1. Finish Up Extended Euclid.
2. Cryptography
3. Public Key Cryptography
4. RSA system
 4.1 Efficiency: Repeated Squaring.
 4.2 Correctness: Fermat’s Theorem.
 4.3 Construction.
5. Warnings.
Extended GCD Algorithm.

\[
\text{ext-gcd}(x, y) \\
\quad \text{if } y = 0 \text{ then return}(x, 1, 0) \\
\quad \text{else} \\
\quad \quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x,y)) \\
\quad \quad \text{return } (d, b, a - \text{floor}(x/y) * b)
\]
Extended GCD Algorithm.

ext-gcd(x, y)

if y = 0 then return(x, 1, 0)
else
 (d, a, b) := ext-gcd(y, mod(x, y))
return (d, b, a - floor(x/y) * b)

Theorem: Returns (d, a, b), where \(d = \gcd(a, b) \) and

\[d = ax + by. \]
Correctness.

Proof: Strong Induction.\(^1\)

\(^1\)Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: \(\text{ext-gcd}(x, 0)\) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

\(^1\)Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: \text{ext-gcd}(x, 0) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: \text{ext-gcd}(y, \mod(x, y)) returns \((d, a, b)\) with
\[
d = ay + b(\mod(x, y))
\]

\(^1\)Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.¹
Base: ext-gcd(x, 0) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)
Ind hyp: \textbf{ext-gcd}(y, \text{ mod (x, y)}) returns \((d, a, b)\) with
\[d = ay + b(\text{ mod (x, y)})\]

\textbf{ext-gcd}(x, y) calls \textbf{ext-gcd}(y, \text{ mod (x, y)}) so

¹Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: `ext-gcd(x, 0)` returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: `ext-gcd(y, \ mod(x, y))` returns \((d, a, b)\) with

\[
d = ay + b(\ mod(x, y))
\]

`ext-gcd(x, y)` calls `ext-gcd(y, \ mod(x, y))` so

\[
d = ay + b(\ mod(x, y))
\]

\(^1\) Assume \(d\) is `gcd(x, y)` by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: \(\text{ext-gcd}(x, 0)\) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: \(\text{ext-gcd}(y, \mod(x, y))\) returns \((d, a, b)\) with

\[d = ay + b(\mod(x, y))\]

\(\text{ext-gcd}(x, y)\) calls \(\text{ext-gcd}(y, \mod(x, y))\) so

\[
\begin{align*}
 d &= ay + b \cdot (\mod(x, y)) \\
 &= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)
\end{align*}
\]

\(^1\) Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.¹

Base: ext-gcd\((x, 0)\) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: ext-gcd\((y, \mod{(x, y)}\)) returns \((d, a, b)\) with
\[d = ay + b(\mod{(x, y)})\]

ext-gcd\((x, y)\) calls ext-gcd\((y, \mod{(x, y)}\)) so
\[
d = ay + b \cdot (\mod{(x, y)})
\]
\[
= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y)
\]
\[
= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y
\]

¹Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.\(^1\)

Base: \(\text{ext-gcd}(x, 0)\) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: \(\text{ext-gcd}(y, \mod(x, y))\) returns \((d, a, b)\) with
\[
d = ay + b(\mod(x, y))
\]

\(\text{ext-gcd}(x, y)\) calls \(\text{ext-gcd}(y, \mod(x, y))\) so
\[
d = ay + b \cdot (\mod(x, y))
\]
\[
= ay + b \cdot (x - \left\lfloor \frac{x}{y} \right\rfloor y)
\]
\[
= bx + (a - \left\lfloor \frac{x}{y} \right\rfloor \cdot b)y
\]

And \(\text{ext-gcd}\) returns \((d, b, (a - \left\lfloor \frac{x}{y} \right\rfloor \cdot b))\) so theorem holds!

\(^1\)Assume \(d\) is \(gcd(x, y)\) by previous proof.
Correctness.

Proof: Strong Induction.¹

Base: ext-gcd(x, 0) returns \((d = x, 1, 0)\) with \(x = (1)x + (0)y\).

Induction Step: Returns \((d, A, B)\) with \(d = Ax + By\)

Ind hyp: ext-gcd\((y, \mod (x, y))\) returns \((d, a, b)\) with
\[d = ay + b(\mod (x, y)) \]

ext-gcd\((x, y)\) calls ext-gcd\((y, \mod (x, y))\) so
\[
\begin{align*}
d &= ay + b \cdot (\mod (x, y)) \\
&= ay + b \cdot (x - \lfloor \frac{x}{y} \rfloor y) \\
&= bx + (a - \lfloor \frac{x}{y} \rfloor \cdot b)y
\end{align*}
\]

And ext-gcd returns \((d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))\) so theorem holds!

¹Assume \(d\) is \(gcd(x, y)\) by previous proof.

```plaintext
ext-gcd(x, y)
    if y = 0 then return(x, 1, 0)
    else
        (d, a, b) := ext-gcd(y, mod(x, y))
        return (d, b, a - floor(x/y) * b)
```

Recursively:
\[d = ay + b(x - \lfloor x/y \rfloor \cdot y) = \Rightarrow d = bx - (a - \lfloor x/y \rfloor b)y \]

Returns \((d, b, (a - \lfloor x/y \rfloor b))\).

Iterative Algorithm?
A bit easier.
Later.

\[
\text{return } \text{gcd}(x, y) \\
\begin{align*}
 \text{if } y & = 0 \text{ then return } (x, 1, 0) \\
 \text{else} & \\
 & (d, a, b) := \text{gcd}(y, \text{mod}(x, y)) \\
 \text{return } (d, b, a - \text{floor}(x/y) \times b)
\end{align*}
\]

Recursively: \(d = ay + b(x - \left\lfloor \frac{x}{y} \right\rfloor \cdot y) \)
ext-gcd(x, y)
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x, y))
 return (d, b, a - floor(x/y) * b)

Recursively: \(d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y \)

\[
\text{ext-gcd}(x, y) \\
\begin{align*}
\quad & \text{if } y = 0 \text{ then return } (x, 1, 0) \\
\quad & \text{else} \\
\quad & \quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x, y)) \\
\quad & \quad \text{return } (d, b, a - \text{floor}(x/y) \times b)
\end{align*}
\]

Recursively: \(d = ay + b(x - \left\lfloor \frac{x}{y} \right\rfloor \cdot y) \implies d = bx - (a - \left\lfloor \frac{x}{y} \right\rfloor b)y \)

Returns \((d, b, (a - \left\lfloor \frac{x}{y} \right\rfloor \cdot b)) \).
ext-gcd(x, y)
 if y = 0 then return(x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x, y))
 return (d, b, a - floor(x/y) * b)

Recursively: \(d = ay + b(x - \left\lfloor \frac{x}{y} \right\rfloor \cdot y) \implies d = bx - (a - \left\lfloor \frac{x}{y} \right\rfloor b)y \)

Returns \((d, b, (a - \left\lfloor \frac{x}{y} \right\rfloor \cdot b))\).

Iterative Algorithm?
ext-gcd(x, y)
 if y = 0 then return (x, 1, 0)
 else
 (d, a, b) := ext-gcd(y, mod(x, y))
 return (d, b, a - floor(x/y) * b)

Recursively: \(d = ay + b(x - \lfloor \frac{x}{y} \rfloor \cdot y) \implies d = bx - (a - \lfloor \frac{x}{y} \rfloor b)y \)

Returns \((d, b, (a - \lfloor \frac{x}{y} \rfloor \cdot b))\).

Iterative Algorithm? A bit easier.

\[\text{ext-gcd}(x, y) \]
\[
\text{if } y = 0 \text{ then return } (x, 1, 0) \\
\text{else} \\
\quad (d, a, b) := \text{ext-gcd}(y, \text{mod}(x, y)) \\
\quad \text{return } (d, b, a - \text{floor}(x/y) \times b)
\]

Recursively: \(d = ay + b(x - \left\lfloor \frac{x}{y} \right\rfloor \cdot y) \implies d = bx - (a - \left\lfloor \frac{x}{y} \right\rfloor b)y \)

Returns \((d, b, (a - \left\lfloor \frac{x}{y} \right\rfloor \cdot b))\).

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n/2}$
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n/2}$
Inverse of 500,000,357 modulo 1,000,000,000,000,000?
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!

Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000,000?

