Today.

Couple of more induction proofs.
Stable Marriage.
Strengthening: need to...

Theorem: For all \(n \geq 1 \), \(\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 \). (\(S_n = \sum_{i=1}^{n} \frac{1}{i^2} \).)

Base: \(P(1) \). \(1 \leq 2 \).

Ind Step: \(\sum_{i=1}^{k+1} \frac{1}{i^2} \leq 2 \).

\[
\sum_{i=1}^{k+1} \frac{1}{i^2} = \sum_{i=1}^{k} \frac{1}{i^2} + \frac{1}{(k+1)^2}.
\]

\[
\leq 2 + \frac{1}{(k+1)^2}
\]

Uh oh?

Hmmm... It better be that any sum is *strictly less than* 2.

How much less? At least by \(\frac{1}{(k+1)^2} \) for \(S_k \).

“\(S_k \leq 2 - \frac{1}{(k+1)^2} \)” \(\implies \) “\(S_{k+1} \leq 2 \)”

Induction step works! No! Not the same statement!!!!

Need to prove “\(S_{k+1} \leq 2 - \frac{1}{(k+2)^2} \).

Darn!!!
Strengthening: how?

Theorem: For all \(n \geq 1 \), \(\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - f(n) \). (\(S_n = \sum_{i=1}^{n} \frac{1}{i^2} \).)

Proof:

Ind hyp: \(P(k) \) — “\(S_k \leq 2 - f(k) \)”

Prove: \(P(k + 1) \) — “\(S_{k+1} \leq 2 - f(k + 1) \)”

\[
S(k + 1) = S_k + \frac{1}{(k+1)^2}
\]

\[
\leq 2 - f(k) + \frac{1}{(k+1)^2} \quad \text{By ind. hyp.}
\]

Choose \(f(k + 1) \leq f(k) - \frac{1}{(k+1)^2} \).

\[
\Rightarrow S(k + 1) \leq 2 - f(k + 1).
\]

Can you?

- Subtracting off a quadratically decreasing function every time.
- Maybe a linearly decreasing function to keep positive?

Try \(f(k) = \frac{1}{k} \)

\[
\frac{1}{k+1} \leq \frac{1}{k} - \frac{1}{(k+1)^2} \quad ?
\]

\[
1 \leq \frac{k+1}{k} - \frac{1}{k+1} \quad \text{Multiplied by } k + 1.
\]

\[
1 \leq 1 + \left(\frac{1}{k} - \frac{1}{k+1} \right) \quad \text{Some math. So yes!}
\]

Theorem: For all \(n \geq 1 \), \(\sum_{i=1}^{n} \frac{1}{i^2} \leq 2 - \frac{1}{n} \).
Stable Marriage Problem

- Small town with n boys and n girls.
- Each girl has a ranked preference list of boys.
- Each boy has a ranked preference list of girls.

How should they be matched?
Count the ways..

- Maximize total satisfaction.
- Maximize number of first choices.
- Maximize worse off.
- Minimize difference between preference ranks.
The best laid plans..

Consider the couples..

- Jennifer and Brad
- Angelina and Billy-Bob

Brad prefers Angelina to Jennifer.
Angelina prefers Brad to BillyBob.
Uh..oh.
Produce a pairing where there is no running off!

Definition: A **pairing** is a disjoint set of n boy-girl pairs.

Example: A pairing $S = \{(Brad, Jen); (BillyBob, Angelina)\}$.

Definition: A rogue couple b, g^* for a pairing S: b and g^* prefer each other to their partners in S.

Example: Brad and Angelina are a rogue couple in S.
A stable pairing??

Given a set of preferences.
Is there a stable pairing?
How does one find it?

Consider a single gender version: stable roommates.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>A</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>A</td>
<td>B</td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- A is connected to B and D
- B is connected to A and C
- C is connected to A and D
- D is connected to A and C
The Traditional Marriage Algorithm.

Each Day:

1. Each boy **proposes** to his favorite girl on his list.
2. Each girl rejects all but her favorite proposer (whom she puts on a **string**.)
3. Rejected boy **crosses** rejecting girl off his list.

Stop when each girl gets exactly one proposal.
Does this terminate?

...produce a pairing?

....a stable pairing?

Do boys or girls do “better”?

Example.

