$$
Functions of Independent random Variables

Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

$f(X)$ and $g(Y)$ are independent, for all $f(\cdot), g(\cdot)$.

Proof:
Recall the definition of inverse image:

\[h(z) \in C \iff z \in h^{-1}(C) := \{ z \mid h(z) \in C \}. \] \hfill (1)

Now,

\[
\Pr[f(X) \in A, g(Y) \in B] \\
= \Pr[X \in f^{-1}(A), Y \in g^{-1}(B)], \text{ by (1)}
\]
Functions of Independent random Variables

Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

$$f(X) \text{ and } g(Y) \text{ are independent, for all } f(\cdot), g(\cdot).$$

Proof:
Recall the definition of inverse image:

$$h(z) \in C \iff z \in h^{-1}(C) := \{z \mid h(z) \in C\}. \tag{1}$$

Now,

$$Pr[f(X) \in A, g(Y) \in B]$$
$$= Pr[X \in f^{-1}(A), Y \in g^{-1}(B)], \text{ by (1)}$$
$$= Pr[X \in f^{-1}(A)]Pr[Y \in g^{-1}(B)],$$
Functions of Independent random Variables

Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

$$f(X) \text{ and } g(Y) \text{ are independent, for all } f(\cdot), g(\cdot).$$

Proof:
Recall the definition of inverse image:

$$h(z) \in C \Leftrightarrow z \in h^{-1}(C) := \{z \mid h(z) \in C\}. \quad (1)$$

Now,

$$Pr[f(X) \in A, g(Y) \in B]$$

$$= Pr[X \in f^{-1}(A), Y \in g^{-1}(B)], \text{ by (1)}$$

$$= Pr[X \in f^{-1}(A)]Pr[Y \in g^{-1}(B)], \text{ since } X, Y \text{ ind.}$$

$$= Pr[f(X) \in A]Pr[g(Y) \in B],$$
Functions of Independent random Variables

Theorem Functions of independent RVs are independent
Let X, Y be independent RV. Then

$$f(X)$$ and $$g(Y)$$ are independent, for all $f(\cdot), g(\cdot)$.

Proof:
Recall the definition of inverse image:

$$h(z) \in C \iff z \in h^{-1}(C) := \{z \mid h(z) \in C\}. \quad (1)$$

Now,

$$Pr[f(X) \in A, g(Y) \in B]$$

$$= Pr[X \in f^{-1}(A), Y \in g^{-1}(B)], \text{ by (1)}$$

$$= Pr[X \in f^{-1}(A)]Pr[Y \in g^{-1}(B)], \text{ since } X, Y \text{ ind.}$$

$$= Pr[f(X) \in A]Pr[g(Y) \in B], \text{ by (1)}.$$
Mean of product of independent RV

Theorem
Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$
Mean of product of independent RV

Theorem
Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:
Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$.
Theorem
Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:
Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y)Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y]$$
Mean of product of independent RV

Theorem
Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:
Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xy Pr[X = x, Y = y] = \sum_{x,y} xy Pr[X = x] Pr[Y = y].$$
Theorem
Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:
Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xy Pr[X = x, Y = y] = \sum_{x} xy Pr[X = x] Pr[Y = y], \text{ by ind.}$$

$$= \sum_{x} \left(\sum_{y} xy Pr[X = x] Pr[Y = y] \right)$$
Mean of product of independent RV

Theorem
Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:
Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y)Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}$$

$$= \sum_x [\sum_y xyPr[X = x]Pr[Y = y]] = \sum_x [xPr[X = x](\sum_y yPr[Y = y])].$$
Mean of product of independent RV

Theorem

Let X, Y be independent RVs. Then

$$E[XY] = E[X]E[Y].$$

Proof:

Recall that $E[g(X, Y)] = \sum_{x,y} g(x, y) Pr[X = x, Y = y]$. Hence,

$$E[XY] = \sum_{x,y} xy Pr[X = x, Y = y] = \sum_x xy Pr[X = x] Pr[Y = y], \text{ by ind.}$$

$$= \sum_x \left[\sum_y xy Pr[X = x] Pr[Y = y] \right] = \sum_x \left[x Pr[X = x] \left(\sum_y y Pr[Y = y] \right) \right]$$

$$= \sum_x \left[x Pr[X = x] E[Y] \right]$$
Mean of product of independent RV

Theorem
Let \(X, Y\) be independent RVs. Then

\[
E[XY] = E[X]E[Y].
\]