≤ 80 divisions.
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...
$2^{n/2}$
Inverse of 500,000,357 modulo 1,000,000,000,000?
≤ 80 divisions.
versus 1,000,000
Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000,000?
≤ 80 divisions.
versus 1,000,000
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of $500,000,357$ modulo $1,000,000,000,000,000$?
≤ 80 divisions.
versus 1,000,000

Internet Security.
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!
Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000,000?
≤ 80 divisions.
versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.
Wrap-up

Conclusion: Can find multiplicative inverses in $O(n)$ time!

Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of $500,000,357$ modulo $1,000,000,000,000,000$?

≤ 80 divisions.

versus $1,000,000$

Internet Security.

Public Key Cryptography: 512 digits.

512 divisions vs.
Conclusion: Can find multiplicative inverses in $O(n)$ time!

Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?

≤ 80 divisions.

versus 1,000,000

Internet Security.

Public Key Cryptography: 512 digits.

512 divisions vs.

$(100)^5$ divisions.
Conclusion: Can find multiplicative inverses in $O(n)$ time!

Very different from elementary school: try 1, try 2, try 3...

$2^{n/2}$

Inverse of 500,000,357 modulo 1,000,000,000,000?

≤ 80 divisions.

versus 1,000,000

Internet Security.
Public Key Cryptography: 512 digits.

512 divisions vs.

$(1000)^5$ divisions.
Xor

Computer Science:
Xor

Computer Science:
1 - True
0 - False
Xor

Computer Science:
 1 - True
 0 - False

1 ∨ 1 = 1
Xor

Computer Science:
 1 - True
 0 - False

\[
1 \lor 1 = 1 \\
1 \lor 0 = 1 \\
0 \lor 1 = 1 \\
0 \lor 0 = 0
\]

Note: Also modular addition modulo 2!
\{0, 1\} is set. Take remainder for 2.

Property:
\[
A \oplus B \oplus B = A.
\]

By cases:
\[
1 \oplus 1 \oplus 1 = 1.
\]
Computer Science:
1 - True
0 - False

\[1 \lor 1 = 1 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

\(A \oplus B \) - Exclusive or.
Xor

Computer Science:
 1 - True
 0 - False

\[1 \lor 1 = 1 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

\[A \oplus B \text{ - Exclusive or.} \]
\[1 \lor 1 = 0 \]
Xor

Computer Science:
 1 - True
 0 - False

1 ∨ 1 = 1
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

A ⊕ B - Exclusive or.
1 ∨ 1 = 0
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

Note: Also modular addition modulo 2!
\{0, 1\} is set. Take remainder for 2.

Property:
A ⊕ B ⊕ B = A.
Computer Science:
1 - True
0 - False

\[1 \lor 1 = 1 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

\[A \oplus B \] - Exclusive or.
\[1 \lor 1 = 0 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

Note: Also modular addition modulo 2!
Xor

Computer Science:
 1 - True
 0 - False

\[
\begin{align*}
1 \lor 1 &= 1 \\
1 \lor 0 &= 1 \\
0 \lor 1 &= 1 \\
0 \lor 0 &= 0
\end{align*}
\]

\[
A \oplus B - \text{Exclusive or.}
\]

\[
\begin{align*}
1 \lor 1 &= 0 \\
1 \lor 0 &= 1 \\
0 \lor 1 &= 1 \\
0 \lor 0 &= 0
\end{align*}
\]

Note: Also modular addition modulo 2!
 \(\{0, 1\} \) is set. Take remainder for 2.
Xor

Computer Science:
 1 - True
 0 - False

\[1 \lor 1 = 1 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

\[A \oplus B \] - Exclusive or.
\[1 \lor 1 = 0 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

Note: Also modular addition modulo 2!
 \{0, 1\} is set. Take remainder for 2.
Xor

Computer Science:
 1 - True
 0 - False

\[1 \lor 1 = 1 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

\[A \oplus B \] - Exclusive or.

\[1 \lor 1 = 0 \]
\[1 \lor 0 = 1 \]
\[0 \lor 1 = 1 \]
\[0 \lor 0 = 0 \]

Note: Also modular addition modulo 2!
\[\{0, 1\} \text{ is set. Take remainder for 2.} \]

Property: \[A \oplus B \oplus B = A. \]
Xor

Computer Science:
 1 - True
 0 - False

1 ∨ 1 = 1
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

A ⊕ B - Exclusive or.
1 ∨ 1 = 0
1 ∨ 0 = 1
0 ∨ 1 = 1
0 ∨ 0 = 0

Note: Also modular addition modulo 2!
 \{0, 1\} is set. Take remainder for 2.

Property: A ⊕ B ⊕ B = A.
By cases: 1 ⊕ 1 ⊕ 1 = 1.
Computer Science:
 1 - True
 0 - False

\[
\begin{align*}
1 \lor 1 &= 1 \\
1 \lor 0 &= 1 \\
0 \lor 1 &= 1 \\
0 \lor 0 &= 0 \\
\end{align*}
\]

\[A \oplus B\] - Exclusive or.

\[
\begin{align*}
1 \lor 1 &= 0 \\
1 \lor 0 &= 1 \\
0 \lor 1 &= 1 \\
0 \lor 0 &= 0 \\
\end{align*}
\]

Note: Also modular addition modulo 2!
\[\{0, 1\}\] is set. Take remainder for 2.

Property: \[A \oplus B \oplus B = A.\]

By cases: \[1 \oplus 1 \oplus 1 = 1. \ldots\]
Cryptography ...

Example:

One-time Pad: secret s is string of length $|m|$.
$E(m,s)$ – bitwise $m \oplus s$.
$D(x,s)$ – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m$!

...and totally secure!

...given $E(m,s)$ any message m is equally likely.

Disadvantages:

Shared secret!
Uses up one time pad.. or less and less secure.
Cryptography ...

Example:

One-time Pad: secret s is a string of length $|m|$. $E(m, s)$ – bitwise $m \oplus s$. $D(x, s)$ – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m$!

...and totally secure!

...given $E(m, s)$ any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one-time pad or less and less secure.
Cryptography ...

Example:

One-time Pad: secret s is a string of length $|m|$. $E(m,s)$ – bitwise $m \oplus s$. $D(x,s)$ – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m$!

...and totally secure!

...given $E(m,s)$ any message m is equally likely.

Disadvantages:

- Shared secret!
- Uses up one time pad or less and less secure.
Cryptography ...

Example:

One-time Pad: secret s is string of length $|m|$. $E(m, s)$ – bitwise $m \oplus s$. $D(x, s)$ – bitwise $x \oplus s$. Works because $m \oplus s \oplus s = m$!

...and totally secure!

Disadvantages:

Shared secret!

Uses up one time pad, or less and less secure.
Cryptography ...

Alice \xrightarrow{E(m,s)} E(m,s) \xleftarrow{D(E(m,s),s)} Bob

Secret s

Eve

Message m

Example: One-time Pad: secret s is string of length \(|m|\).

\(E(m,s)\) – bitwise \(m \oplus s\).

\(D(x,s)\) – bitwise \(x \oplus s\).

Works because \(m \oplus s \oplus s = m\)!

...and totally secure!

...given \(E(m,s)\) any message \(m\) is equally likely.

Disadvantages:

- Shared secret!
- Uses up one time pad..
- or less and less secure.
Cryptography ...

\[m = D(E(m, s), s) \]

Alice \[\xleftarrow{\text{Secret } s} \] \[E(m, s) \] \[\xrightarrow{\text{Message } m} \] Bob

Example:

One-time Pad: secret \(s \) is string of length \(|m| \).

\[E(m, s) – \text{bitwise } m \oplus s. \]

\[D(x, s) – \text{bitwise } x \oplus s. \]

Works because \(m \oplus s \oplus s = m \)!

...and totally secure!

...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad

or less and less secure.
Cryptography ...

$m = D(E(m, s), s)$

Example:

One-time Pad: secret s is string of length $|m|$. $E(m, s)$ – bitwise $m \oplus s$. $D(x, s)$ – bitwise $x \oplus s$. Works because $m \oplus s \oplus s = m$!

...and totally secure!

Disadvantages:

Shared secret! Uses up one time pad. or less and less secure.
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m| \).
Example:
One-time Pad: secret s is string of length $|m|$. $E(m, s)$ – bitwise $m \oplus s$.
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ – bitwise $m \oplus s$.
$D(x, s)$ – bitwise $x \oplus s$.
Cryptography ...

$m = D(E(m, s), s)$

Example:
One-time Pad: secret s is string of length $|m|$.

$E(m, s)$ – bitwise $m \oplus s$.

$D(x, s)$ – bitwise $x \oplus s$.

Works because $m \oplus s \oplus s = m!$
Cryptography...

Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ – bitwise $m \oplus s$.
$D(x, s)$ – bitwise $x \oplus s$.
Works because $m \oplus s \oplus s = m$!
...and totally secure!
Cryptography ...

\[m = D(E(m, s), s) \]

\[E(m, s) \]

\[D(x, s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).
\(E(m, s) \) – bitwise \(m \oplus s \).
\(D(x, s) \) – bitwise \(x \oplus s \).
Works because \(m \oplus s \oplus s = m \! \)
...and totally secure!
...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:
Shared secret!
Uses up one time pad,
or less and less secure.
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ – bitwise $m \oplus s$.
$D(x, s)$ – bitwise $x \oplus s$.
Works because $m \oplus s \oplus s = m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.

Disadvantages:
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m|\).
\[E(m, s) \text{ – bitwise } m \oplus s. \]
\[D(x, s) \text{ – bitwise } x \oplus s. \]
Works because \(m \oplus s \oplus s = m! \)
...and totally secure!
...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:
Shared secret!

Diagram:
- Alice
- Bob
- Eve
- \(E(m, s) \)
- Secret \(s \)
- Message \(m \)
Example:
One-time Pad: secret s is string of length $|m|$.
$E(m, s)$ – bitwise $m \oplus s$.
$D(x, s)$ – bitwise $x \oplus s$.
Works because $m \oplus s \oplus s = m$!
...and totally secure!
...given $E(m, s)$ any message m is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..
Cryptography ...

\[m = D(E(m, s), s) \]

Example:
One-time Pad: secret \(s \) is string of length \(|m| \).

\(E(m, s) \) – bitwise \(m \oplus s \).
\(D(x, s) \) – bitwise \(x \oplus s \).
Works because \(m \oplus s \oplus s = m! \)
...and totally secure!
...given \(E(m, s) \) any message \(m \) is equally likely.

Disadvantages:

Shared secret!

Uses up one time pad..or less and less secure.
Public key cryptography.

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.

Only Alice knows the secret key k for public key K.

(Only?) Alice can decode with k.

Is this even possible?
Public key cryptography.

Bob
Alice
Eve

Public: K

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.

Only Alice knows the secret key k for public key K.

(Only?) Alice can decode with k.

Is this even possible?
Public key cryptography.

Public: K

Private: k

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.

Only Alice knows the secret key k for public key K.

(Only?) Alice can decode with k.

Is this even possible?
Public key cryptography.

Private: k

Public: K

Message m

Everyone knows key K!

Bob (and Eve and me and you and you ...) can encode.

(Only?) Alice can decode with k.

Is this even possible?
Public key cryptography.

Private: k

Public: K

Message m

$E(m, K)$

Alice \rightarrow Bob

Eve

Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K. (Only?) Alice can decode with k. Is this even possible?
Public key cryptography.

Private: k
Public: K
Message m

$E(m, K)$

Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key k for public key K.
(Only?) Alice can decode with k.

Is this even possible?
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!

Bob (and Eve and me and you and you ...) can encode.

Only Alice knows the secret key \(k \) for public key \(K \).

(Only?) Alice can decode with \(k \).

Is this even possible?
Public key cryptography.

$$m = D(E(m, K), k)$$

Private: k

Public: K

Message m

Everyone knows key K!
Public key cryptography.

$$m = D(E(m, K), k)$$

Everyone knows key K!
Bob (and Eve
Public key cryptography.

\[m = D(E(m, K), k) \]

Private: \(k \)
Public: \(K \)
Message \(m \)

Everyone knows key \(K \)!
Bob (and Eve and me) can encode.
Only Alice knows the secret key \(k \) for public key \(K \).
(Only?) Alice can decode with \(k \).
Is this even possible?
Public key cryptography.

\[m = D(E(m, K), k) \]

Private: \(k \)

Public: \(K \)

Message \(m \)

Everyone knows key \(K \)!
Bob (and Eve and me and you) can encode.

Only Alice knows the secret key \(k \) for public key \(K \).

(Only?) Alice can decode with \(k \).

Is this even possible?
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!
Bob (and Eve and me and you and you ...) can encode.
Public key cryptography.

\[m = D(E(m, K), k) \]

Private: \(k\)
Public: \(K\)
Message: \(m\)

Alice \(\rightarrow\) Bob
Bob \(\rightarrow\) Alice
Eve

Everyone knows key \(K\)!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key \(k\) for public key \(K\).
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!
Bob (and Eve and me and you and you ...) can encode. Only Alice knows the secret key \(k \) for public key \(K \).
(Only?) Alice can decode with \(k \).
Public key cryptography.

\[m = D(E(m, K), k) \]

Everyone knows key \(K \)!
Bob (and Eve and me and you and you ...) can encode.
Only Alice knows the secret key \(k \) for public key \(K \).
(Only?) Alice can decode with \(k \).

Is this even possible?
Is public key crypto possible?

\[\text{RSA (Rivest, Shamir, and Adleman)} \]

Pick two large primes \(p \) and \(q \). Let \(N = pq \).

Choose \(e \) relatively prime to \((p-1)(q-1)\).

Compute \(d = e^{-1} \mod (p-1)(q-1) \).

Announce \(N = \) and \(e \): \(K = (N, e) \) is my public key!

Encoding: \(\mod (x^e, N) \).

Decoding: \(\mod (y^d, N) \).

Does \(D(E(m)) = m \mod N \)?

\(^2 \text{Typically small, say } e = 3. \)
Is public key crypto possible?

We don’t really know.

2Typically small, say $e = 3$.
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)

\[\text{Pick two large primes } p \text{ and } q. \text{ Let } N = pq.\]
\[\text{Choose } e \text{ relatively prime to } (p-1)(q-1).\]
\[\text{Compute } d = e^{-1} \mod (p-1)(q-1).\]
\[\text{Announce } N = pq \text{ and } e: K = (N, e) \text{ is my public key!}\]

Encoding: \(\mod (x^e, N)\).
Decoding: \(\mod (y^d, N)\).

Does \(D(E(m)) = m\) mod \(N\)?

Yes!

\(^2\)Typically small, say \(e = 3\).
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.

2 Typically small, say $e = 3$.
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p - 1)(q - 1)$.\(^2\)

\(^2\)Typically small, say $e = 3$.
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p - 1)(q - 1)$.\(^2\)
Compute $d = e^{-1} \mod (p - 1)(q - 1)$.

\(^2\)Typically small, say $e = 3$.
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p-1)(q-1)$.
Compute $d = e^{-1} \mod (p-1)(q-1)$.
Announce $N(= p \cdot q)$ and e: $K = (N, e)$ is my public key!

\[\text{Encoding: mod } x^e, N \]
\[\text{Decoding: mod } y^d, N \]

$D(E(m)) = m \mod N$?

Yes!

\[^2 \text{Typically small, say } e = 3. \]
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p - 1)(q - 1)$.
Compute $d = e^{-1} \mod (p - 1)(q - 1)$.
Announce $N(= p \cdot q)$ and e: $K = (N, e)$ is my public key!

Encoding: $\mod (x^e, N)$.

\[^2 \text{Typically small, say } e = 3. \]
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p - 1)(q - 1)$.
Compute $d = e^{-1} \mod (p - 1)(q - 1)$.
Announce $N(= p \cdot q)$ and e: $K = (N, e)$ is my public key!

Encoding: $\mod (x^e, N)$.

Decoding: $\mod (y^d, N)$.

\[^2 \text{Typically small, say } e = 3. \]
Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p − 1)(q − 1)$.\(^2\)
Compute $d = e^{-1} \mod (p − 1)(q − 1)$.
Announce $N(= p \cdot q)$ and e: $K = (N, e)$ is my public key!

Encoding: $\mod (x^e, N)$.

Decoding: $\mod (y^d, N)$.

Does $D(E(m)) = m^{ed} = m \mod N$?

\(^2\)Typically small, say $e = 3$.

Is public key crypto possible?

We don’t really know.
...but we do it every day!!!

RSA (Rivest, Shamir, and Adleman)
Pick two large primes p and q. Let $N = pq$.
Choose e relatively prime to $(p - 1)(q - 1)$.\(^2\)
Compute $d = e^{-1} \mod (p - 1)(q - 1)$.
Announce $N(= p \cdot q)$ and e: $K = (N, e)$ is my public key!

Encoding: $\mod (x^e, N)$.
Decoding: $\mod (y^d, N)$.

Does $D(E(m)) = m^{ed} = m \mod N$?

Yes!

\(^2\)Typically small, say $e = 3$.
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.
Iterative Extended GCD.

