Today

Review for Midterm.
First there was logic...

A statement is a true or false.
First there was logic...

A statement is a true or false. Statements?
First there was logic...

A statement is a true or false.
Statements?

3 = 4 − 1 ?
First there was logic...

A statement is a true or false.
Statements?
 \(3 = 4 - 1\) ? Statement!
First there was logic...

A statement is a true or false.
Statements?

3 = 4 – 1 ? Statement!
3 = 5 ?
A statement is a true or false. Statements?
3 = 4 – 1 ? Statement!
3 = 5 ? Statement!
First there was logic...

A statement is a true or false.
Statements?
 \(3 = 4 - 1\) ? Statement!
 \(3 = 5\) ? Statement!
 \(3\) ?
First there was logic...

A statement is a true or false. Statements?

- $3 = 4 - 1$? Statement!
- $3 = 5$? Statement!
- 3 ? Not a statement!
First there was logic...

A statement is a true or false.

Statements?

3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

n = 3 ?
First there was logic...

A statement is a true or false.
Statements?
 $3 = 4 - 1$? Statement!
 $3 = 5$? Statement!
 3 ? Not a statement!
 $n = 3$? Not a statement...
First there was logic...

A statement is a true or false.

Statements?

\[3 = 4 - 1 \] ? Statement!
\[3 = 5 \] ? Statement!
\[3 \] ? Not a statement!
\[n = 3 \] ? Not a statement...but a predicate.
First there was logic...

A statement is a true or false.

Statements?
 \(3 = 4 - 1\) ? Statement!
 \(3 = 5\) ? Statement!
 \(3\) ? Not a statement!
 \(n = 3\) ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
First there was logic...

A statement is a true or false.

Statements?

3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: \(x = 3 \)
First there was logic...

A statement is a true or false.
Statements?
- $3 = 4 - 1$? Statement!
- $3 = 5$? Statement!
- 3 ? Not a statement!
- $n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
- Example: $x = 3$ Given a value for x, becomes a statement.
A statement is a true or false.

Statements?

3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: \(x = 3 \) Given a value for \(x \), becomes a statement.
Predicatetrue
A statement is a true or false.

Statements?

$3 = 4 - 1$? Statement!

$3 = 5$? Statement!

3 ? Not a statement!

$n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: $x = 3$ Given a value for x, becomes a statement.

Predicate?

$n > 3$?
First there was logic...

A statement is a true or false.

Statements?

3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: $x = 3$ Given a value for x, becomes a statement.

Predicate?

$n > 3$? Predicate: $P(n)$!
First there was logic...

A statement is a true or false.
Statements?

\[3 = 4 - 1 \ ? \text{ Statement!} \]
\[3 = 5 \ ? \text{ Statement!} \]
\[3 \ ? \text{ Not a statement!} \]
\[n = 3 \ ? \text{ Not a statement...but a predicate.} \]

Predicate: Statement with free variable(s).

Example: \(x = 3 \)
Given a value for \(x \), becomes a statement.

Predicate?

\[n > 3 \ ? \text{ Predicate: } P(n)! \]
\[x = y? \]
First there was logic...

A statement is a true or false.
Statements?
 \[3 = 4 - 1 \] ? Statement!
 \[3 = 5 \] ? Statement!
 \[3 \] ? Not a statement!
 \[n = 3 \] ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: \(x = 3 \) Given a value for \(x \), becomes a statement.
Predicate?
 \(n > 3 \) ? Predicate: \(P(n) \)!
 \(x = y \) ? Predicate: \(P(x, y) \)!
First there was logic...

A statement is a true or false.

Statements?
 \(3 = 4 - 1\) ? Statement!
 \(3 = 5\) ? Statement!
 \(3\) ? Not a statement!
 \(n = 3\) ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: \(x = 3\) Given a value for \(x\), becomes a statement.

Predicate?
 \(n > 3\) ? Predicate: \(P(n)\)!
 \(x = y\)? Predicate: \(P(x, y)\)!
 \(x + y\)?
First there was logic...

A statement is a true or false.

Statements?

3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

n = 3 ? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: \(x = 3 \) Given a value for \(x \), becomes a statement.

Predicate?

\(n > 3 \) ? Predicate: \(P(n) \)!
\(x = y \) ? Predicate: \(P(x, y) \)!
\(x + y \) ? No.
First there was logic...

A statement is a true or false.

Statements?

3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!

\(n = 3 \) ? Not a statement...but a **predicate**.

Predicate: **Statement with free variable(s).**

Example: \(x = 3 \)
Given a value for \(x \), becomes a statement.

Predicate?

\(n > 3 \) ? Predicate: \(P(n)! \)

\(x = y \)? Predicate: \(P(x,y)! \)

\(x + y \)? No. An expression, not a statement.
A statement is a true or false. Statements?
- $3 = 4 - 1$? Statement!
- $3 = 5$? Statement!
- 3? Not a statement!
- $n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: $x = 3$ Given a value for x, becomes a statement.

Predicate?
- $n > 3$? Predicate: $P(n)$!
- $x = y$? Predicate: $P(x, y)$!
- $x + y$? No. An expression, not a statement.

Quantifiers:
First there was logic...

A statement is a true or false.
Statements?
3 = 4 – 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement...but a predicate.

Predicate: **Statement with free variable(s).**
Example: \(x = 3 \) Given a value for \(x \), becomes a statement.

Predicate?
\(n > 3 \) ? Predicate: \(P(n) \)!
\(x = y \)? Predicate: \(P(x, y) \)!
\(x + y \)? No. An expression, not a statement.

Quantifiers:
\((\forall x) \ P(x) \).
First there was logic...

A statement is a true or false.

Statements?

- $3 = 4 - 1$? Statement!
- $3 = 5$? Statement!
- 3 ? Not a statement!
- $n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

- Example: $x = 3$
 Given a value for x, becomes a statement.

Predicate?

- $n > 3$? Predicate: $P(n)$!
- $x = y$? Predicate: $P(x, y)$!
- $x + y$? No. An expression, not a statement.

Quantifiers:

- $(\forall x) P(x)$. For every x, $P(x)$ is true.
A statement is a true or false.

Statements?
- $3 = 4 - 1$? Statement!
- $3 = 5$? Statement!
- 3 ? Not a statement!
- $n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
- Example: $x = 3$
 Given a value for x, becomes a statement.

Predicate?
- $n > 3$? Predicate: $P(n)$!
- $x = y$? Predicate: $P(x, y)$!
- $x + y$? No. An expression, not a statement.

Quantifiers:
- $(\forall x) P(x)$. For every x, $P(x)$ is true.
- $(\exists x) P(x)$.
First there was logic...

A statement is a true or false.

Statements?
3 = 4 − 1 ? Statement!
3 = 5 ? Statement!
3 ? Not a statement!
n = 3 ? Not a statement... but a predicate.

Predicate: **Statement with free variable(s)**.
Example: \(x = 3 \) Given a value for \(x \), becomes a statement.

Predicate?
n > 3 ? Predicate: \(P(n) \)!
x = y? Predicate: \(P(x, y) \)!
x + y? No. An expression, not a statement.

Quantifiers:
\((\forall x) \ P(x)\). For every \(x \), \(P(x) \) is true.
\((\exists x) \ P(x)\). There exists an \(x \), where \(P(x) \) is true.

First there was logic...

A statement is a true or false.
Statements?
 $3 = 4 - 1$? Statement!
 $3 = 5$? Statement!
 3 ? Not a statement!
 $n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).
Example: $x = 3$ Given a value for x, becomes a statement.