Proof:
Recall that \(E[g(X, Y)] = \sum_{x,y} g(x, y)Pr[X = x, Y = y]\). Hence,

\[
E[XY] = \sum_{x,y} xyPr[X = x, Y = y] = \sum_{x,y} xyPr[X = x]Pr[Y = y], \text{ by ind.}
\]

\[
= \sum_x \left(\sum_y xyPr[X = x]Pr[Y = y] \right) = \sum_x \left(xPr[X = x] \left(\sum_y yPr[Y = y] \right) \right)
\]

\[
= \sum_x \left(xPr[X = x]E[Y] \right) = E[X]E[Y].
\]

\[\square\]
Examples

Examples

$$E[(X + 2Y + 3Z)^2] = E[X^2 + 4Y^2 + 9Z^2 + 4XY + 12YZ + 6XZ]$$
Examples

$$E[(X + 2Y + 3Z)^2] = E[X^2 + 4Y^2 + 9Z^2 + 4XY + 12YZ + 6XZ]$$
$$= 1 + 4 + 9 + 4 \times 0 + 12 \times 0 + 6 \times 0$$

$$E[(X + 2Y + 3Z)^2] = E[X^2 + 4Y^2 + 9Z^2 + 4XY + 12YZ + 6XZ]$$
$$= 1 + 4 + 9 + 4 \times 0 + 12 \times 0 + 6 \times 0$$
$$= 14.$$
Examples

$$E[(X + 2Y + 3Z)^2] = E[X^2 + 4Y^2 + 9Z^2 + 4XY + 12YZ + 6XZ]$$
$$= 1 + 4 + 9 + 4 \times 0 + 12 \times 0 + 6 \times 0$$
$$= 14.$$

(2) Let X, Y be independent and $U[1, 2, \ldots n]$. Then
Examples

$$E[(X + 2Y + 3Z)^2] = E[X^2 + 4Y^2 + 9Z^2 + 4XY + 12YZ + 6XZ]$$
$$= 1 + 4 + 9 + 4 \times 0 + 12 \times 0 + 6 \times 0$$
$$= 14.$$

(2) Let X, Y be independent and $U[1,2,\ldots,n]$. Then

Examples

Then

$$E[(X + 2Y + 3Z)^2] = E[X^2 + 4Y^2 + 9Z^2 + 4XY + 12YZ + 6XZ]$$

$$= 1 + 4 + 9 + 4 \times 0 + 12 \times 0 + 6 \times 0$$

$$= 14.$$

(2) Let X, Y be independent and $U[1,2,\ldots n]$. Then

$$= \frac{1 + 3n + 2n^2}{3} - \frac{(n+1)^2}{2}.$$
Mutually Independent Random Variables

Definition
Mutually Independent Random Variables

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z],$$

for all x, y, z.
Mutually Independent Random Variables

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z], \text{ for all } x, y, z.$$

Theorem
Mutually Independent Random Variables

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z], \text{ for all } x, y, z.$$

Theorem

The events A, B, C, \ldots are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, \ldots$ are pairwise (resp. mutually) independent.
Mutually Independent Random Variables

Definition

X, Y, Z are mutually independent if

$$ Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z], \text{ for all } x, y, z. $$

Theorem

The events A, B, C, \ldots are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, \ldots$ are pairwise (resp. mutually) independent.

Proof:
Mutually Independent Random Variables

Definition

X, Y, Z are mutually independent if

$$Pr[X = x, Y = y, Z = z] = Pr[X = x]Pr[Y = y]Pr[Z = z], \text{ for all } x, y, z.$$

Theorem

The events A, B, C, \ldots are pairwise (resp. mutually) independent iff the random variables $1_A, 1_B, 1_C, \ldots$ are pairwise (resp. mutually) independent.

Proof:

$$Pr[1_A = 1, 1_B = 1, 1_C = 1] = Pr[A \cap B \cap C], \ldots$$
Functions of pairwise independent RVs

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

$$f(X) \text{ and } g(Y, Z) \text{ are not independent.}$$
If X, Y, Z are pairwise independent, but not mutually independent, it may be that

$$f(X) \text{ and } g(Y, Z) \text{ are not independent.}$$

Example 1: Flip two fair coins, $X = 1\{	ext{coin 1 is H}\}$, $Y = 1\{	ext{coin 2 is H}\}$, $Z = X \oplus Y$.