<table>
<thead>
<tr>
<th></th>
<th>Boys</th>
<th></th>
<th>Girls</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>C</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>X</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
<td>X</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>X</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 2</th>
<th>Day 3</th>
<th>Day 4</th>
<th>Day 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A, B</td>
<td>A</td>
<td>X, C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>B, C</td>
<td>B</td>
<td>A, B</td>
<td>A</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
</tr>
</tbody>
</table>
Termination.

Every non-terminated day a boy crossed an item off the list. Total size of lists? \(n \) boys, \(n \) length list. \(n^2 \) Terminates in at most \(n^2 + 1 \) steps!
It gets better every day for girls..

Improvement Lemma: It just gets better for girls.
If on day t a girl, g, has a boy b on a string, any boy, b', on g's string for any day $t' > t$ is at least as good as b.

Proof:
$P(k)$ - “boy on g’s string is at least as good as b on day $t + k$”

$P(0)$ - true. Girl has b on string.

Assume $P(k)$. Let b' be boy on string on day $t + k$.

On day $t + k + 1$, boy b' comes back.

Girl can choose b', or do better with another boy, b''

That is, $b \leq b'$ by induction hypothesis.

And b'' is better than b' by algorithm.

$P(k) \implies P(k + 1)$. And by principle of induction.
Lemma: Every boy is matched at end.

Proof: If not, a boy b must have been rejected n times.

Every girl has been proposed to by b, and Improvement lemma

\implies each girl has a boy on a string.

and each boy on at most one string.

n girls and n boys. Same number of each.

$\implies b$ must be on some girl’s string!

Contradiction.
Pairing is Stable.

Lemma: There is no rogue couple for the pairing formed by traditional marriage algorithm.

Proof:
Assume there is a rogue couple; \((b, g^*)\)

\[
\begin{align*}
&b^* \overset{\text{likes}}{\longrightarrow} g^* \quad \text{\(b\) likes \(g^*\) more than \(g\).} \\
&b \overset{\text{likes}}{\longrightarrow} g \quad \text{\(g^*\) likes \(b\) more than \(b^*\).}
\end{align*}
\]

Boy \(b\) proposes to \(g^*\) before proposing to \(g\).
So \(g^*\) rejected \(b\) (since he moved on)
By improvement lemma, \(g^*\) likes \(b^*\) better than \(b\).
Contradiction!
Good for boys? girls?

Is the TMA better for boys? for girls?

Definition: A pairing is x-optimal if x’s partner is its best partner in any stable pairing.

Definition: A pairing is x-pessimal if x’s partner is its worst partner in any stable pairing.

Definition: A pairing is boy optimal if it is x-optimal for all boys x.

.. and so on for boy pessimal, girl optimal, girl pessimal.

Claim: The optimal partner for a boy must be first in his preference list.

True? False? False!

Subtlety here: Best partner in any stable pairing.

As well as you can in a globally stable solution!

Question: Is there a boy or girl optimal pairing?

Is it possible:

b-optimal pairing different from the b'-optimal pairing!

Yes? No?
TMA is optimal!

For boys? For girls?

Theorem: TMA produces a boy-optimal pairing.

Proof:
Assume not: there are boys who do not get their optimal girl.

Let t be first day a boy b gets rejected by his optimal girl g who he is paired with in stable pairing S.

$b^* -$ knocks b off of g's string on day t \implies g prefers b^* to b

By choice of t, b^* prefers g to optimal girl.

$\implies b^*$ prefers g to his partner g^* in S.

Rogue couple for S. So S is not a stable pairing. Contradiction.

Notes: S - stable. $(b^*, g^*) \in S$. But (b^*, g) is rogue couple!

Used Well-Ordering principle...Induction.
How about for girls?

Theorem: TMA produces girl-pessimal pairing.

T – pairing produced by TMA.

S – worse stable pairing for girl *g*.

In *T*,

\[(g, b)\]

is pair.

In *S*,

\[(g, b^*)\]

is pair.

g likes *b*\(^*\) less than she likes *b*.

T is boy optimal, so *b* likes *g* more than his partner in *S*.

\[(g, b)\]

is Rogue couple for *S*

S is not stable.

Contradiction.

Notes: Not really induction.

Structural statement: Boy optimality \(\implies\) Girl pessimality.
Quick Questions.

How does one make it better for girls?

- SMA - stable marriage algorithm. One side proposes.
- TMA - boys propose.
- Girls could propose. \implies optimal for girls.
The method was used to match residents to hospitals.

Hospital optimal...

..until 1990’s...Resident optimal.

Variations: couples,
Don’t go!

Summary.