Example: \(p = 7, \ q = 11. \)

\[N = 77. \]
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

egcd(7,60).

$$
7(0) + 60(1) = 60
$$
$$
7(1) + 60(0) = 7
$$
$$
7(-8) + 60(1) = 4
$$
$$
7(9) + 60(-1) = 3
$$
$$
7(-17) + 60(2) = 1
$$

Confirm:

$$-119 + 120 = 1$$

$d = e - 1 = -17 = 43 \equiv 43 \pmod{60}$
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

\[\text{egcd}(7, 60). \]
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$egcd(7, 60)$.

\[
7(0) + 60(1) = 60
\]
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7
\end{align*}
\]
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{align*}
7(0) + 60(1) & = 60 \\
7(1) + 60(0) & = 7 \\
7(-8) + 60(1) & = 4
\end{align*}
\]
Iterative Extended GCD.

Example: \(p = 7, \ q = 11. \)

\[N = 77. \]
\[(p - 1)(q - 1) = 60 \]
Choose \(e = 7, \) since \(\gcd(7, 60) = 1. \)

\[\text{egcd}(7, 60). \]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3
\end{align*}
\]
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]
Iterative Extended GCD.

Example: \(p = 7, \ q = 11 \).

\(N = 77 \).

\((p - 1)(q - 1) = 60\)

Choose \(e = 7 \), since \(\gcd(7, 60) = 1 \).

egcd(7,60).

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm:
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \
7(1) + 60(0) &= 7 \
7(-8) + 60(1) &= 4 \
7(9) + 60(-1) &= 3 \
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm: $-119 + 120 = 1$
Iterative Extended GCD.

Example: $p = 7$, $q = 11$.

$N = 77.$

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm: $-119 + 120 = 1$

$d = e^{-1} = -17 = 43 = (\text{mod} 60)$
Encryption/Decryption Techniques.

Public Key: (77, 7)

Message Choices: {0, ..., 76}.

Message: 2!

\[E(2) = 2^e \equiv 128 \pmod{77} = 51 \]

\[D(51) = 51^43 \pmod{77} \]

uh oh!

Obvious way: 43 multiplications. Ouch.

In general, \[O(N) \] multiplications!
Encryption/Decryption Techniques.

Public Key: (77, 7)
Encryption/Decryption Techniques.

Public Key: (77, 7)
Message Choices: \{0, \ldots , 76\}.
Public Key: (77, 7)
Message Choices: \{0, \ldots, 76\}.
Message: 2!

Encryption/Decryption Techniques.
Public Key: (77, 7)
Message Choices: {0, ..., 76}.
Message: 2!

\(E(2) \)
Public Key: $77, 7$
Message Choices: $\{0, \ldots , 76\}$.
Message: $2!$
$E(2) = 2^e$
Encryption/Decryption Techniques.

Public Key: \((77, 7)\)
Message Choices: \(\{0, \ldots, 76\}\).
Message: 2!

\[E(2) = 2^e = 2^7 \]

uh oh!
Obvious way: 43 multiplications. Ouch.
In general, \(O(N)\) multiplications!
Public Key: (77, 7)
Message Choices: {0, ..., 76}.
Message: 2!

\[E(2) = 2^e = 2^7 \equiv 128 \pmod{77} \]
Encryption/Decryption Techniques.

Public Key: (77, 7)
Message Choices: \{0, \ldots , 76\}.

Message: 2!

\[E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77} \]
Encryption/Decryption Techniques.

Public Key: $(77, 7)$
Message Choices: $\{0, \ldots, 76\}$.

Message: 2!

$E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77}$
$D(51) = 51^{43} \pmod{77}$
Encryption/Decryption Techniques.

Public Key: $(77, 7)$
Message Choices: $\{0, \ldots, 76\}$.

Message: $2!$

$$E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77}$$
$$D(51) = 51^{43} \pmod{77}$$

uh oh!
Encryption/Decryption Techniques.

Public Key: \((77, 7)\)
Message Choices: \(\{0, \ldots, 76\}\).

Message: 2!

\[
E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77}
\]

\[
D(51) = 51^{43} \pmod{77}
\]

uh oh!

Obvious way: 43 multiplications. Ouch.
Public Key: (77, 7)
Message Choices: \{0, \ldots , 76\}.

Message: 2!

\[E(2) = 2^e = 2^7 \equiv 128 \pmod{77} = 51 \pmod{77} \]
\[D(51) = 51^{43} \pmod{77} \]

uh oh!

Obvious way: 43 multiplications. Ouch.

In general, \(O(N) \) multiplications!
Repeated squaring.

Notice:

\[43 = 32 \cdot 8 \cdot 2 \cdot 1 \mod 77. \]

5 multiplications sort of... Need to compute

\[51^{32}. \]

\[51 \equiv 51 \mod 77 \]

\[51^2 = (51)^2 \cdot (51)^2 = 2601 \equiv 60 \mod 77 \]

\[51^4 = (51^2)^2 \cdot (51^2)^2 = 60^2 \cdot 60^2 = 3600 \equiv 58 \mod 77 \]

\[51^8 = (51^4)^2 \cdot (51^4)^2 = 58^2 \cdot 58^2 = 3364 \equiv 53 \mod 77 \]

\[51^{16} = (51^8)^2 \cdot (51^8)^2 = 53^2 \cdot 53^2 = 2809 \equiv 37 \mod 77 \]

\[51^{32} = (51^{16})^2 \cdot (51^{16})^2 = 37 \cdot 37 \equiv 60 \mod 77 \]

5 more multiplications.

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$.
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. 51^{43}
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1}$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).

4 multiplications sort of...
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^1$?
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^1$.
$51^1 \equiv 51 \pmod{77}$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1$ (mod 77).

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^1$.

$51^1 \equiv 51$ (mod 77)

$51^2 =$
Repeated squaring.

Notice: \(43 = 32 + 8 + 2 + 1\). \(51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}\).

4 multiplications sort of...
Need to compute \(51^{32} \ldots 51^1\) ?

\(51^1 \equiv 51 \pmod{77}\)

\(51^2 = (51) \times (51) = 2601 \equiv 60 \pmod{77}\)

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^{1}$.?

$51^{1} \equiv 51$ (mod 77)

$51^{2} = (51) \times (51) = 2601 \equiv 60$ (mod 77)

$51^{4} =$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$?

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^4 = (51^2) \cdot (51^2)$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \mod 77$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$?

$51^1 \equiv 51 \mod 77$

$51^2 = (51) \times (51) = 2601 \equiv 60 \mod 77$

$51^4 = (51^2) \times (51^2) = 60 \times 60 = 3600 \equiv 58 \mod 77$
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1$ (mod 77).
4 multiplications sort of...
Need to compute $51^{32} \ldots 51^1$?
$51^1 \equiv 51$ (mod 77)
$51^2 = (51) \cdot (51) = 2601 \equiv 60$ (mod 77)
$51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58$ (mod 77)
$51^8 =$
Repeated squaring.

Notice: \(43 = 32 + 8 + 2 + 1 \). \(51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \) (mod 77).

4 multiplications sort of...

Need to compute \(51^{32} \ldots 51^1 \).

\(51^1 \equiv 51 \) (mod 77)
\(51^2 = (51) \times (51) = 2601 \equiv 60 \) (mod 77)
\(51^4 = (51^2) \times (51^2) = 60 \times 60 = 3600 \equiv 58 \) (mod 77)
\(51^8 = (51^4) \times (51^4) \)
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1$ (mod 77).

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$?

$51^1 \equiv 51$ (mod 77)

$51^2 = (51) \times (51) = 2601 \equiv 60$ (mod 77)

$51^4 = (51^2) \times (51^2) = 60 \times 60 = 3600 \equiv 58$ (mod 77)

$51^8 = (51^4) \times (51^4) = 58 \times 58 = 3364 \equiv 53$ (mod 77)
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^{8} \cdot 51^{2} \cdot 51^{1}$ (mod 77).

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^{1}$.

$51^{1} \equiv 51$ (mod 77)

$51^{2} = (51) \cdot (51) = 2601 \equiv 60$ (mod 77)

$51^{4} = (51^{2}) \cdot (51^{2}) = 60 \cdot 60 = 3600 \equiv 58$ (mod 77)

$51^{8} = (51^{4}) \cdot (51^{4}) = 58 \cdot 58 = 3364 \equiv 53$ (mod 77)

$51^{16} = (51^{8}) \cdot (51^{8}) = 53 \cdot 53 = 2809 \equiv 37$ (mod 77)

Decoding got the message back!
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$.