Functions of pairwise independent RVs

If \(X, Y, Z \) are pairwise independent, but not mutually independent, it may be that

\[
f(X) \text{ and } g(Y, Z) \text{ are not independent.}
\]

Example 1: Flip two fair coins,
\(X = 1\{\text{coin 1 is H}\}, \ Y = 1\{\text{coin 2 is H}\}, \ Z = X \oplus Y. \) Then, \(X, Y, Z \) are pairwise independent.
Functions of pairwise independent RVs

If X, Y, Z are pairwise independent, but not mutually independent, it may be that $f(X)$ and $g(Y, Z)$ are not independent.

Example 1: Flip two fair coins, $X = 1 \{ \text{coin 1 is H} \}$, $Y = 1 \{ \text{coin 2 is H} \}$, $Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$.
If X, Y, Z are pairwise independent, but not mutually independent, it may be that

$$f(X) \text{ and } g(Y, Z) \text{ are not independent.}$$

Example 1: Flip two fair coins, $X = 1\{\text{coin 1 is H}\}, Y = 1\{\text{coin 2 is H}\}, Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$. Then $g(Y, Z) = X$ is not independent of X.
Functions of pairwise independent RVs

If X, Y, Z are pairwise independent, but not mutually independent, it may be that

$$f(X) \text{ and } g(Y, Z) \text{ are not independent.}$$

Example 1: Flip two fair coins,
$X = 1\{\text{coin 1 is } H\}, \ Y = 1\{\text{coin 2 is } H\}, \ Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$. Then $g(Y, Z) = X$ is not independent of X.

Example 2: Let A, B, C be pairwise but not mutually independent in a way that A and $B \cap C$ are not independent.
If X, Y, Z are pairwise independent, but not mutually independent, it may be that

$$f(X) \text{ and } g(Y, Z) \text{ are not independent.}$$

Example 1: Flip two fair coins,
$X = 1\{\text{coin 1 is } H\}, Y = 1\{\text{coin 2 is } H\}, Z = X \oplus Y$. Then, X, Y, Z are pairwise independent. Let $g(Y, Z) = Y \oplus Z$. Then $g(Y, Z) = X$ is not independent of X.

Example 2: Let A, B, C be pairwise but not mutually independent in a way that A and $B \cap C$ are not independent. Let $X = 1_A, Y = 1_B, Z = 1_C$. Choose $f(X) = X, g(Y, Z) = YZ$.
Functions of mutually independent RVs

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:
Let \(\{X_n, n \geq 1\} \) be mutually independent.

Then,

\[
Y_1 := X_1 X_2 (X_3 + X_4)^2,
Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\},
Y_3 := X_9 \cos(X_{10} + X_{11})
\]

are mutually independent.

Proof:
Let \(B_1 := \{ (x_1, x_2, x_3, x_4) | x_1 x_2 (x_3 + x_4)^2 \in A_1 \} \). Similarly for \(B_2, B_2 \).

Then

\[
\Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] = \Pr[(X_1, \ldots, X_4) \in B_1] \Pr[(X_5, \ldots, X_8) \in B_2] \Pr[(X_9, \ldots, X_{11}) \in B_3]
\]
Functions of mutually independent RVs

One has the following result:

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:
Let \(\{X_n, n \geq 1\} \) be mutually independent. Then,
\[
Y_1 := X_1 X_2 (X_3 + X_4)^2,
Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\},
Y_3 := X_9 \cos(X_{10} + X_{11})
\]
are mutually independent.

Proof:
Let \(B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\} \). Similarly for \(B_2, B_3 \).

\[
\Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] = \Pr[(X_1, \ldots, X_4) \in B_1, (X_5, \ldots, X_8) \in B_2, (X_9, \ldots, X_{11}) \in B_3] = \Pr[Y_1 \in A_1] \Pr[Y_2 \in A_2] \Pr[Y_3 \in A_3]
\]
Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let \(\{X_n, n \geq 1\} \) be mutually independent.

Then, \(Y_1 := X_1 X_2 (X_3 + X_4)^2 \), \(Y_2 := \max \{X_5, X_6\} - \min \{X_7, X_8\} \), \(Y_3 := X_9 \cos (X_{10} + X_{11}) \) are mutually independent.

Proof:

Let \(B_1 := \{ (x_1, x_2, x_3, x_4) | x_1 x_2 (x_3 + x_4)^2 \in A_1 \} \). Similarly for \(B_2 \), \(B_3 \).