Predicate?
 $n > 3$? Predicate: $P(n)$!
 $x = y$? Predicate: $P(x, y)$!
 $x + y$? No. An expression, not a statement.

Quantifiers:
 $(\forall x) P(x)$. For every x, $P(x)$ is true.
 $(\exists x) P(x)$. There exists an x, where $P(x)$ is true.
 $(\forall n \in N), n^2 \geq n$.
A statement is a true or false.

Statements?
- $3 = 4 - 1$? Statement!
- $3 = 5$? Statement!
- 3 ? Not a statement!
- $n = 3$? Not a statement...but a predicate.

Predicate: Statement with free variable(s).

Example: $x = 3$
Given a value for x, becomes a statement.

Predicate?
- $n > 3$? Predicate: $P(n)$!
- $x = y$? Predicate: $P(x, y)$!
- $x + y$? No. An expression, not a statement.

Quantifiers:

$(\forall x) P(x)$. For every x, $P(x)$ is true.

$(\exists x) P(x)$. There exists an x, where $P(x)$ is true.

$(\forall n \in N), n^2 \geq n$.

$(\forall x \in R)(\exists y \in R)y > x$.

First there was logic...
First there was logic...

A statement is a true or false.

Statements?
- $3 = 4 - 1$? Statement!
- $3 = 5$? Statement!
- 3 ? Not a statement!
- $n = 3$? Not a statement... but a predicate.

Predicate: Statement with free variable(s).

Example: $x = 3$
Given a value for x, becomes a statement.

Predicate?
- $n > 3$? Predicate: $P(n)!$
- $x = y$? Predicate: $P(x, y)!$
- $x + y$? No. An expression, not a statement.

Quantifiers:
- $(\forall x) P(x)$. For every x, $P(x)$ is true.
- $(\exists x) P(x)$. There exists an x, where $P(x)$ is true.

$(\forall n \in N), n^2 \geq n.$
$(\forall x \in R)(\exists y \in R)y > x.$
Connecting Statements

\[A \land B, A \lor B, \neg A. \]
Connecting Statements

\[A \wedge B, \ A \vee B, \ \neg A. \]

You got this!
Connecting Statements

\[A \land B, \ A \lor B, \ \neg A. \]

You got this!

Propositional Expressions and Logical Equivalence
Connecting Statements

\[A \land B, \ A \lor B, \ \neg A. \]

You got this!

Propositional Expressions and Logical Equivalence

\[(A \implies B) \equiv (\neg A \lor B)\]
Connecting Statements

\(A \land B, A \lor B, \neg A. \)

You got this!

Propositional Expressions and Logical Equivalence

\[(A \implies B) \equiv (\neg A \lor B) \]
\[\neg(A \lor B) \equiv (\neg A \land \neg B) \]
Connecting Statements

\(A \land B, A \lor B, \neg A. \)

You got this!

Propositional Expressions and Logical Equivalence

\[
(A \implies B) \equiv (\neg A \lor B) \\
\neg (A \lor B) \equiv (\neg A \land \neg B)
\]
You got this!

Propositional Expressions and Logical Equivalence

\[(A \implies B) \equiv (\neg A \lor B)\]
\[\neg (A \lor B) \equiv (\neg A \land \neg B)\]

Proofs: truth table or manipulation of known formulas.
Connecting Statements

\(A \land B, A \lor B, \neg A.\)

You got this!

Propositional Expressions and Logical Equivalence

\[(A \implies B) \equiv (\neg A \lor B)\]
\[\neg (A \lor B) \equiv (\neg A \land \neg B)\]

Proofs: truth table or manipulation of known formulas.

\[(\forall x)(P(x) \land Q(x)) \equiv (\forall x)P(x) \land (\forall x)Q(x)\]
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even?

$a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$.

Integers closed under multiplication!

a^2 is even.

Contrapositive:

$P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.

Contrapositive: a is even $\implies a^2$ is even.

Contradiction:

$P \neg P \implies \text{false}$

$\neg P \implies R \land \neg R$.

Useful for prove something does not exist:

Example: rational representation of $\sqrt{2}$ does not exist.

Example: finite set of primes does not exist.

Example: rogue couple does not exist.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even?

Integers closed under multiplication!

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.

Contrapositive: a is even $\implies a^2$ is even.

Contradiction: $P \neg P \implies \false$

$\neg P \implies R \land \neg R$

Useful for prove something does not exist:

Example: rational representation of $\sqrt{2}$ does not exist.

Example: finite set of primes does not exist.

Example: rogue couple does not exist.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$
..and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies a^2 \) is even.

Approach: What is even? \(a = 2k \)
\[
a^2 = 4k^2.
\]
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$
..and then proofs...

Direct: $P \implies Q$

Example: a is even implies a^2 is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd implies a is odd.

Contrapositive: a is even implies a^2 is even.

Contradiction: $P \implies \neg P$.

$\neg P \implies R \land \neg R$.

Useful for prove something does not exist:

Example: rational representation of $\sqrt{2}$ does not exist.

Example: finite set of primes does not exist.

Example: rogue couple does not exist.
..and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies \) \(a^2 \) is even.

Approach: What is even? \(a = 2k \)

\[a^2 = 4k^2. \]

What is even?

\[a^2 = 2(2k^2) \]

Integers closed under multiplication!

\(a^2 \) is even.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.

Contrapositive: $P \implies Q$
..and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies a^2 \) is even.

Approach: What is even? \(a = 2k \)

\[
a^2 = 4k^2.
\]

What is even?

\[
a^2 = 2(2k^2)
\]

Integers closed under multiplication!

\(a^2 \) is even.

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P \).
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

\[a^2 = 4k^2. \]

What is even?

\[a^2 = 2(2k^2) \]

Integers closed under multiplication!

a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.
..and then proofs...

Direct: $P \implies Q$
Example: a is even $\implies a^2$ is even.
 Approach: What is even? $a = 2k$
 $a^2 = 4k^2$.
 What is even?
 $a^2 = 2(2k^2)$
 Integers closed under multiplication!
 a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.
Example: a^2 is odd $\implies a$ is odd.
 Contrapositive: a is even $\implies a^2$ is even.
..and then proofs...

Direct: $P \implies Q$
 Example: a is even $\implies a^2$ is even.
 Approach: What is even? $a = 2k$
 $a^2 = 4k^2$.
 What is even?
 $a^2 = 2(2k^2)$
 Integers closed under multiplication!
 a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.
 Example: a^2 is odd $\implies a$ is odd.
 Contrapositive: a is even $\implies a^2$ is even.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$

$a^2 = 4k^2$.

What is even?

$a^2 = 2(2k^2)$

Integers closed under multiplication!

a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.

Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P
..and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies a^2 \) is even.

Approach: What is even? \(a = 2k \)

\[a^2 = 4k^2. \]

What is even?

\[a^2 = 2(2k^2) \]

Integers closed under multiplication!

\(a^2 \) is even.

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P \).

Example: \(a^2 \) is odd \(\implies a \) is odd.

Contrapositive: \(a \) is even \(\implies a^2 \) is even.

Contradiction: \(P \)

\(\neg P \implies \textbf{false} \)
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.
Approach: What is even? $a = 2k$
$a^2 = 4k^2$.
What is even?
$a^2 = 2(2k^2)$
Integers closed under multiplication!
a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.
Example: a^2 is odd $\implies a$ is odd.
Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P
$\neg P \implies \text{false}$
$\neg P \implies R \land \neg R$
..and then proofs...

