CS70: Lecture 8. Outline.

1. Finish Up Extended Euclid.
2. Cryptography
3. Public Key Cryptography
4. RSA system
 4.1 Efficiency: Repeated Squaring.
 4.2 Correctness: Fermat’s Theorem.
 4.3 Construction.
5. Warnings.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)
else
 (d, a, b) := ext-gcd(y, mod(x,y))
 return (d, b, a − floor(x/y) * b)

Recursively: d = ay + bx − ⌊x/y⌋y
Returns (d, b, (a − ⌊x/y⌋b))

Extended GCD Algorithm.

ext-gcd(x,y)
if y = 0 then return(x, 1, 0)
else
 (d, a, b) := ext-gcd(y, mod(x,y))
 return (d, b, a − floor(x/y) * b)

Theorem: Returns (d,a,b), where d = gcd(a,b) and
 d = ax + by.

Wrap-up

Conclusion: Can find multiplicative inverses in O(n) time!
Very different from elementary school: try 1, try 2, try 3...

Inverse of 500,000,357 modulo 1,000,000,000,000? ≤ 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.
512 divisions vs.
(100)

Correctness.

Proof: Strong Induction.1
Base: ext-gcd(x, 0) returns (d = x, 1, 0) with x = (1)x + (0)y.
Induction Step: Returns (d, a, b) with d = Ax + By
Ind hyp: ext-gcd(y, mod(x,y)) returns (d, a, b) with
 d = ay + bx + mod(x,y)
 ext-gcd(x,y) calls ext-gcd(y, mod(x,y)) so
 d = ay + bx + (a − ⌊x/y⌋b)y
 And ext-gcd returns (d, b, (a − ⌊x/y⌋b)) so theorem holds!

1Assume d is gcd(x,y) by previous proof.

Xor

Computer Science:
1 - True
0 - False
1 ∨ 1 = 1
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0
A ⊕ B - Exclusive or.
1 ⊕ 1 = 0
1 ⊕ 0 = 1
0 ⊕ 1 = 1
0 ⊕ 0 = 0
Note: Also modular addition modulo 2!
(0,1) is set. Take remainder for 2.
Property: A ⊕ B ⊕ B = A.
By cases: 1 ⊕ 1 ⊕ 1 = 1, ...
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!
RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let N = pq.
Choose e relatively prime to (p − 1)(q − 1).
Compute d = e−1 mod (p − 1)(q − 1).
Announce N(= p * q) and e: K = (N, e) is my public key!

Encoding: mod (x^e, N).
Decoding: mod (y^d, N).
Does D(E(m)) = m^d = m mod N?
Yes!

Typically small, say e = 3.

Encryption/Decryption Techniques.

Public Key: (77, 7)
Message Choices: {0, ..., 76}.
Message: 2!
E(2) = 2^e = 2^7 ≡ 128 (mod 77) = 51 (mod 77)
D(51) = 51^d (mod 77)
uh oh!
Obvious way: 43 multiplications. Ouch.
In general, O(N) multiplications!

Repeated squaring.

Notice: 43 = 32 + 8 + 2 + 1. 51^43 = 51^{32} + 51^8 + 51^2 + 51^1 (mod 77)
4 multiplications sort of...
Need to compute 51^{32}...51^1, ?
51^1 = 51 (mod 77)
51^2 = (51^1) + (51^1) = 60 + 60 = 120 = 60 (mod 77)
51^3 = (51^2) + (51^2) = 60 + 60 = 360 = 58 (mod 77)
51^4 = (51^3) + (51^3) = 58 + 58 = 366 = 53 (mod 77)
51^5 = (51^4) + (51^4) = 35 + 35 = 280 = 37 (mod 77)
51^6 = (51^5) + (51^5) = 37 + 37 = 136 = 60 (mod 77)
5 more multiplications.
51^{12} = 1, 51^8 = (60) * (53) + (60) * (51) = 2 (mod 77).
Decoding got the message back!
Repeated Squaring took 9 multiplications versus 43.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus $y!!$

1. x^1: Compute $x, x^2, x^4, \ldots, x^{2\log y}$.
2. Multiply together x^i where the $(\log i)$th bit of y (in binary) is 1.
Example: $43 = 101011_2$ in binary.
$x^{43} = x^{32} \cdot x^8 \cdot x^2 \cdot x^1$.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:
$O(n)$ multiplications. $O(n^2)$ time per multiplication.
$\implies O(n^3)$ time.
Conclusion: $x^y \mod N$ takes $O(n^3)$ time.

RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers.
$O(n^3)$ time.
Remember RSA encoding/decoding!
$E(m,(N,e)) = m^e \mod N$.
$D(m,(N,d)) = m^d \mod N$.
For 512 bits, a few hundred million operations.
Easy, please.

Always decode correctly?

$E(m,(N,e)) = m^e \mod N$.
$D(m,(N,d)) = m^d \mod N$.
$N = pq$ and $d = e^{-1} \mod (p-1)(q-1)$.
Want: $(m^e)^d = m \mod N$.
Another view:
$d = p^{-1} \mod (p-1)(q-1) \iff ed = k(p-1)(q-1) + 1$.
Consider...
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \mod p$,
$a^{p-1} \equiv 1 \mod p$.
Proof: Consider $S = \{a, \ldots, a \cdot (p-1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.
$\therefore (a \cdot 1 \cdot (p-1)) = 1 \cdot (p-1) \mod p$.
Since multiplication is commutative.
$a^{p-1} \cdot (1 \cdot (p-1)) = (1 \cdot (p-1)) \mod p$.
Each of $2, \ldots, (p-1)$ has an inverse modulo p, solve to get...

Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \mod p$,
$a^{p-1} = 1 \mod p$.

Lemma 1: For any prime p and any a, b,
$a^k \equiv a \mod p$.

Lemma 2: For any two different primes p, q and any $x, k,
\begin{align*}
&x^{k(p-1)(q-1)} = x \mod pq
\end{align*}$

Let $a = x$, $b = k(p-1)$ and apply Lemma 1 with modulus q.

$x^{k(p-1)(q-1)} = x \mod q$.

Let $a = x$, $b = k(q-1)$ and apply Lemma 1 with modulus p.

$x^{k(p-1)(q-1)} = x \mod p$.

$x^{k(p-1)(q-1)} - x = 0 \mod pq \iff x^{k(p-1)(q-1)} = x \mod pq$.

...Decoding correctness...

Lemma 1: For any prime p and any a, b,
$a^k \equiv a \mod p$.

Lemma 2: For any two different primes p, q and any $x, k,$
$x^{k(p-1)(q-1)} = x \mod pq$.

Let $a = x$, $b = k(p-1)$ and apply Lemma 1 with modulus q.

$x^{k(p-1)(q-1)} = x \mod q$.

Let $a = x$, $b = k(q-1)$ and apply Lemma 1 with modulus p.

$x^{k(p-1)(q-1)} = x \mod p$.

$x^{k(p-1)(q-1)} - x = 0 \mod pq \iff x^{k(p-1)(q-1)} = x \mod pq$.

\Box
Lemma 2: For any two different primes \(p, q \) and any \(x, k \),
\[
x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}
\]

Theorem: RSA correctly decodes!
Recall
\[
D(E(x)) = (x^e)^d = x \pmod{pq},
\]
where \(ed \equiv 1 \pmod{(p-1)(q-1)} \),
\[
x^d = x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}.
\]

RSA

Public Key Cryptography:

\[
D(E(m, K), k) = (m^e)^d \mod N = m.
\]

Signature scheme:

\[
E(D(C, k), K) = (C^d)^e = C \pmod{N}.
\]

Security of RSA.

Security?
1. Alice knows \(p \) and \(q \).
2. Bob only knows, \(N(=pq) \), and \(e \). Does not know, for example, \(d \) or factorization of \(N \).
3. I don't know how to break this scheme without factoring \(N \).

No one I know or have heard of admits to knowing how to factor \(N \). Breaking in general sense \(\Rightarrow \) factoring algorithm.

Construction of keys.

1. Find large (100 digit) primes \(p, q \).

 Prime Number Theorem: \(\pi(N) \) number of primes less than \(N \).

 \[
 \pi(N) \geq N/\ln N.
 \]

 Choosing randomly gives approximately \(1/(\ln N) \) chance of number being a prime. (How do you tell if it is prime? ...)

 \[
 cs170...Miller-Rabin test. Primes in \(P \).
 \]

 For 1024 bit number, 1 in 710 is prime.

2. Choose \(e \) with \(\gcd(e, (p-1)(q-1)) = 1 \).

 Use gcd algorithm to test.

3. Find inverse \(d \) of \(e \) modulo \((p-1)(q-1) \).

 Use extended gcd algorithm.

 All steps are polynomial in \(O(\log N) \), the number of bits.

Signatures using RSA.

\[
[C, S_v(C)]
\]

Amazon

Browser. \(K_v \)

Certificate Authority: Verisign, GoDaddy, DigNotar,...

Verisign's key: \(K_v = (N, e) \) and \(k_v = d (N = pq) \).

Browser "knows" Verisign's public key: \(K_v \).

Amazon Certificate: \(C = "I am Amazon. My public Key is K_A" \).

Verisign signature of \(C \): \(S_v(C) \).

\[
D(C, k_v) = C^{k_v} \pmod{N}.
\]

Browser receives: \([C, v] \).

Checks \(E(v, K_v) = C \).

\[
E(S_v(C), K_v) = (S_v(C))^e = (C^{k_v})^e = C^{k_v} \pmod{N}.
\]

Valid signature of Amazon certificate \(C \).

Security: Eve can't forge unless she "breaks" RSA scheme.

Much more to it....

If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;

For example, several rounds of challenge/response.

One trick:

Bob encodes credit card number, \(c \), concatenated with random \(k \)-bit number \(r \).

Never sends just \(c \).

Again, more work to do to get entire system.

CS161...
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.
2001...Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ...
and only them?

Summary.

Public-Key Encryption.
RSA Scheme:
\[N = pq \text{ and } d = e^{-1} \pmod{(p - 1)(q - 1)}. \]
\[E(x) = x^e \pmod{N}. \]
\[D(y) = y^d \pmod{N}. \]
Repeated Squaring \(\implies\) efficiency.
Fermat’s Theorem \(\implies\) correctness.
Good for Encryption and Signature Schemes.