Then

\[
\Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] = \Pr[(X_1, \ldots, X_4) \in B_1] \Pr[(X_5, \ldots, X_8) \in B_2] \Pr[(X_9, \ldots, X_{11}) \in B_3]
\]
Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let \(\{X_n, n \geq 1\} \) be mutually independent.

Then, \(Y_1 := X_1 X_2 (X_3 + X_4)^2, Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, Y_3 := X_9 \cos(X_{10} + X_{11}) \) are mutually independent.

Proof:

Let \(B_1 := \{ (x_1, x_2, x_3, x_4) | x_1 x_2 (x_3 + x_4)^2 \in A_1 \} \). Similarly for \(B_2, B_3 \).

Then

\[
\Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] = \Pr[(X_1, \ldots, X_4) \in B_1] \Pr[(X_5, \ldots, X_8) \in B_2] \Pr[(X_9, \ldots, X_{11}) \in B_3]
\]
One has the following result:

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:
Let \(\{X_n, n \geq 1\} \) be mutually independent.
Functions of mutually independent RVs

One has the following result:

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:
Let \(\{X_n, n \geq 1\} \) be mutually independent. Then,

\[
Y_1 := X_1 X_2 (X_3 + X_4)^2, \quad Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, \quad Y_3 := X_9 \cos(X_{10} + X_{11})
\]

are mutually independent.
Functions of mutually independent RVs

One has the following result:

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:
Let \(\{X_n, n \geq 1\} \) be mutually independent. Then,

\[
Y_1 := X_1 X_2 (X_3 + X_4)^2, \quad Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, \quad Y_3 := X_9 \cos(X_{10} + X_{11})
\]
are mutually independent.

Proof:
Functions of mutually independent RVs

One has the following result:

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:
Let \(\{X_n, n \geq 1\} \) be mutually independent. Then,

\[
Y_1 := X_1 X_2 (X_3 + X_4)^2, \quad Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, \quad Y_3 := X_9 \cos(X_{10} + X_{11})
\]

are mutually independent.

Proof:
Let \(B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\} \). Similarly for \(B_2, B_2 \).
Functions of mutually independent RVs

One has the following result:

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:
Let \(\{X_n, n \geq 1\} \) be mutually independent. Then,

\[Y_1 := X_1 X_2 (X_3 + X_4)^2, \ Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, \ Y_3 := X_9 \cos(X_{10} + X_{11}) \]
are mutually independent.

Proof:
Let \(B_1 := \{(x_1, x_2, x_3, x_4) | x_1 x_2 (x_3 + x_4)^2 \in A_1\} \). Similarly for \(B_2, B_2 \).
Then

\[Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] \]
Functions of mutually independent RVs

One has the following result:

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:
Let \(\{ X_n, n \geq 1 \} \) be mutually independent. Then,

\[
Y_1 := X_1 X_2 (X_3 + X_4)^2, \quad Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, \quad Y_3 := X_9 \cos(X_{10} + X_{11})
\]

are mutually independent.

Proof:
Let \(B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\} \). Similarly for \(B_2, B_2 \).

Then

\[
Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] = Pr[(X_1, \ldots, X_4) \in B_1, (X_5, \ldots, X_8) \in B_2, (X_9, \ldots, X_{11}) \in B_3]
\]
Functions of mutually independent RVs

One has the following result:

Theorem
Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:
Let \(\{ X_n, n \geq 1 \} \) be mutually independent. Then,

\[
Y_1 := X_1 X_2 (X_3 + X_4)^2, \quad Y_2 := \max \{X_5, X_6\} - \min \{X_7, X_8\}, \quad Y_3 := X_9 \cos(X_{10} + X_{11})
\]
are mutually independent.

Proof:
Let \(B_1 := \{ (x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1 \} \). Similarly for \(B_2, B_2 \).

Then

\[
\Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] = \Pr[(X_1, \ldots, X_4) \in B_1, (X_5, \ldots, X_8) \in B_2, (X_9, \ldots, X_{11}) \in B_3]
\]

\[
= \Pr[(X_1, \ldots, X_4) \in B_1] \Pr[(X_5, \ldots, X_8) \in B_2] \Pr[(X_9, \ldots, X_{11}) \in B_3]
\]
Functions of mutually independent RVs

One has the following result:

Theorem

Functions of disjoint collections of mutually independent random variables are mutually independent.