Direct: $P \implies Q$
Example: a is even $\implies a^2$ is even.
Approach: What is even? $a = 2k$
$a^2 = 4k^2$.
What is even?
$a^2 = 2(2k^2)$
Integers closed under multiplication!
a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.
Example: a^2 is odd $\implies a$ is odd.
Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P
$\neg P \implies \textbf{false}$
$\neg P \implies R \land \neg R$
Useful for prove something does not exist:
..and then proofs...

Direct: $P \implies Q$
Example: a is even $\implies a^2$ is even.
Approach: What is even? $a = 2k$
\[a^2 = 4k^2. \]
What is even?
\[a^2 = 2(2k^2) \]
Integers closed under multiplication!
a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.
Example: a^2 is odd $\implies a$ is odd.
Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P
\[\neg P \implies \text{false} \]
\[\neg P \implies R \land \neg R \]
Useful for prove something does not exist:
Example: rational representation of $\sqrt{2}$
..and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies a^2 \) is even.

Approach: What is even? \(a = 2k \)
\[
a^2 = 4k^2.
\]
What is even?
\[
a^2 = 2(2k^2)
\]
Integers closed under multiplication!

\(a^2 \) is even.

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P \).

Example: \(a^2 \) is odd \(\implies a \) is odd.

Contrapositive: \(a \) is even \(\implies a^2 \) is even.

Contradiction: \(P \)
\[
\neg P \implies \text{false}
\]
\[
\neg P \implies R \land \neg R
\]
Useful for prove something does not exist:
Example: rational representation of \(\sqrt{2} \) does not exist.
..and then proofs...

Direct: $P \implies Q$

Example: a is even $\implies a^2$ is even.

Approach: What is even? $a = 2k$
$a^2 = 4k^2$.

What is even?
$a^2 = 2(2k^2)$
Integers closed under multiplication!
a^2 is even.

Contrapositive: $P \implies Q$ or $\neg Q \implies \neg P$.

Example: a^2 is odd $\implies a$ is odd.

Contrapositive: a is even $\implies a^2$ is even.

Contradiction: P
$\neg P \implies \text{false}$
$\neg P \implies R \land \neg R$

Useful for prove something does not exist:
Example: rational representation of $\sqrt{2}$ does not exist.
Example: finite set of primes
..and then proofs...

Direct: \(P \implies Q \)
Example: \(a \) is even \(\implies \) \(a^2 \) is even.
Approach: What is even? \(a = 2k \)
\[a^2 = 4k^2. \]
What is even?
\[a^2 = 2(2k^2) \]
Integers closed under multiplication!
\(a^2 \) is even.

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P. \)
Example: \(a^2 \) is odd \(\implies \) \(a \) is odd.
Contrapositive: \(a \) is even \(\implies \) \(a^2 \) is even.

Contradiction: \(P \)
\[\neg P \implies \text{false} \]
\[\neg P \implies R \land \neg R \]
Useful for prove something does not exist:
Example: rational representation of \(\sqrt{2} \) does not exist.
Example: finite set of primes does not exist.
..and then proofs...

Direct: \(P \implies Q \)

Example: \(a \) is even \(\implies \) \(a^2 \) is even.

Approach: What is even? \(a = 2k \)
\[a^2 = 4k^2. \]

What is even?
\[a^2 = 2(2k^2) \]
Integers closed under multiplication!
\(a^2 \) is even.

Contrapositive: \(P \implies Q \) or \(\neg Q \implies \neg P \).

Example: \(a^2 \) is odd \(\implies \) \(a \) is odd.
Contrapositive: \(a \) is even \(\implies \) \(a^2 \) is even.

Contradiction: \(P \)
\[\neg P \implies \text{false} \]
\[\neg P \implies R \land \neg R \]

Useful for prove something does not exist:
Example: rational representation of \(\sqrt{2} \) does not exist.
Example: finite set of primes does not exist.
Example: rogue couple does not exist.
...jumping forward..

Contradiction in induction:
...jumping forward..

Contradiction in induction:
contradict place where induction step doesn’t hold.
...jumping forward..

Contradiction in induction:
contradict place where induction step doesn’t hold.

Well Ordering Principle.
...jumping forward..

Contradiction in induction:
contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
...jumping forward..

Contradiction in induction:
contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
first day where women does not improve.
...jumping forward..

Contradiction in induction:
 contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
 first day where women does not improve.
 first day where any man rejected by optimal women.
Contradiction in induction:
 contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
 first day where women does not improve.
 first day where any man rejected by optimal women.
Do not exist.
...jumping forward..

Contradiction in induction:
contradict place where induction step doesn’t hold.

Well Ordering Principle.
Stable Marriage:
first day where women does not improve.
first day where any man rejected by optimal women.
Do not exist.
...jumping forward..

Contradiction in induction:
 contradict place where induction step doesn’t hold.

Well Ordering Principle.
 Stable Marriage:
 first day where women does not improve.
 first day where any man rejected by optimal women.
 Do not exist.
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n + 1)) \equiv (\forall n \in \mathbb{N}) P(n). \]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in N) P(n)). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).
...and then induction...

\[P(0) \land (\forall n)(P(n) \implies P(n + 1)) \equiv (\forall n \in \mathbb{N}) P(n). \]

Thm: For all \(n \geq 1, 8 \mid 3^{2n} - 1. \)

Induction on \(n. \)
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1, 8 \mid 3^{2n} - 1. \)

Induction on \(n. \)

Base: \(8 \mid 3^2 - 1. \)
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1 \), \(8|3^{2n} - 1 \).

Induction on \(n \).

Base: \(8|3^2 - 1 \).
...and then induction...

\[P(0) \land (\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n). \]

Thm: For all \(n \geq 1, \) \(8 \mid 3^{2n} - 1. \)

Induction on \(n. \)

Base: \(8 \mid 3^2 - 1. \)

Induction Hypothesis: Assume \(P(n): \) True for some \(n. \)
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1 \), \(8 | 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 | 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

Induction Step: Prove \(P(n+1) \)
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in N) P(n). \]

Thm: For all \(n \geq 1 \), \(8 | 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 | 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

Induction Step: Prove \(P(n+1) \)

\[3^{2n+2} - 1 = \]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \Rightarrow P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n). \]

Thm: For all \(n \geq 1, 8 \mid 3^{2n} - 1. \)

Induction on \(n. \)

Base: \(8 \mid 3^2 - 1. \)

Induction Hypothesis: Assume \(P(n): \) True for some \(n. \)

Induction Step: Prove \(P(n+1) \)
\[3^{2(n+2)} - 1 = 9(3^{2n}) - 1 \]
...and then induction...

\[P(0) \land ((\forall n) (P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

\[(3^{2n} - 1 = 8d)\]

Induction Step: Prove \(P(n+1) \)

\[3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad (\text{by induction hypothesis})\]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

\(3^{2n} - 1 = 8d \)

Induction Step: Prove \(P(n + 1) \)

\[3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad \text{(by induction hypothesis)} \]
\[= 9(8d + 1) - 1 \]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n + 1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).
\[(3^{2n} - 1 = 8d) \]

Induction Step: Prove \(P(n + 1) \)
\[3^{2n+2} - 1 = 9(3^{2n}) - 1 \] (by induction hypothesis)
\[= 9(8d + 1) - 1 \]
\[= 72d + 8 \]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).