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \times (51) = 2601 \equiv 60 \pmod{77}$

$51^4 = (51^2) \times (51^2) = 60 \times 60 = 3600 \equiv 58 \pmod{77}$

$51^8 = (51^4) \times (51^4) = 58 \times 58 = 3364 \equiv 53 \pmod{77}$

$51^{16} = (51^8) \times (51^8) = 53 \times 53 = 2809 \equiv 37 \pmod{77}$

$51^{32} = (51^{16}) \times (51^{16}) = 37 \times 37 = 1369 \equiv 60 \pmod{77}$

Decoding got the message back!
Repeated squaring.

Notice: \(43 = 32 + 8 + 2 + 1\). \(51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}\).

4 multiplications sort of...
Need to compute \(51^{32} \ldots 51^1\).?

\[51^1 \equiv 51 \pmod{77}\]
\[51^2 = (51) \times (51) = 2601 \equiv 60 \pmod{77}\]
\[51^4 = (51^2) \times (51^2) = 60 \times 60 = 3600 \equiv 58 \pmod{77}\]
\[51^8 = (51^4) \times (51^4) = 58 \times 58 = 3364 \equiv 53 \pmod{77}\]
\[51^{16} = (51^8) \times (51^8) = 53 \times 53 = 2809 \equiv 37 \pmod{77}\]
\[51^{32} = (51^{16}) \times (51^{16}) = 37 \times 37 = 1369 \equiv 60 \pmod{77}\]

5 more multiplications.
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1$ (mod 77).

4 multiplications sort of...
Need to compute 51^{32} . . . 51^1.

$51^1 \equiv 51$ (mod 77)

$51^2 = (51) \times (51) = 2601 \equiv 60$ (mod 77)

$51^4 = (51^2) \times (51^2) = 60 \times 60 = 3600 \equiv 58$ (mod 77)

$51^8 = (51^4) \times (51^4) = 58 \times 58 = 3364 \equiv 53$ (mod 77)

$51^{16} = (51^8) \times (51^8) = 53 \times 53 = 2809 \equiv 37$ (mod 77)

$51^{32} = (51^{16}) \times (51^{16}) = 37 \times 37 = 1369 \equiv 60$ (mod 77)

5 more multiplications.

$51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) \times (53) \times (60) \times (51) \equiv 2$ (mod 77).
Repeated squaring.

Notice: \(43 = 32 + 8 + 2 + 1\). \(51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \) (mod 77).

4 multiplications sort of...

Need to compute \(51^{32} \ldots 51^1\)?

\(51^1 \equiv 51 \) (mod 77)

\(51^2 = (51) \cdot (51) = 2601 \equiv 60 \) (mod 77)

\(51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \) (mod 77)

\(51^8 = (51^4) \cdot (51^4) = 58 \cdot 58 = 3364 \equiv 53 \) (mod 77)

\(51^{16} = (51^8) \cdot (51^8) = 53 \cdot 53 = 2809 \equiv 37 \) (mod 77)

\(51^{32} = (51^{16}) \cdot (51^{16}) = 37 \cdot 37 = 1369 \equiv 60 \) (mod 77)

5 more multiplications.

\(51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) \cdot (53) \cdot (60) \cdot (51) \equiv 2 \) (mod 77).

Decoding got the message back!
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...
Need to compute $51^{32} \ldots 51^1$?

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$

$51^8 = (51^4) \cdot (51^4) = 58 \cdot 58 = 3364 \equiv 53 \pmod{77}$

$51^{16} = (51^8) \cdot (51^8) = 53 \cdot 53 = 2809 \equiv 37 \pmod{77}$

$51^{32} = (51^{16}) \cdot (51^{16}) = 37 \cdot 37 = 1369 \equiv 60 \pmod{77}$

5 more multiplications.

$51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) \cdot (53) \cdot (60) \cdot (51) \equiv 2 \pmod{77}$.

Decoding got the message back!

Repeated Squaring took 9 multiplications
Repeated squaring.

Notice: $43 = 32 + 8 + 2 + 1$. $51^{43} = 51^{32+8+2+1} = 51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 \pmod{77}$.

4 multiplications sort of...

Need to compute $51^{32} \ldots 51^1$.

$51^1 \equiv 51 \pmod{77}$

$51^2 = (51) \cdot (51) = 2601 \equiv 60 \pmod{77}$

$51^4 = (51^2) \cdot (51^2) = 60 \cdot 60 = 3600 \equiv 58 \pmod{77}$

$51^8 = (51^4) \cdot (51^4) = 58 \cdot 58 = 3364 \equiv 53 \pmod{77}$

$51^{16} = (51^8) \cdot (51^8) = 53 \cdot 53 = 2809 \equiv 37 \pmod{77}$

$51^{32} = (51^{16}) \cdot (51^{16}) = 37 \cdot 37 = 1369 \equiv 60 \pmod{77}$

5 more multiplications.

$51^{32} \cdot 51^8 \cdot 51^2 \cdot 51^1 = (60) \cdot (53) \cdot (60) \cdot (51) \equiv 2 \pmod{77}$.

Decoding got the message back!

Repeated Squaring took 9 multiplications versus 43.
Repeated Squaring: \(x^y \)

1. Compute \(x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}} \).

2. Multiply together \(x^i \) where the \((\log(i))\)th bit of \(y \) (in binary) is 1.

Example: \(43 = 101011 \) in binary.

\[x^{43} = x^{32} \times x^8 \times x^2 \times x^1. \]

Modular Exponentiation: \(x^y \mod N \).

All \(n \)-bit numbers. Repeated Squaring: \(O(n) \) multiplications. \(O(n^2) \) time per multiplication. \(\Rightarrow O(n^3) \) time.

Conclusion: \(x^y \mod N \) takes \(O(n^3) \) time.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute x^1,

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring: $O(n)$ multiplications. $O(n^2)$ time per multiplication. $\Rightarrow O(n^3)$ time.

Conclusion: $x^y \mod N$ takes $O(n^3)$ time.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2,$
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute x^1, x^2, x^4,

Modular Exponentiation: $x^y \mod N$.

All n-bit numbers. Repeated Squaring: $O(n)$ multiplications.

$O(n^2)$ time per multiplication. $\Rightarrow O(n^3)$ time.

Conclusion: $x^y \mod N$ takes $O(n^3)$ time.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots,$
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring: $O(n)$ multiplications. $O(n^2)$ time per multiplication. $= \Rightarrow O(n^3)$ time.

Conclusion: $x^y \mod N$ takes $O(n^3)$ time.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.

Example:
Repeated Squaring: \(x^y \)

Repeated squaring \(O(\log y) \) multiplications versus \(y \)!!!

1. \(x^y \): Compute \(x^1, x^2, x^4, \ldots, x^{2^\lfloor \log y \rfloor} \).

2. Multiply together \(x^i \) where the \((\log(i)) \)th bit of \(y \) (in binary) is 1.
 Example: \(43 = 101011 \) in binary.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1. Example: $43 = 101011$ in binary.

 $x^{43} = x^{32} \cdot x^8 \cdot x^2 \cdot x^1$.

Modular Exponentiation: $x^y \mod N$.

All n-bit numbers. Repeated Squaring: $O(n)$ multiplications. $O(n^2)$ time per multiplication. $= \Rightarrow O(n^3)$ time.

Conclusion: $x^y \mod N$ takes $O(n^3)$ time.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.
 $x^{43} = x^{32} \cdot x^8 \cdot x^2 \cdot x^1$.

Modular Exponentiation: $x^y \mod N$.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1. Example: $43 = 101011$ in binary.
 \[x^{43} = x^{32} \ast x^8 \ast x^2 \ast x^1. \]

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.
 $$x^{43} = x^{32} \cdot x^8 \cdot x^2 \cdot x^1.$$

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:

$O(n)$ multiplications.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^\lfloor \log y \rfloor}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.

 $x^{43} = x^{32} \ast x^8 \ast x^2 \ast x^1$.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:

 $O(n)$ multiplications.

 $O(n^2)$ time per multiplication.
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. \(x^y \): Compute \(x^1, x^2, x^4, \ldots, x^{2^{\lfloor \log y \rfloor}} \).

2. Multiply together \(x^i \) where the \((\log(i))\)th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.
 \[x^{43} = x^{32} \times x^8 \times x^2 \times x^1. \]

Modular Exponentiation: \(x^y \mod N \). All n-bit numbers. Repeated Squaring:
- $O(n)$ multiplications.
- $O(n^2)$ time per multiplication.
 \[\implies O(n^3) \text{ time.} \]

Conclusion: \(x^y \mod N \)
Repeated Squaring: x^y

Repeated squaring $O(\log y)$ multiplications versus y!!!