Example:

Let \(\{X_n, n \geq 1\} \) be mutually independent. Then,

\[
Y_1 := X_1 X_2 (X_3 + X_4)^2, \quad Y_2 := \max\{X_5, X_6\} - \min\{X_7, X_8\}, \quad Y_3 := X_9 \cos(X_{10} + X_{11})
\]

are mutually independent.

Proof:

Let \(B_1 := \{(x_1, x_2, x_3, x_4) \mid x_1 x_2 (x_3 + x_4)^2 \in A_1\} \). Similarly for \(B_2, B_2 \).

Then

\[
\Pr[Y_1 \in A_1, Y_2 \in A_2, Y_3 \in A_3] = \Pr[(X_1, \ldots, X_4) \in B_1, (X_5, \ldots, X_8) \in B_2, (X_9, \ldots, X_{11}) \in B_3] \\
= \Pr[(X_1, \ldots, X_4) \in B_1] \Pr[(X_5, \ldots, X_8) \in B_2] \Pr[(X_9, \ldots, X_{11}) \in B_3] \\
= \Pr[Y_1 \in A_1] \Pr[Y_2 \in A_2] \Pr[Y_3 \in A_3]
\]
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events. For instance, if A, B, C, D, E are mutually independent, then $A \Delta B$, $C \setminus D$, \bar{E} are mutually independent.

Proof:

$1 \ A \Delta B = f(1_A, 1_B)$ where $f(0, 0) = 0$, $f(1, 0) = 1$, $f(0, 1) = 1$, $f(1, 1) = 0$.

$1 \ C \setminus D = g(1_C, 1_D)$ where $g(0, 0) = 0$, $g(1, 0) = 1$, $g(0, 1) = 0$, $g(1, 1) = 0$.

$1 \ \bar{E} = h(1_E)$ where $h(0) = 1$ and $h(1) = 0$.

Hence, $1 \ A \Delta B$, $1 \ C \setminus D$, $1 \ \bar{E}$ are functions of mutually independent RVs. Thus, those RVs are mutually independent.

Consequently, the events of which they are indicators are mutually independent.
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events. For instance, if \(A, B, C, D, E \) are mutually independent, then \(A \Delta B, C \setminus D, \bar{E} \) are mutually independent.

Proof:
1. \(A \Delta B = f(1_A, 1_B) \) where
 \[f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 1, f(1, 1) = 0 \]
2. \(C \setminus D = g(1_C, 1_D) \) where
 \[g(0, 0) = 0, g(1, 0) = 1, g(0, 1) = 0, g(1, 1) = 0 \]
3. \(\bar{E} = h(1_E) \) where
 \[h(0) = 1, h(1) = 0 \]

Hence, \(A \Delta B, C \setminus D, \bar{E} \) are functions of mutually independent RVs. Thus, those RVs are mutually independent. Consequently, the events of which they are indicators are mutually independent.
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.
Operations on Mutually Independent Events

Theorem
Operations on disjoint collections of mutually independent events produce mutually independent events.
For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \bar{E}$ are mutually independent.
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if \(A, B, C, D, E \) are mutually independent, then \(A \triangle B, C \setminus D, \bar{E} \) are mutually independent.

Proof:
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A Δ B, C \setminus D, \overline{E}$ are mutually independent.

Proof:

$$1_{AΔB} = f(1_A, 1_B)$$
where
$$f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 1, f(1, 1) = 0$$
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \bar{E}$ are mutually independent.

Proof:

$1_{A \Delta B} = f(1_A, 1_B)$ where

$f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 1, f(1, 1) = 0$

$1_{C \setminus D} = g(1_C, 1_D)$ where

$g(0, 0) = 0, g(1, 0) = 1, g(0, 1) = 0, g(1, 1) = 0$
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if \(A, B, C, D, E \) are mutually independent, then \(A \Delta B, C \setminus D, \bar{E} \) are mutually independent.

Proof:

\[1_{A \Delta B} = f(1_A, 1_B) \] where
\[f(0,0) = 0, \quad f(1,0) = 1, \quad f(0,1) = 1, \quad f(1,1) = 0 \]

\[1_{C \setminus D} = g(1_C, 1_D) \] where
\[g(0,0) = 0, \quad g(1,0) = 1, \quad g(0,1) = 0, \quad g(1,1) = 0 \]

\[1_{\bar{E}} = h(1_E) \] where
\[h(0) = 1 \text{ and } h(1) = 0. \]
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \bar{E}$ are mutually independent.