\(3^{2n} - 1 = 8d \) \(\quad (3^{2n} - 1 = 8d) \)

Induction Step: Prove \(P(n+1) \)

\[3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad \text{(by induction hypothesis)} \]
\[= 9(8d + 1) - 1 \]
\[= 72d + 8 \]
\[= 8(9d + 1) \]
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in \mathbb{N}) P(n)). \]

Thm: For all \(n \geq 1, 8 | 3^{2n} - 1. \)

Induction on \(n. \)

Base: \(8 | 3^2 - 1. \)

Induction Hypothesis: Assume \(P(n): \) True for some \(n. \)

\((3^{2n} - 1 = 8d) \)

Induction Step: Prove \(P(n+1) \)

\[
3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad \text{(by induction hypothesis)} \\
= 9(8d + 1) - 1 \\
= 72d + 8 \\
= 8(9d + 1)
\]

Divisible by 8.
...and then induction...

\[P(0) \land ((\forall n)(P(n) \implies P(n+1)) \equiv (\forall n \in N) P(n)). \]

Thm: For all \(n \geq 1 \), \(8 \mid 3^{2n} - 1 \).

Induction on \(n \).

Base: \(8 \mid 3^2 - 1 \).

Induction Hypothesis: Assume \(P(n) \): True for some \(n \).
\[(3^{2n} - 1 = 8d) \]

Induction Step: Prove \(P(n+1) \)
\[
3^{2n+2} - 1 = 9(3^{2n}) - 1 \quad \text{(by induction hypothesis)}
\]
\[
= 9(8d + 1) - 1
\]
\[
= 72d + 8
\]
\[
= 8(9d + 1)
\]

Divisible by 8.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.
Each person has completely ordered preference list
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
How many pairs?
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.

How many pairs? n.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.

- How many pairs? n.
- People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners.

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?
No, for roommates problem.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
How many pairs? n.
People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list
contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
How many pairs? n.
People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners
Stable Marriage: a study in definitions and WOP.

\(n \)-men, \(n \)-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
- Set of pairs \((m_i, w_j)\) containing all people *exactly* once.
- How many pairs? \(n \).
- People in pair are **partners** in pairing.

Rogue Couple in a pairing.
- A \(m_j \) and \(w_k \) who like each other more than their partners

Stable Pairing.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
- Set of pairs (m_i, w_j) containing all people exactly once.
 - How many pairs? n.
 - People in pair are partners in pairing.

Rogue Couple in a pairing.
- A m_j and w_k who like each other more than their partners

Stable Pairing.
- Pairing with no rogue couples.
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
How many pairs? n.
People in pair are *partners* in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
How many pairs? n.
People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?
Stable Marriage: a study in definitions and WOP.

n-men, n-women.

Each person has completely ordered preference list contains every person of opposite gender.

Pairing.
Set of pairs (m_i, w_j) containing all people *exactly* once.
How many pairs? n.
People in pair are **partners** in pairing.

Rogue Couple in a pairing.
A m_j and w_k who like each other more than their partners

Stable Pairing.
Pairing with no rogue couples.

Does stable pairing exist?
No, for roommates problem.
Traditional Marriage Algorithm:

Each Day:
- All men propose to favorite woman who has not yet rejected him.
- Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
- Man crosses off woman who rejected him.
- Woman's current proposer is "on string."

"Propose and Reject."
- Either men propose or women. But not both.
- Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
- Every day, if man on string for woman, \(\Rightarrow \) any future man on string is better.

Stability:
- No rogue couple.
 - Rogue couple \((M, W)\) \(\Rightarrow \) M proposed to W \(\Rightarrow \) W ended up with someone she liked better than M.

Not rogue couple!
TMA.

Traditional Marriage Algorithm:

Each Day:
TMA.

Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.
Traditional Marriage Algorithm:

Each Day:
- All men propose to favorite woman who has not yet rejected him.
- Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
TMA.

Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
TMA.

Traditional Marriage Algorithm:

Each Day:
- All men propose to favorite woman who has not yet rejected him.
- Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
- Man **crosses off** woman who rejected him.
- Woman’s current proposer is **“on string.”**
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.”
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women.
Traditional Marriage Algorithm:

Each Day:
 All men propose to favorite woman who has not yet rejected him.
 Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
 Man **crosses off** woman who rejected him.
 Woman’s current proposer is “**on string.**”

“Propose and Reject.” : Either men propose or women. But not both.
Traditional Marriage Algorithm:

Each Day:
 All men propose to favorite woman who has not yet rejected him.
 Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
 Man crosses off woman who rejected him.
 Woman’s current proposer is “on string.”

“Propose and Reject.”: Either men propose or women. But not both.
 Traditional propose and reject where men propose.
Traditional Marriage Algorithm:

Each Day:
 All men propose to favorite woman who has not yet rejected him.
 Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
 Man crosses off woman who rejected him.
 Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
 Traditional propose and reject where men propose.
Traditional Marriage Algorithm:

Each Day:
- All men propose to favorite woman who has not yet rejected him.
- Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
- Man crosses off woman who rejected him.
- Woman’s current proposer is “on string.”

“Propose and Reject.”: Either men propose or women. But not both.
- Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man **crosses off** woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
- Man crosses off woman who rejected him.
- Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
\[\rightarrow \] any future man on string is better.
TMA.

Traditional Marriage Algorithm:

Each Day:
 All men propose to favorite woman who has not yet rejected him.
 Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
 Man crosses off woman who rejected him.
 Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
 Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
 Every day, if man on string for woman,
 any future man on string is better.

Stability:
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject”: Either men propose or women. But not both.
Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
any future man on string is better.

Stability: No rogue couple.
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both. Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
any future man on string is better.

Stability: No rogue couple.
rogue couple (M,W)
Traditional Marriage Algorithm:

Each Day:
- All men propose to favorite woman who has not yet rejected him.
- Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
- Man **crosses off** woman who rejected him.
- Woman’s current proposer is “on string.”

“Propose and Reject.”: Either men propose or women. But not both.
- Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
- Every day, if man on string for woman,
 \[\rightarrow \text{ any future man on string is better.} \]

Stability: No rogue couple.
- rogue couple (M,W)
 \[\rightarrow M \text{ proposed to W} \]
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man **crosses off** woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.” : Either men propose or women. But not both.
Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
\[\implies \text{any future man on string is better.} \]

Stability: No rogue couple.
rogue couple \((M,W)\)
\[\implies M \text{ proposed to } W \]
\[\implies W \text{ ended up with someone she liked better than } M. \]
Traditional Marriage Algorithm:

Each Day:
All men propose to favorite woman who has not yet rejected him.
Every woman rejects all but best men who proposes.

Useful Algorithmic Definitions:
Man crosses off woman who rejected him.
Woman’s current proposer is “on string.”

“Propose and Reject.”: Either men propose or women. But not both.
Traditional propose and reject where men propose.

Key Property: Improvement Lemma:
Every day, if man on string for woman,
any future man on string is better.

Stability: No rogue couple.
rogue couple (M,W)
M proposed to W
W ended up with someone she liked better than M.
Not rogue couple!
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing. Not necessarily first in list.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing. Not necessarily first in list. Possibly no stable pairing with that partner.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: \(TMA \) produces male optimal pairing, \(S \).
First man \(M \) to lose optimal partner.
Better partner \(W \) for \(M \).
Different stable pairing \(T \).

\(TMA: \) \(M \) asked \(W \) first!
There is \(M' \) who bumps \(M \) in \(TMA \).
\(W \) prefers \(M' \).
\(M' \) likes \(W \) at least as much as optimal partner.
Not first bump.
\(M' \) and \(W \) is rogue couple in \(T \).

Thm: Woman pessimal.
Man optimal \(\Rightarrow \) Woman pessimal.
Woman optimal \(\Rightarrow \) Man pessimal.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.