1. x^y: Compute $x^1, x^2, x^4, \ldots, x^{2^{\left\lfloor \log y \right\rfloor}}$.

2. Multiply together x^i where the $(\log(i))$th bit of y (in binary) is 1.
 Example: $43 = 101011$ in binary.

 $x^{43} = x^{32} \ast x^{8} \ast x^2 \ast x^1$.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. Repeated Squaring:

$O(n)$ multiplications.

$O(n^2)$ time per multiplication.

$\implies O(n^3)$ time.

Conclusion: $x^y \mod N$ takes $O(n^3)$ time.
RSA is pretty fast.

Modular Exponentiation: \(x^y \mod N. \)
RSA is pretty fast.

Modular Exponentiation: \(x^y \mod N \). All \(n \)-bit numbers. \(O(n^3) \) time.
RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!
RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

$$E(m, (N, e)) = m^e \pmod{N}.$$
RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

$E(m, (N, e)) = m^e \pmod{N}$.

$D(m, (N, d)) = m^d \pmod{N}$.
RSA is pretty fast.

Modular Exponentiation: \(x^y \mod N \). All \(n \)-bit numbers. \(O(n^3) \) time.

Remember RSA encoding/decoding!

\[
E(m, (N, e)) = m^e \pmod N.
\]
\[
D(m, (N, d)) = m^d \pmod N.
\]
RSA is pretty fast.

Modular Exponentiation: $x^y \mod N$. All n-bit numbers. $O(n^3)$ time.

Remember RSA encoding/decoding!

$$E(m, (N, e)) = m^e \pmod{N}.$$
$$D(m, (N, d)) = m^d \pmod{N}.$$

For 512 bits, a few hundred million operations.
RSA is pretty fast.

Modular Exponentiation: \(x^y \mod N \). All \(n \)-bit numbers. \(O(n^3) \) time.

Remember RSA encoding/decoding!

\[
E(m, (N, e)) = m^e \pmod{N}.
\]
\[
D(m, (N, d)) = m^d \pmod{N}.
\]

For 512 bits, a few hundred million operations. Easy, peasey.
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]
\[N = pq \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p - 1)(q - 1)} \).

Want:
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p - 1)(q - 1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N}\).
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)}. \)

Want: \((m^e)^d = m^{ed} = m \pmod{N}. \)

Another view:

\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...

Fermat's Little Theorem:

For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),

\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\Rightarrow a^{k(p-1)} \equiv 1 \pmod{p} \]
\[\Rightarrow a^{k(p-1) + 1} \equiv a \pmod{p} \]

versus \(a^{k(p-1)(q-1)} = a \pmod{pq} \).
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Want: \((m^e)^d = m^{ed} = m \pmod{N}. \)

Another view:
\[d = e^{-1} \pmod{(p - 1)(q - 1)} \iff ed = k(p - 1)(q - 1) + 1. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p - 1)(q - 1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p - 1)(q - 1)} \iff ed = k(p - 1)(q - 1) + 1. \]

Consider...
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)}. \)

Want: \((m^e)^d = m^{ed} = m \pmod{N}. \)

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p}, \)
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p - 1)(q - 1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N}\).

Another view:
\[d = e^{-1} \pmod{(p - 1)(q - 1)} \iff ed = k(p - 1)(q - 1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\implies a^{k(p-1)} \equiv 1 \pmod{p} \]
Always decode correctly?

\[E(m,(N,e)) = m^e \pmod{N}, \]
\[D(m,(N,d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)} \]

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1} \]
Always decode correctly?

\[E(m,(N,e)) = m^e \pmod{N} \]
\[D(m,(N,d)) = m^d \pmod{N} \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p} . \]

\[\implies a^{k(p-1)} \equiv 1 \pmod{p} \implies a^{k(p-1)+1} = a \pmod{p} \]
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\[
\begin{align*}
\text{ed} &= k(p-1)(q-1) + 1. \\
\end{align*}
\]

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[
a^{p-1} \equiv 1 \pmod{p}. \\
\]
\[
\Longrightarrow a^{k(p-1)} \equiv 1 \pmod{p} \Longrightarrow a^{k(p-1)+1} = a \pmod{p}
\]

versus \(a^{k(p-1)(q-1)+1} = a \pmod{pq} \).
Always decode correctly?

\[E(m, (N, e)) = m^e \pmod{N}. \]
\[D(m, (N, d)) = m^d \pmod{N}. \]

\(N = pq \) and \(d = e^{-1} \pmod{(p-1)(q-1)} \).

Want: \((m^e)^d = m^{ed} = m \pmod{N} \).

Another view:
\(d = e^{-1} \pmod{(p-1)(q-1)} \iff ed = k(p-1)(q-1) + 1. \)

Consider...

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]

\[\Rightarrow a^{k(p-1)} \equiv 1 \pmod{p} \Rightarrow a^{k(p-1)+1} = a \pmod{p} \]

versus \(a^{k(p-1)(q-1)+1} = a \pmod{pq} \).

Similar, not same, but useful.
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$
Fermat’s Little Theorem: For prime p, and $a \neq 0 \pmod{p}$, $a^{p-1} \equiv 1 \pmod{p}$.

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.
All different modulo p since a has an inverse modulo p.
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.

All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},$$
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p.

S contains representative of $\{1, \ldots, p-1\}$ modulo p.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},$$

Since multiplication is commutative.
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}, \]
Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.

All different modulo p since a has an inverse modulo p. S contains representative of $\{1, \ldots, p-1\}$ modulo p.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}, \]

Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]

Each of $2, \ldots (p-1)$ has an inverse modulo p,
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p - 1\}$ modulo p.

\[(a \cdot 1)(a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p}, \]
Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p - 1)) \equiv (1 \cdots (p - 1)) \pmod{p}. \]
Each of $2, \ldots, (p - 1)$ has an inverse modulo p, solve to get...
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p - 1)\}$.

All different modulo p since a has an inverse modulo p.
S contains a representative of $\{1, \ldots, p - 1\}$ modulo p.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p}, \]

Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p - 1)) \equiv (1 \cdots (p - 1)) \pmod{p}. \]

Each of $2, \ldots (p - 1)$ has an inverse modulo p, solve to get...

\[a^{(p-1)} \equiv 1 \pmod{p}. \]
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $S = \{a \cdot 1, \ldots, a \cdot (p-1)\}$.
All different modulo p since a has an inverse modulo p.
S contains representative of $\{1, \ldots, p-1\}$ modulo p.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}, \]
Since multiplication is commutative.

\[a^{(p-1)} (1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]
Each of $2, \ldots (p-1)$ has an inverse modulo p, solve to get...
\[a^{(p-1)} \equiv 1 \pmod{p}. \]
Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$
Always decode correctly? (cont.)

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Proof:
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Proof: If $a \equiv 0 \pmod{p}$, of course.
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Proof: If $a \equiv 0 \pmod{p}$, of course.

Otherwise

$$a^{1+b(p-1)} \equiv$$
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Proof: If $a \equiv 0 \pmod{p}$, of course.

Otherwise

$$a^{1+b(p-1)} \equiv a^1 \ast (a^{p-1})^b$$
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Lemma 1: For any prime p and any a, b,

$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Proof: If $a \equiv 0 \pmod{p}$, of course.

Otherwise

$$a^{1+b(p-1)} \equiv a^1 \cdot (a^{p-1})^b \equiv a \cdot (1)^b \equiv a \pmod{p}$$
...Decoding correctness...

Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]
...Decoding correctness...

Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]
...Decoding correctness...

Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x$, $b = k(p - 1)$ and apply Lemma 1 with modulus q.
...Decoding correctness...

Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x$, $b = k(p-1)$ and apply Lemma 1 with modulus q.

\[x^{1+k(p-1)(q-1)} \equiv x \pmod{q} \]
...Decoding correctness...

Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x$, $b = k(p - 1)$ and apply Lemma 1 with modulus q.

\[x^{1+k(p-1)(q-1)} \equiv x \pmod{q} \]

Let $a = x$, $b = k(q - 1)$ and apply Lemma 1 with modulus p.

...Decoding correctness...

Lemma 1: For any prime p and any a, b,
$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Lemma 2: For any two different primes p, q and any x, k,
$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$

Let $a = x, b = k(p - 1)$ and apply Lemma 1 with modulus q.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{q}$$

Let $a = x, b = k(q - 1)$ and apply Lemma 1 with modulus p.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{p}$$
...Decoding correctness...