Proof:

$1_{A \Delta B} = f(1_A, 1_B)$ where
$f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 1, f(1, 1) = 0$

$1_{C \setminus D} = g(1_C, 1_D)$ where
$g(0, 0) = 0, g(1, 0) = 1, g(0, 1) = 0, g(1, 1) = 0$

$1_{\bar{E}} = h(1_E)$ where
$h(0) = 1$ and $h(1) = 0$.

Hence, $1_{A \Delta B}, 1_{C \setminus D}, 1_{\bar{E}}$ are functions of mutually independent RVs.
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \bar{E}$ are mutually independent.

Proof:

$1_{A \Delta B} = f(1_A, 1_B)$ where
$f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 1, f(1, 1) = 0$

$1_{C \setminus D} = g(1_C, 1_D)$ where
$g(0, 0) = 0, g(1, 0) = 1, g(0, 1) = 0, g(1, 1) = 0$

$1_{\bar{E}} = h(1_E)$ where
$h(0) = 1$ and $h(1) = 0$.

Hence, $1_{A \Delta B}, 1_{C \setminus D}, 1_{\bar{E}}$ are functions of mutually independent RVs. Thus, those RVs are mutually independent.
Operations on Mutually Independent Events

Theorem

Operations on disjoint collections of mutually independent events produce mutually independent events.

For instance, if A, B, C, D, E are mutually independent, then $A \Delta B, C \setminus D, \bar{E}$ are mutually independent.

Proof:

$1_{A \Delta B} = f(1_A, 1_B)$ where
\[
 f(0, 0) = 0, f(1, 0) = 1, f(0, 1) = 1, f(1, 1) = 0
\]

$1_{C \setminus D} = g(1_C, 1_D)$ where
\[
 g(0, 0) = 0, g(1, 0) = 1, g(0, 1) = 0, g(1, 1) = 0
\]

$1_{\bar{E}} = h(1_E)$ where
\[
 h(0) = 1 \quad \text{and} \quad h(1) = 0.
\]

Hence, $1_{A \Delta B}, 1_{C \setminus D}, 1_{\bar{E}}$ are functions of mutually independent RVs. Thus, those RVs are mutually independent. Consequently, the events of which they are indicators are mutually independent.
Product of mutually independent RVs

Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n] = E[X_1]E[X_2]\cdots E[X_n].$$

Proof:

Assume that the result is true for n. (It is true for $n=2$.) Then, with $Y = X_1\cdots X_n$, one has

$$E[X_1\cdots X_nX_{n+1}] = E[XY_{n+1}],$$

because Y, X_{n+1} are independent. =

$$= E[X_1]\cdots E[X_n]E[X_{n+1}].$$
Product of mutually independent RVs

Theorem
Let X_1, \ldots, X_n be mutually independent RVs.
Product of mutually independent RVs

Theorem
Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1 X_2 \cdots X_n] = E[X_1]E[X_2] \cdots E[X_n].$$
Product of mutually independent RVs

Theorem
Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1 X_2 \cdots X_n] = E[X_1] E[X_2] \cdots E[X_n].$$

Proof:
Product of mutually independent RVs

Theorem
Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2 \cdots X_n] = E[X_1]E[X_2] \cdots E[X_n].$$

Proof:
Assume that the result is true for n.
Product of mutually independent RVs

Theorem
Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2\cdots X_n] = E[X_1]E[X_2]\cdots E[X_n].$$

Proof:
Assume that the result is true for n. (It is true for $n = 2$.)
Theorem
Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1 X_2 \cdots X_n] = E[X_1] E[X_2] \cdots E[X_n].$$

Proof:
Assume that the result is true for n. (It is true for $n = 2$.) Then, with $Y = X_1 \cdots X_n$, one has
Theorem

Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1X_2 \cdots X_n] = E[X_1]E[X_2] \cdots E[X_n].$$

Proof:

Assume that the result is true for n. (It is true for $n = 2$.) Then, with $Y = X_1 \cdots X_n$, one has

$$E[X_1 \cdots X_nX_{n+1}] = E[YX_{n+1}],$$
Theorem
Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1 X_2 \cdots X_n] = E[X_1] E[X_2] \cdots E[X_n].$$

Proof:
Assume that the result is true for n. (It is true for $n = 2$.) Then, with $Y = X_1 \cdots X_n$, one has