Thm: Woman pessimal.
Man optimal \Rightarrow Woman pessimal.
Woman optimal \Rightarrow Man pessimal.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
 Not necessarily first in list.
 Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
 First man M to lose optimal partner.
 Better partner W for M.
 Different stable pairing T.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
Not first bump.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing. Not necessarily first in list. Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
Not first bump.
M' and W is rogue couple in T.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing. Not necessarily first in list. Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
- First man M to lose optimal partner.
- Better partner W for M.
- Different stable pairing T.
- TMA: M asked W first!
- There is M' who bumps M in TMA.
- W prefers M'.
- M' likes W at least as much as optimal partner.
 - Not first bump.
- M' and W is rogue couple in T.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing. Not necessarily first in list. Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
 Not first bump.
M' and W is rogue couple in T.

Thm: woman pessimal.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
Not first bump.
M' and W is rogue couple in T.

Thm: woman pessimal.
Man optimal \implies Woman pessimal.
Optimality/Pessimal

Optimal partner if best partner in any stable pairing.
Not necessarily first in list.
Possibly no stable pairing with that partner.

Man-optimal pairing is pairing where every man gets optimal partner.

Thm: TMA produces male optimal pairing, S.
First man M to lose optimal partner.
Better partner W for M.
Different stable pairing T.
TMA: M asked W first!
There is M' who bumps M in TMA.
W prefers M'.
M' likes W at least as much as optimal partner.
Not first bump.
M' and W is rogue couple in T.

Thm: woman pessimal.

Man optimal \implies Woman pessimal.
Woman optimal \implies Man pessimal.
Graphs

\[G = (V, E) \]

- Set of vertices.
- Set of edges.
- Directed: ordered pair of vertices.
- Adjacent, Incident, Degree.
- In-degree, Out-degree.

Thm: Sum of degrees is twice the number of edges |

Degree of vertices is total incidences.

Pair of Vertices are Connected: If there is a path between them.

Connected Component: maximal set of connected vertices.

Connected Graph: one connected component.
Graphs

\[G = (V, E) \]
\[V \text{ - set of vertices.} \]
$G = (V, E)$
V - set of vertices.
$E \subseteq V \times V$ - set of edges.
Graphs

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.
Graphs...

\[G = (V, E) \]
\[V - \text{set of vertices.} \]
\[E \subseteq V \times V - \text{set of edges.} \]

Directed: ordered pair of vertices.

Connected Component: maximal set of connected vertices.

Connected Graph: one connected component.

Degree of vertices is total incidences.

Pair of Vertices are Connected: If there is a path between them.

In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).

Edge is incident to 2 vertices.
$G = (V, E)$

- V - set of vertices.
- $E \subseteq V \times V$ - set of edges.

Directed: ordered pair of vertices.

Thm: Sum of degrees is $2|E|$.

Edge is incident to 2 vertices.

Degree of vertices is total incidences.

Pair of Vertices are Connected: If there is a path between them.

Connected Component: maximal set of connected vertices.

Connected Graph: one connected component.
$G = (V, E)$

V - set of vertices.

$E \subseteq V \times V$ - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

Thm: Sum of degrees is $2 |E|$.

Edge is incident to two vertices.

Degree of vertices is total incidences.

Pair of Vertices are Connected: If there is a path between them.

Connected Component: maximal set of connected vertices.

Connected Graph: one connected component.
...Graphs...

\[G = (V, E) \]
\[V - \text{set of vertices.} \]
\[E \subseteq V \times V - \text{set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

In-degree, Out-degree.
Graphs

\[G = (V, E) \]

- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
Graphs...

\[G = (V, E) \]
\[V \text{ - set of vertices.} \]
\[E \subseteq V \times V \text{ - set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2|E|\).
Edge is incident to 2 vertices.
Graphs...

\[G = (V, E) \]
\[V \ - \text{set of vertices.} \]
\[E \subseteq V \times V \ - \text{set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

In-degree, Out-degree.

Thm: Sum of degrees is \(2|E|\).
Edge is incident to 2 vertices.
Degree of vertices is total incidences.
Graphs

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
- In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
- Edge is incident to 2 vertices.
- Degree of vertices is total incidences.
Graphs

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
Graphs...

\[G = (V, E) \]
\[V \text{ - set of vertices.} \]
\[E \subseteq V \times V \text{ - set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

In-degree, Out-degree.

Thm: Sum of degrees is \(2|E|\).

Edge is incident to 2 vertices.

Degree of vertices is total incidences.

Pair of Vertices are Connected:

If there is a path between them.
$G = (V, E)$

V - set of vertices.

$E \subseteq V \times V$ - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.

In-degree, Out-degree.

Thm: Sum of degrees is $2|E|$.

Edge is incident to 2 vertices.

Degree of vertices is total incidences.

Pair of Vertices are Connected:

If there is a path between them.
Graphs

\[G = (V, E) \]
\[V \text{ - set of vertices.} \]
\[E \subseteq V \times V \text{ - set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

Connected Component: maximal set of connected vertices.
Graphs

\[G = (V, E) \]
- \(V \) - set of vertices.
- \(E \subseteq V \times V \) - set of edges.

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
- In-degree, Out-degree.

Thm: Sum of degrees is \(2|E| \).
- Edge is incident to 2 vertices.
- Degree of vertices is total incidences.

Pair of Vertices are Connected:
- If there is a path between them.

Connected Component: maximal set of connected vertices.
Graphs

\[G = (V, E) \]
\[V - \text{set of vertices.} \]
\[E \subseteq V \times V - \text{set of edges.} \]

Directed: ordered pair of vertices.

Adjacent, Incident, Degree.
In-degree, Out-degree.

Thm: Sum of degrees is \(2|E|\).
Edge is incident to 2 vertices.
Degree of vertices is total incidences.

Pair of Vertices are Connected:
If there is a path between them.

Connected Component: maximal set of connected vertices.
Connected Graph: one connected component.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.
Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- Take a walk using each edge at most once.

Property:
- Return to starting point.

Proof Idea: Even degree.
- Recurse on connected components.
- Put together.

Property:
- Walk visits every component.

Proof Idea: Original graph connected.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:

- Take a walk using each edge at most once.

Property: return to starting point.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- **Take a walk using each edge at most once.**
- **Property:** return to starting point.
 - Proof Idea: Even degree.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- Take a walk using each edge at most once.
- **Property:** return to starting point.
 - Proof Idea: Even degree.

Recurse on connected components.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- Take a walk using each edge at most once.
- **Property:** return to starting point.
 - Proof Idea: Even degree.

Recurse on connected components.
Put together.
Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- **Take a walk using each edge at most once.**
- **Property:** return to starting point.
 - Proof Idea: Even degree.

Recurse on connected components.
Put together.
- **Property:** walk visits every component.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- Take a walk using each edge at most once.
- **Property:** return to starting point.
 - Proof Idea: Even degree.

Recurrse on connected components.
- **Property:** walk visits every component.
 - Proof Idea: Original graph connected.
Graph Algorithm: Eulerian Tour

Thm: Every connected graph where every vertex has even degree has an Eulerian Tour; a tour which visits every edge exactly once.

Algorithm:
- Take a walk using each edge at most once.
- **Property:** return to starting point.
 - Proof Idea: Even degree.
- Recurse on connected components.
- Put together.
 - **Property:** walk visits every component.
 - Proof Idea: Original graph connected.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of G assigns colors to vertices V where for each edge the endpoints have different colors.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices.
Graph Coloring.

Given $G = (V,E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors. Fewer colors than number of vertices. Fewer colors than max degree node.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
- Fewer colors than number of vertices.
- Fewer colors than max degree node.