Lemma 1: For any prime p and any $a, b,$

\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any $x, k,$

\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x, b = k(p-1)$ and apply Lemma 1 with modulus $q.$

\[x^{1+k(p-1)(q-1)} \equiv x \pmod{q} \]

Let $a = x, b = k(q-1)$ and apply Lemma 1 with modulus $p.$

\[x^{1+k(p-1)(q-1)} \equiv x \pmod{p} \]

$x^{1+k(q-1)(p-1)} - x$ is multiple of p and $q.$

\[x^{1+k(q-1)(p-1)} - x \equiv 0 \pmod{(pq)} \]
...Decoding correctness...

Lemma 1: For any prime p and any a, b,
$$a^{1+b(p-1)} \equiv a \pmod{p}$$

Lemma 2: For any two different primes p, q and any x, k,
$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$

Let $a = x$, $b = k(p - 1)$ and apply Lemma 1 with modulus q.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{q}$$

Let $a = x$, $b = k(q - 1)$ and apply Lemma 1 with modulus p.

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{p}$$

$x^{1+k(q-1)(p-1)} - x$ is multiple of p and q.

$$x^{1+k(q-1)(p-1)} - x \equiv 0 \pmod{pq} \implies x^{1+k(q-1)(p-1)} \equiv x \pmod{pq}.$$

Decoding correctness...

Lemma 1: For any prime p and any a, b,
\[a^{1+b(p-1)} \equiv a \pmod{p} \]

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Let $a = x$, $b = k(p - 1)$ and apply Lemma 1 with modulus q.

\[x^{1+k(p-1)(q-1)} \equiv x \pmod{q} \]

Let $a = x$, $b = k(q - 1)$ and apply Lemma 1 with modulus p.

\[x^{1+k(p-1)(q-1)} \equiv x \pmod{p} \]

$x^{1+k(q-1)(p-1)} - x$ is multiple of p and q.

\[x^{1+k(q-1)(p-1)} - x \equiv 0 \pmod{pq} \implies x^{1+k(q-1)(p-1)} = x \pmod{pq}. \]
RSA decodes correctly..

Lemma 2: For any two different primes p, q and any x, k,

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k, $x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$

Theorem: RSA correctly decodes!
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Theorem: RSA correctly decodes!
Recall
\[D(E(x)) = (x^e)^d \]
Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Theorem: RSA correctly decodes!
Recall
\[
D(E(x)) = (x^e)^d = x^{ed} \quad (\text{mod } pq),
\]
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$

Theorem: RSA correctly decodes!

Recall

$$D(E(x)) = (x^e)^d = x^{ed} \pmod{pq},$$

where $ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1)$
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,
$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$

Theorem: RSA correctly decodes!
Recall
$$D(E(x)) = (x^e)^d = x^{ed} \pmod{pq},$$

where $ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1)$

$$x^{ed} \equiv$$
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$

Theorem: RSA correctly decodes!

Recall

$$D(E(x)) = (x^e)^d = x^{ed} \pmod{pq},$$

where $ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1)$

$$x^{ed} \equiv x^{k(p-1)(q-1)+1}$$
Lemma 2: For any two different primes p, q and any x, k,
\[x^{1+k(p-1)(q-1)} \equiv x \pmod{pq} \]

Theorem: RSA correctly decodes!
Recall
\[D(E(x)) = (x^e)^d = x^{ed} \pmod{pq}, \]

where $ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1)$

\[x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}. \]
RSA decodes correctly.

Lemma 2: For any two different primes p, q and any x, k,

$$x^{1+k(p-1)(q-1)} \equiv x \pmod{pq}$$

Theorem: RSA correctly decodes!

Recall

$$D(E(x)) = (x^e)^d = x^{ed} \equiv x \pmod{pq},$$

where $ed \equiv 1 \pmod{(p-1)(q-1)} \implies ed = 1 + k(p-1)(q-1)$

$$x^{ed} \equiv x^{k(p-1)(q-1)+1} \equiv x \pmod{pq}.$$
Construction of keys

1. Find large (100 digit) primes p and q?
Construction of keys...

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 \[
 \pi(N) \geq \frac{N}{\ln N}.
 \]
Construction of keys...

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 $$\pi(N) \geq N / \ln N.$$

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime?)
Construction of keys...

1. Find large (100 digit) primes \(p \) and \(q \)?

 Prime Number Theorem: \(\pi(N) \) number of primes less than \(N \). For all \(N \geq 17 \)

 \[
 \pi(N) \geq \frac{N}{\ln N}.
 \]

 Choosing randomly gives approximately \(1/(\ln N) \) chance of number being a prime. (How do you tell if it is prime? ...

 cs170..
Construction of keys

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 $$\pi(N) \geq N/\ln N.$$

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test..
Construction of keys

1. Find large (100 digit) primes p and q?

Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

$$\pi(N) \geq \frac{N}{\ln N}.$$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).
Construction of keys...

1. Find large (100 digit) primes p and q?

Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

$$\pi(N) \geq \frac{N}{\ln N}.$$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.
Construction of keys...

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 $$\pi(N) \geq \frac{N}{\ln N}.$$

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

 For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p - 1)(q - 1)) = 1$.

 Use gcd algorithm to test.
Construction of keys...

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 $$\pi(N) \geq \frac{N}{\ln N}.$$

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

 For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p - 1)(q - 1)) = 1$.
 Use \gcd algorithm to test.
Construction of keys...

1. Find large (100 digit) primes p and q?

Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

$$\pi(N) \geq \frac{N}{\ln N}.$$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p - 1)(q - 1)) = 1$.

Use gcd algorithm to test.

3. Find inverse d of e modulo $(p - 1)(q - 1)$.
Construction of keys...

1. Find large (100 digit) primes p and q?

Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

$$\pi(N) \geq \frac{N}{\ln N}.$$

Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ... cs170..Miller-Rabin test.. Primes in P).

For a 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p-1)(q-1)) = 1$.
 Use gcd algorithm to test.

3. Find inverse d of e modulo $(p-1)(q-1)$.
 Use extended gcd algorithm.
Construction of keys..

1. Find large (100 digit) primes p and q?

 Prime Number Theorem: $\pi(N)$ number of primes less than N. For all $N \geq 17$

 \[
 \pi(N) \geq \frac{N}{\ln N}.
 \]

 Choosing randomly gives approximately $1/(\ln N)$ chance of number being a prime. (How do you tell if it is prime? ...

 cs170..Miller-Rabin test.. Primes in P).

 For 1024 bit number, 1 in 710 is prime.

2. Choose e with $\gcd(e, (p - 1)(q - 1)) = 1$.
 Use gcd algorithm to test.

3. Find inverse d of e modulo $(p - 1)(q - 1)$.
 Use extended gcd algorithm.

All steps are polynomial in $O(\log N)$, the number of bits.
Security of RSA.

1. Alice knows p and q.
2. Bob only knows, $N (= pq)$, and e. Does not know, for example, d or factorization of N.
3. I don't know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N. Breaking in general sense \Rightarrow factoring algorithm.
Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N(= pq)$, and e.
Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, $N(=pq)$, and e.

 Does not know, for example, d or factorization of N.
Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, $N(= pq)$, and e. Does not know, for example, d or factorization of N.

3. I don't know how to break this scheme without factoring N.
Security of RSA.

Security?

1. Alice knows p and q.

2. Bob only knows, $N(= pq)$, and e. Does not know, for example, d or factorization of N.

3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N.
Security of RSA.

Security?

1. Alice knows p and q.
2. Bob only knows, $N(=pq)$, and e.
 Does not know, for example, d or factorization of N.
3. I don’t know how to break this scheme without factoring N.

No one I know or have heard of admits to knowing how to factor N. Breaking in general sense \iff factoring algorithm.
Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.
Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.
Eve can send credit card again!!
If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated;
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.

One trick:
 Bob encodes credit card number, c,
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.

One trick:
Bob encodes credit card number, c, concatenated with random k-bit number r.
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.

One trick:
- Bob encodes credit card number, c, concatenated with random k-bit number r.

Never sends just c.
Much more to it.....

If Bobs sends a message (Credit Card Number) to Alice,
Eve sees it.
Eve can send credit card again!!
The protocols are built on RSA but more complicated;
For example, several rounds of challenge/response.
One trick:
 Bob encodes credit card number, c,
 concatenated with random k-bit number r.
Never sends just c.
Again, more work to do to get entire system.
If Bobs sends a message (Credit Card Number) to Alice, Eve sees it.

Eve can send credit card again!!

The protocols are built on RSA but more complicated; For example, several rounds of challenge/response.

One trick:
 Bob encodes credit card number, c, concatenated with random k-bit number r.