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$

$$= E[Y] E[X_{n+1}],$$
Product of mutually independent RVs

Theorem
Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1 X_2 \cdots X_n] = E[X_1]E[X_2] \cdots E[X_n].$$

Proof:
Assume that the result is true for n. (It is true for $n = 2$.)
Then, with $Y = X_1 \cdots X_n$, one has

$$E[X_1 \cdots X_n X_{n+1}] = E[YX_{n+1}],$$
$$= E[Y]E[X_{n+1}],$$
because Y, X_{n+1} are independent.
Product of mutually independent RVs

Theorem
Let X_1, \ldots, X_n be mutually independent RVs. Then,

$$E[X_1 X_2 \cdots X_n] = E[X_1]E[X_2] \cdots E[X_n].$$

Proof:
Assume that the result is true for n. (It is true for $n = 2$.)
Then, with $Y = X_1 \cdots X_n$, one has

$$E[X_1 \cdots X_n X_{n+1}] = E[Y X_{n+1}],$$

$$= E[Y]E[X_{n+1}],$$

because Y, X_{n+1} are independent

$$= E[X_1] \cdots E[X_n]E[X_{n+1}].$$
Summary.

Distributions; Independence
Summary.

Distributions; Independence

Distributions:

▶ \(G(p)\) : \(E[X] = \frac{1}{p}\);

▶ \(B(n, p)\) : \(E[X] = np\);

▶ \(P(\lambda)\) : \(E[X] = \lambda\)

Independence:

▶ \(X, Y\) independent \(\iff\) \(\Pr[X \in A, Y \in B] = \Pr[X \in A] \cdot \Pr[Y \in B]\)

▶ Then, \(f(X), g(Y)\) are independent and \(E[XY] = E[X] \cdot E[Y]\)

▶ Mutual independence
Summary.

Distributions; Independence

Distributions:

- $G(p) : E[X] = 1/p;$

Independence:

- X, Y independent $\iff \Pr[X \in A, Y \in B] = \Pr[X \in A] \Pr[Y \in B]$
Summary.

Distributions; Independence

Distributions:

- $G(p) : E[X] = 1/p$;
- $B(n, p) : E[X] = np$;
Summary.

Distributions; Independence

Distributions:

- \(G(p) : \mathbb{E}[X] = 1/p \);
- \(B(n, p) : \mathbb{E}[X] = np \);
- \(P(\lambda) : \mathbb{E}[X] = \lambda \)

Independence:

\[\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \cdot \mathbb{P}(Y \in B) \]

Then, \(f(X), g(Y) \) are independent and \(\mathbb{E}[XY] = \mathbb{E}[X] \cdot \mathbb{E}[Y] \)

Mutual independence ...
Summary.

Distributions; Independence

Distributions:

- \(G(p) : E[X] = 1/p; \)
- \(B(n, p) : E[X] = np; \)
- \(P(\lambda) : E[X] = \lambda \)

Independence:

- \(X, Y \) independent \(\iff \Pr[X \in A, Y \in B] = \Pr[X \in A] \Pr[Y \in B] \)
- Then, \(f(X), g(Y) \) are independent and \(E[XY] = E[X]E[Y] \)
- Mutual independence
Summary.

Distributions:
- $G(p): E[X] = 1/p$;
- $B(n, p): E[X] = np$;
- $P(\lambda): E[X] = \lambda$.

Independence:
- X, Y independent $\iff Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$.
Summary.

Distributions:

- $G(p) : E[X] = 1/p$;
- $B(n, p) : E[X] = np$;
- $P(\lambda) : E[X] = \lambda$

Independence:

- X, Y independent $\iff Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$
- Then, $f(X), g(Y)$ are independent
Summary.

Distributions; Independence

Distributions:

- $G(p) : E[X] = 1/p$;
- $B(n, p) : E[X] = np$;
- $P(\lambda) : E[X] = \lambda$

Independence:

- X, Y independent $\iff Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$
- Then, $f(X), g(Y)$ are independent
 and $E[XY] = E[X]E[Y]$
Summary.

Distributions; Independence

Distributions:

- $G(p) : E[X] = 1/p$;
- $B(n, p) : E[X] = np$;
- $P(\lambda) : E[X] = \lambda$

Independence:

- X, Y independent $\iff Pr[X \in A, Y \in B] = Pr[X \in A]Pr[Y \in B]$
- Then, $f(X), g(Y)$ are independent
 and $E[XY] = E[X]E[Y]$
- Mutual independence