Interesting things to do.
Graph Coloring.

Given $G = (V, E)$, a coloring of a G assigns colors to vertices V where for each edge the endpoints have different colors.

Notice that the last one, has one three colors.
Fewer colors than number of vertices.
Fewer colors than max degree node.

Interesting things to do. Algorithm!
Planar graphs and maps.

Planar graph coloring \equiv map coloring.
Planar graphs and maps.

Planar graph coloring \equiv map coloring.

Four color theorem is about planar graphs!
Theorem: Every planar graph can be colored with six colors.
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph.
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
From Euler’s Formula.
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.
Total degree: $2e$
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v}$
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v - 6)}{v}$
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph.
From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).
Six color theorem.

Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.
Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.
There exists a vertex with degree < 6
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph.
 From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).

There exists a vertex with degree < 6 or at most 5.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.
 Remove vertex v of degree at most 5.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph.
 From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).

There exists a vertex with degree \(< 6 \) or at most 5.
 Remove vertex \(v \) of degree at most 5.
 Inductively color remaining graph.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v - 6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

Remove vertex v of degree at most 5.
Inductively color remaining graph.
Color is available for v since only five neighbors...
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: \(e \leq 3v - 6 \) for any planar graph.
 From Euler’s Formula.

Total degree: \(2e \)
Average degree: \(\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v} \).

There exists a vertex with degree < 6 or at most 5.
 Remove vertex \(v \) of degree at most 5.
 Inductively color remaining graph.
 Color is available for \(v \) since only five neighbors... and only five colors are used.
Theorem: Every planar graph can be colored with six colors.

Proof:
Recall: $e \leq 3v - 6$ for any planar graph.
 From Euler’s Formula.

Total degree: $2e$
Average degree: $\leq \frac{2e}{v} \leq \frac{2(3v-6)}{v} \leq 6 - \frac{12}{v}$.

There exists a vertex with degree < 6 or at most 5.

 Remove vertex v of degree at most 5.
 Inductively color remaining graph.
 Color is available for v since only five neighbors...
 and only five colors are used.
Five color theorem

Theorem: Every planar graph can be colored with five colors.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently.

\[\text{Planar.} \quad \Rightarrow \quad \text{paths intersect at a vertex!} \]

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.
Contradiction.
Can recolor one of the neighbors.
And recolor “center” vertex.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component.

Planar. =⇒ paths intersect at a vertex!
What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.
Contradiction.
Can recolor one of the neighbors.
And recolor "center" vertex.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:

Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently.

Otherwise done.

Switch green to blue in component.

Done.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently.
Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently.
Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.

![Diagram of a planar graph with vertices colored with five different colors.](image-url)
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component. Done. Unless blue-green path to blue.
Switch red to orange in its component.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component. Done. Unless blue-green path to blue.
Switch red to orange in its component. Done.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof: Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.

Switch green to blue in component. Done. Unless blue-green path to blue.

Switch red to orange in its component. Done. Unless red-orange path to red.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently.
Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.

Planar.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.
Planar. \[\Rightarrow\] paths intersect at a vertex!
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.
Planar. \Rightarrow paths intersect at a vertex!

What color is it?
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently.
Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.

Planar. \(\implies \) paths intersect at a vertex!

What color is it?
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.

Planar. \(\Rightarrow\) paths intersect at a vertex!
What color is it?
Must be blue or green to be on that path.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component. Done. Unless blue-green path to blue.
Switch red to orange in its component. Done. Unless red-orange path to red.
Planar. \(\implies\) paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.
Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently.
Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.

Planar. \(\Rightarrow \) paths intersect at a vertex!

What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.

Planar. \(\Rightarrow\) paths intersect at a vertex!
What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.
Contradiction. Can recolor one of the neighbors. And recolor “center” vertex.
Five color theorem

Theorem: Every planar graph can be colored with five colors.

Preliminary Observation: Connected components of vertices with two colors in a legal coloring can switch colors.

Proof:
Again with the degree 5 vertex. Again recurse.

Assume neighbors are colored all differently. Otherwise done.
Switch green to blue in component.
Done. Unless blue-green path to blue.
Switch red to orange in its component.
Done. Unless red-orange path to red.

Planar. \implies paths intersect at a vertex!
What color is it?
Must be blue or green to be on that path.
Must be red or orange to be on that path.

Contradiction. Can recolor one of the neighbors. And recolor “center” vertex.
Four Color Theorem
Four Color Theorem

Theorem: Any planar graph can be colored with four colors.
Four Color Theorem

Theorem: Any planar graph can be colored with four colors.

Proof:
Theorem: Any planar graph can be colored with four colors.
Proof: Not Today!
Theorem: Any planar graph can be colored with four colors.

Proof: Not Today!
Graph Types: Complete Graph.

- K_n, $|V| = n$; every edge present.
- Degree of vertex: $|V| - 1$.
- Very connected; lots of edges: $n(n-1)/2$.

![Graph Types: Complete Graph.](image)
Graph Types: Complete Graph.

\[K_n, |V| = n \]
Graph Types: Complete Graph.

$K_n, \ |V| = n$

every edge present.
Graph Types: Complete Graph.

k_n, $|V| = n$

every edge present.

degree of vertex?
Graph Types: Complete Graph.

\[K_n, |V| = n \]

- every edge present.
- degree of vertex? \(|V| - 1\).
Graph Types: Complete Graph.

\[K_n, |V| = n \]

- every edge present.
- degree of vertex? \(|V| - 1\).

Very connected.
Graph Types: Complete Graph.

\[K_n, |V| = n \]

- every edge present.
- degree of vertex? \(|V| - 1\).

Very connected.

Lots of edges:
Graph Types: Complete Graph.

K_n, $|V| = n$

- every edge present.
- degree of vertex? $|V| - 1$.

Very connected.
Lots of edges: $n(n - 1)/2$.
Trees.

Definitions:
Definitions:

A connected graph without a cycle.
Trees.

Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
Trees.

Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- An acyclic graph where any edge addition creates a cycle.
Definitions:

A connected graph without a cycle.
A connected graph with $|V| - 1$ edges.
A connected graph where any edge removal disconnects it.
An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Minimally connected, minimum number of edges to connect.
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

Minimally connected, minimum number of edges to connect.

Property:
Trees.

Definitions:

- A connected graph without a cycle.
- A connected graph with $|V| - 1$ edges.
- A connected graph where any edge removal disconnects it.
- An acyclic graph where any edge addition creates a cycle.

To tree or not to tree!

- Minimally connected, minimum number of edges to connect.

Property:
- Can remove a single node and break into components of size at most $|V|/2$.
Hypercubes.

Also represents bit-strings nicely.

\[G = (V, E) \]

\[V = \{0, 1\}^n \]

\[E = \{ (x, y) | x \text{ and } y \text{ differ in one bit position.} \} \]
Hypercubes. Really connected.
Hypercube

Hypercubes. Really connected. $|V| \log |V|$ edges!
Hypercubes. Really connected. $|V| \log |V|$ edges!
Also represents bit-strings nicely.
Hypercubes. Really connected. $|V|\log |V|$ edges!
Also represents bit-strings nicely.
Hypercubes. Really connected. $|V| \log |V|$ edges!
Also represents bit-strings nicely.