Never sends just c.

Again, more work to do to get entire system.

CS161...
Signatures using RSA.

Verisign:

Amazon

Browser.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign's key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$).

Browser "knows" Verisign's public key: K_V.

Amazon Certificate: $C = "I am Amazon. My public Key is K_A."$

Versign signature of C: $S_V(C)$:

$D(C, k_V) = C^d \mod N$.

Browser receives: $[C, y]$

Checks $E(y, K_V) = C$?

$E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C (\mod N)$.

Valid signature of Amazon certificate C!

Security: Eve can't forge unless she "breaks" RSA scheme.
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Signatures using RSA.

Verisign: k_V, K_V

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)
Signatures using RSA.

Verisign: k_V, K_V

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.
Signatures using RSA.

Verisign: k_V, K_V

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$).

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C =$ “I am Amazon. My public key is K_A.”
Signatures using RSA.

Verisign: k_V, K_V

$[C, S_V(C)]$

Amazon ← Browser. K_V

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)
Browser “knows” Verisign’s public key: K_V.
Amazon Certificate: $C = \text{“I am Amazon. My public Key is } K_A\text{.”}$
Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.
Signatures using RSA.

Verisign: k_V, K_V

$[C, S_V(C)]$

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C = “I am Amazon. My public Key is K_A.”$

Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq) \).

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = \text{"I am Amazon. My public Key is } K_A.\” } \)

Versign signature of \(C \): \(S_V(C) : D(C, k_V) = C^d \mod N \).

Browser receives: \([C, y] \)
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...
Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq)\).
Browser “knows” Verisign’s public key: \(K_V \).
Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A \text{.”} \)
Versign signature of \(C \): \(S_V(C) \): \(D(C, k_V) = C^d \mod N. \)
Browser receives: \([C, y]\)
Checks \(E(y, K_V) = C? \)
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...
Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq) \).
Browser “knows” Verisign’s public key: \(K_V \).
Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A.\text{”} \)
Versign signature of \(C \): \(S_V(C) : D(C, k_V) = C^d \mod N \).
Browser receives: \([C, y] \)
Checks \(E(y, K_V) = C? \)
\(E(S_V(C), K_V) \)
Signatures using RSA.

Verisign: k_V, K_V

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C = \text{“I am Amazon. My public Key is } K_A \text{.”}$

Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d \mod N$.

Browser receives: $[C, y]$

Checks $E(y, K_V) = C$?

$E(S_V(C), K_V) = (S_V(C))^e$
Signatures using RSA.

Verisign: \(k_v, K_v \)

\([C, S_v(C)]\) \[C = E(S_v(C), k_V) \]?

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq) \).

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A \text{.”} \)

Versign signature of \(C \): \(S_v(C) \): \(D(C, k_V) = C^d \mod N \).

Browser receives: \([C, y]\)

Checks \(E(y, K_V) = C \)?

\(E(S_v(C), K_V) = (S_v(C))^e = (C^d)^e \)
Signatures using RSA.

Verisign: \(k_V, K_V \)

\[
[C, S_V(C)] \quad C = E(S_V(C), k_V)\
\]

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq)\)

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = \text{“I am Amazon. My public Key is } K_A.\text{”} \)

Versign signature of \(C \): \(S_V(C) \): \(D(C, k_V) = C^d \mod N \).

Browser receives: \([C, y]\)

Checks \(E(y, K_V) = C? \)

\[
E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de}
\]
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: \(K_V = (N, e) \) and \(k_V = d \) \((N = pq) \).

Browser “knows” Verisign’s public key: \(K_V \).

Amazon Certificate: \(C = “\text{I am Amazon. My public Key is } K_A.\text{”} \)

Versign signature of \(C \): \(S_V(C) \): \(D(C, k_V) = C^d \mod N \).

Browser receives: \([C, y]\)

Checks \(E(y, K_V) = C \)?

\[
E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C \pmod{N}
\]
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar, ...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ ($N = pq$.)

Browser “knows” Verisign's public key: K_V.

Amazon Certificate: $C =$ “I am Amazon. My public Key is K_A.”

Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d$ mod N.

Browser receives: $[C, y]$

Checks $E(y, K_V) = C$?

$E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C$ (mod N)

Valid signature of Amazon certificate C!
Signatures using RSA.

Certificate Authority: Verisign, GoDaddy, DigiNotar,...

Verisign’s key: $K_V = (N, e)$ and $k_V = d$ $(N = pq.)$

Browser “knows” Verisign’s public key: K_V.

Amazon Certificate: $C =$ “I am Amazon. My public Key is K_A.”

Versign signature of C: $S_V(C)$: $D(C, k_V) = C^d$ mod N.

Browser receives: $[C, y]$

Checks $E(y, K_V) = C$?

$E(S_V(C), K_V) = (S_V(C))^e = (C^d)^e = C^{de} = C$ (mod N)

Valid signature of Amazon certificate C!

Security: Eve can’t forge unless she “breaks” RSA scheme.
RSA Public Key Cryptography: \(D(E(m, K), k) = (m^e d^m mod N) = m \).

Signature scheme: \(E(D(C, k), K) = (C^d e^m mod N) = C \).
Public Key Cryptography:
RSA

Public Key Cryptography:

\[D(E(m, K), k) = (m^e)^d \mod N = m. \]
RSA

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \mod N = m. \]

Signature scheme:
Public Key Cryptography:

\[D(E(m, K), k) = (m^e)^d \mod N = m. \]

Signature scheme:

\[E(D(C, k), K) = (C^d)^e \mod N = C \]
Other Eve.
Get CA to certify fake certificates: Microsoft Corporation.
Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation.

2001..Doh.

... and August 28, 2011 announcement.
Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
Get CA to certify fake certificates: Microsoft Corporation.
2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ...
Other Eve.

Get CA to certify fake certificates: Microsoft Corporation. 2001..Doh.
... and August 28, 2011 announcement.
DigiNotar Certificate issued for Microsoft!!!
How does Microsoft get a CA to issue certificate to them ... and only them?
Summary.

Public-Key Encryption.

RSA Scheme:
\[N = pq \]
\[d = e^{-1} \pmod{(p-1)(q-1)} \]

Encryption:
\[E(x) = x^e \pmod{N} \]

Decryption:
\[D(y) = y^d \pmod{N} \]

Repeated Squaring ⇒ efficiency.

Fermat's Theorem ⇒ correctness.

Good for Encryption and Signature Schemes.
Summary.

Public-Key Encryption.

RSA Scheme:

\[N = pq \]
\[d = e^{-1} \pmod{(p-1)(q-1)} \]

\[E(x) = x^e \pmod{N} \]

\[D(y) = y^d \pmod{N} \]

Repeated Squaring ⇒ efficiency.

Fermat's Theorem ⇒ correctness.

Good for Encryption and Signature Schemes.
Public-Key Encryption.

RSA Scheme:

\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]

\[E(x) = x^e \pmod{N}. \]

\[D(y) = y^d \pmod{N}. \]
Summary.

Public-Key Encryption.

RSA Scheme:
\[N = pq \text{ and } d = e^{-1} \pmod{(p - 1)(q - 1)} \].
\[E(x) = x^e \pmod{N}. \]
\[D(y) = y^d \pmod{N}. \]

Repeated Squaring \implies efficiency.

Fermat's Theorem \implies correctness.

Good for Encryption and Signature Schemes.
Summary.

Public-Key Encryption.

RSA Scheme:
\[N = pq \text{ and } d = e^{-1} \pmod{(p-1)(q-1)}. \]
\[E(x) = x^e \pmod{N}. \]
\[D(y) = y^d \pmod{N}. \]

Repeated Squaring \(\Rightarrow\) efficiency.

Fermat’s Theorem \(\Rightarrow\) correctness.
Summary.

Public-Key Encryption.

RSA Scheme:
\[N = pq \] and \[d = e^{-1} \pmod{(p - 1)(q - 1)} \].
\[E(x) = x^e \pmod{N} \].
\[D(y) = y^d \pmod{N} \].

Repeated Squaring \(\rightarrow\) efficiency.

Fermat’s Theorem \(\rightarrow\) correctness.

Good for Encryption
Summary.

Public-Key Encryption.

RSA Scheme:

\[N = pq \text{ and } d = e^{-1} \pmod{(p - 1)(q - 1)} \].

\[E(x) = x^e \pmod{N} \].

\[D(y) = y^d \pmod{N} \].

Repeated Squaring \(\implies\) efficiency.

Fermat’s Theorem \(\implies\) correctness.

Good for Encryption and Signature Schemes.