$G = (V, E)$
Hypercube

Hypercubes. Really connected. \(|V| \log |V|\) edges!
Also represents bit-strings nicely.

\[G = (V, E)\]
\[|V| = \{0, 1\}^n,\]
Hypercubes. Really connected. \(|V| \log |V|\) edges!
Also represents bit-strings nicely.

\[G = (V, E) \]
\[|V| = \{0, 1\}^n, \]
\[|E| = \{(x, y) | x \text{ and } y \text{ differ in one bit position.}\} \]
Hypercubes. Really connected. \(|V|\log|V|\) edges!
Also represents bit-strings nicely.

\[G = (V, E)\]
\[|V| = \{0, 1\}^n,\]
\[|E| = \{(x, y)|x \text{ and } y \text{ differ in one bit position.}\}\]
Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.
Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An \(n \)-dimensional hypercube consists of a 0-subcube (1-subcube) which is a \(n - 1 \)-dimensional hypercube with nodes labelled \(0x \) \((1x)\) with the additional edges \((0x, 1x)\).
Recursive Definition.

A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges ($0x, 1x$).
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n - 1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An \(n \)-dimensional hypercube consists of a 0-subcube (1-subcube) which is a \(n - 1 \)-dimensional hypercube with nodes labelled \(0x \ (1x) \) with the additional edges \((0x, 1x)\).
A 0-dimensional hypercube is a node labelled with the empty string of bits.

An n-dimensional hypercube consists of a 0-subcube (1-subcube) which is a $n-1$-dimensional hypercube with nodes labelled $0x$ ($1x$) with the additional edges $(0x, 1x)$.

![Diagram of an n-dimensional hypercube]
Hypercube: properties

Rudrata Cycle: cycle that visits every node.
Rudrata Cycle: cycle that visits every node. Eulerian?

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.

Get from 000100 to 101000.

000100 → 100100 → 101100 → 101000

Correct bits in string, moves along path in hypercube!

Good communication network!
Rudrata Cycle: cycle that visits every node. Eulerian? If n is even.
Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.
Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Rudrata Cycle: cycle that visits every node. Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges. Best cut?
Rudrata Cycle: cycle that visits every node. Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges. Best cut? Cut apart subcubes:
Hypercube: properties

Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
 Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.
Rudrata Cycle: cycle that visits every node.
Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI:
Rudrata Cycle: cycle that visits every node.
 Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
 Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI: Also cuts represent boolean functions.
Rudrata Cycle: cycle that visits every node. Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges. Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI: Also cuts represent boolean functions.
Rudrata Cycle: cycle that visits every node.
Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.
FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
Rudrata Cycle: cycle that visits every node.
Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
Get from 000100 to 101000.
Rudrata Cycle: cycle that visits every node. If \(n \) is even.

Large Cuts: Cutting off \(k \) nodes needs \(\geq k \) edges. Best cut? Cut apart subcubes: cuts off \(2^n \) nodes with \(2^{n-1} \) edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes. Get from 000100 to 101000.

\[
000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000
\]
Rudrata Cycle: cycle that visits every node.
 Eulerian? If \(n \) is even.

Large Cuts: Cutting off \(k \) nodes needs \(\geq k \) edges.
 Best cut? Cut apart subcubes: cuts off \(2^n \) nodes with \(2^{n-1} \) edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
 Get from 000100 to 101000.
 000100 \(\rightarrow \) 100100 \(\rightarrow \) 101100 \(\rightarrow \) 101000
 Correct bits in string, moves along path in hypercube!
Hypercube: properties

Rudrata Cycle: cycle that visits every node.
Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
Get from 000100 to 101000.

\[000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000 \]
Correct bits in string, moves along path in hypercube!
Rudrata Cycle: cycle that visits every node.
Eulerian? If n is even.

Large Cuts: Cutting off k nodes needs $\geq k$ edges.
Best cut? Cut apart subcubes: cuts off 2^n nodes with 2^{n-1} edges.

FYI: Also cuts represent boolean functions.

Nice Paths between nodes.
Get from 000100 to 101000.
\[
000100 \rightarrow 100100 \rightarrow 101100 \rightarrow 101000
\]
Correct bits in string, moves along path in hypercube!

Good communication network!
Arithmetic modulo m.
Elements of equivalence classes of integers.
Modular Arithmetic...

Arithmetic modulo m.
Elements of equivalence classes of integers.
$\{0, \ldots, m - 1\}$
Modular Arithmetic...

Arithmetic modulo m.
Elements of equivalence classes of integers.
\{0,\ldots,m-1\}
and integer $i \equiv a \pmod{m}$
Arithmetic modulo m.
Elements of equivalence classes of integers.
\{0, \ldots, m - 1\}
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.

Negative numbers work the way you are used to.
$-3 \equiv 0 \pmod{7}$
$-3 \equiv 7 \pmod{7}$
$-3 \equiv 4 \pmod{7}$

Additive inverses are intuitively negative numbers.
Arithmetic modulo m. Elements of equivalence classes of integers.
\{0, \ldots, m-1\}
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders at the beginning, in the middle or at the end.

$58 + 32 = 90 = 6 \pmod{7}$

$58 + 32 = 2 + 4 = 6 \pmod{7}$

$58 + 32 = 2 + -3 = -1 = 6 \pmod{7}$

Negative numbers work the way you are used to.

$-3 = 0 \pmod{7}$

$-3 = 7 \pmod{7}$

$-3 = 4 \pmod{7}$

Additive inverses are intuitively negative numbers.
Arithmetic modulo m.
Elements of equivalence classes of integers.
$\{0, \ldots, m-1\}$
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders at the beginning, in the middle or at the end.

$58 + 32 = 90 = 6 \pmod{7}$

$58 + 32 = 2 + 4 = 6 \pmod{7}$

$58 + 32 = 2 + -3 = -1 = 6 \pmod{7}$

Negative numbers work the way you are used to.

$-3 = 0 \pmod{7}$

$-3 = 7 \pmod{7}$

$-3 = 4 \pmod{7}$

Additive inverses are intuitively negative numbers.
Arithmetic modulo m.
Elements of equivalence classes of integers.
$\{0, \ldots, m-1\}$
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders at the beginning,
Arithmetic modulo m.
Elements of equivalence classes of integers.
$\{0, \ldots, m-1\}$
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
Arithmetic modulo m.
Elements of equivalence classes of integers.
\{0, \ldots, m - 1\}
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
\quad or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
\quad or at the end.
Arithmetic modulo m.
Elements of equivalence classes of integers.
\{0, \ldots , m - 1\}
and integer $i \equiv a \pmod{m}$
\begin{align*}
\text{if } i &= a + km \text{ for integer } k. \\
\text{or if the remainder of } i \text{ divided by } m \text{ is } a.
\end{align*}

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

\begin{align*}
58 + 32 &= 90 = 6 \pmod{7}
\end{align*}
Arithmetic modulo m.

Elements of equivalence classes of integers.

\{0, \ldots, m-1\}

and integer $i \equiv a \pmod{m}$

if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.

Can do calculations by taking remainders

at the beginning,

in the middle

or at the end.

$58 + 32 = 90 = 6 \pmod{7}$

$58 + 32 = 2 + 4 = 6 \pmod{7}$
...Modular Arithmetic...

Arithmetic modulo \(m \).
Elements of equivalence classes of integers.
\[\{0, \ldots, m-1\} \]
and integer \(i \equiv a \pmod{m} \)
if \(i = a + km \) for integer \(k \).
or if the remainder of \(i \) divided by \(m \) is \(a \).

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

\[
\begin{align*}
58 + 32 &= 90 = 6 \pmod{7} \\
58 + 32 &= 2 + 4 = 6 \pmod{7} \\
58 + 32 &= 2 + (-3) = -1 = 6 \pmod{7}
\end{align*}
\]
Arithmetic modulo m.
Elements of equivalence classes of integers.
$\{0, \ldots , m-1\}$
and integer $i \equiv a \pmod{m}$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

$58 + 32 = 90 = 6 \pmod{7}$
$58 + 32 = 2 + 4 = 6 \pmod{7}$
$58 + 32 = 2 + -3 = -1 = 6 \pmod{7}$
Arithmetic modulo m.

Elements of equivalence classes of integers.
\{$0, \ldots, m-1$\}

and integer $i \equiv a \pmod{m}$

if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

\[
58 + 32 = 90 = 6 \pmod{7} \\
58 + 32 = 2 + 4 = 6 \pmod{7} \\
58 + 32 = 2 + (-3) = -1 = 6 \pmod{7}
\]

Negative numbers work the way you are used to.
Arithmetic modulo m.

Elements of equivalence classes of integers.

$\{0,\ldots,m-1\}$

and integer $i \equiv a \pmod{m}$

if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.

Can do calculations by taking remainders

at the beginning,

in the middle

or at the end.

$$58 + 32 = 90 = 6 \pmod{7}$$

$$58 + 32 = 2 + 4 = 6 \pmod{7}$$

$$58 + 32 = 2 + (-3) = -1 = 6 \pmod{7}$$

Negative numbers work the way you are used to.

$$-3 = 0 - 3 = 7 - 3 = 4 \pmod{7}$$
Arithmetic modulo m.
Elements of equivalence classes of integers.
\{$0, \ldots, m - 1\}$
and integer $i \equiv a \mod m$
if $i = a + km$ for integer k.
or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

\[
58 + 32 = 90 = 6 \mod 7
\]
\[
58 + 32 = 2 + 4 = 6 \mod 7
\]
\[
58 + 32 = 2 + -3 = -1 = 6 \mod 7
\]

Negative numbers work the way you are used to.
\[
-3 = 0 - 3 = 7 - 3 = 4 \mod 7
\]
Arithmetic modulo m.

Elements of equivalence classes of integers.
$\{0, \ldots, m-1\}$

and integer $i \equiv a \pmod{m}$

if $i = a + km$ for integer k.

or if the remainder of i divided by m is a.

Can do calculations by taking remainders
at the beginning,
in the middle
or at the end.

$58 + 32 = 90 = 6 \pmod{7}$
$58 + 32 = 2 + 4 = 6 \pmod{7}$
$58 + 32 = 2 + -3 = -1 = 6 \pmod{7}$

Negative numbers work the way you are used to.
$-3 = 0 - 3 = 7 - 3 = 4 \pmod{7}$

Additive inverses are intuitively negative numbers.
Modular Arithmetic and multiplicative inverses.

\[3^{-1} \pmod{7} \]?

Inverse Unique?
Yes.
Proof:
a and b inverses of x (mod n)

\[ax = bx = 1 \pmod{n} \]

\[axb = bxb = b \pmod{n} \]

\[a = b \pmod{n} \].

\[3^{-1} \pmod{6} \]?

No, no, no....

\{ 3(1), 3(2), 3(3), 3(4), 3(5) \}

\{ 3, 6, 3, 6, 3 \}

See, ... no inverse!
Modular Arithmetic and multiplicative inverses.

\[3^{-1} \pmod{7} \equiv 5 \]
Modular Arithmetic and multiplicative inverses.

\[3^{-1} \pmod{7} \, ? \, 5 \]
\[5^{-1} \pmod{7} \, ? \]
Modular Arithmetic and multiplicative inverses.

\[3^{-1} \pmod{7} \equiv 5 \]
\[5^{-1} \pmod{7} \equiv 3 \]
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7} \not\equiv 5$

$5^{-1} \pmod{7} \equiv 3$

Inverse Unique?
Modular Arithmetic and multiplicative inverses.

\[3^{-1} \pmod{7} \equiv 5 \]
\[5^{-1} \pmod{7} \equiv 3 \]

Inverse Unique? Yes.
Modular Arithmetic and multiplicative inverses.

\[
3^{-1} \pmod{7}? \ 5 \\
5^{-1} \pmod{7}? \ 3
\]

Inverse Unique? Yes.

Proof: \(a\) and \(b\) inverses of \(x \pmod{n}\)

Modular Arithmetic and multiplicative inverses.

\[3^{-1} \pmod{7} \text{? } 5 \]
\[5^{-1} \pmod{7} \text{? } 3 \]

Inverse Unique? Yes.

Proof: \(a \) and \(b \) inverses of \(x \pmod{n} \)
\[ax = bx = 1 \pmod{n} \]
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7} \equiv 5$

$5^{-1} \pmod{7} \equiv 3$

Inverse Unique? Yes.

Proof: a and b inverses of $x \pmod{n}$

$ax = bx = 1 \pmod{n}$

$axb = bxb = b \pmod{n}$
Modular Arithmetic and multiplicative inverses.

\[3^{-1} \pmod{7} \? 5 \]
\[5^{-1} \pmod{7} \? 3 \]

Inverse Unique? Yes.
Proof: \(a \) and \(b \) inverses of \(x \) \(\pmod{n} \)
\[ax = bx = 1 \pmod{n} \]
\[axb = bxb = b \pmod{n} \]
\[a = b \pmod{n} \].
Modular Arithmetic and multiplicative inverses.

3^{-1} \pmod{7}? 5
5^{-1} \pmod{7}? 3

Inverse Unique? Yes.
Proof: a and b inverses of x \pmod{n}
\[ax = bx = 1 \pmod{n} \]
\[axb = bxb = b \pmod{n} \]
\[a = b \pmod{n}. \]

3^{-1} \pmod{6}?
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.

Proof: a and b inverses of $x \pmod{n}$

$ax = bx = 1 \pmod{n}$
$axb = bxb = b \pmod{n}$
$a = b \pmod{n}$.

$3^{-1} \pmod{6}$? No, no, no....
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod 7$? 5

$5^{-1} \pmod 7$? 3

Inverse Unique? Yes.
Proof: a and b inverses of $x \pmod n$

- $ax = bx = 1 \pmod n$
- $axb = bxb = b \pmod n$
- $a = b \pmod n$.

$3^{-1} \pmod 6$? No, no, no....

{$3(1), 3(2), 3(3), 3(4), 3(5)$}
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.
Proof: a and b inverses of $x \pmod{n}$
$ax = bx = 1 \pmod{n}$
$axb = bxb = b \pmod{n}$
$a = b \pmod{n}$.

$3^{-1} \pmod{6}$? No, no, no....

$\{3(1), 3(2), 3(3), 3(4), 3(5)\}$
$\{3, 6, 3, 6, 3\}$
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.
Proof: a and b inverses of $x \pmod{n}$
\[
ax = bx = 1 \pmod{n}
\]
\[
axb = bxb = b \pmod{n}
\]
\[
a = b \pmod{n}.
\]

$3^{-1} \pmod{6}$? No, no, no....
\[
\{3(1), 3(2), 3(3), 3(4), 3(5)\}
\]
\[
\{3, 6, 3, 6, 3\}
Modular Arithmetic and multiplicative inverses.

$3^{-1} \pmod{7}$? 5
$5^{-1} \pmod{7}$? 3

Inverse Unique? Yes.

Proof: a and b inverses of $x \pmod{n}$

\begin{align*}
ax &= bx = 1 \pmod{n} \\
axb &= bxb = b \pmod{n} \\
a &= b \pmod{n}.
\end{align*}

$3^{-1} \pmod{6}$? No, no, no....

\begin{align*}
\{3(1), 3(2), 3(3), 3(4), 3(5)\} \\
\{3, 6, 3, 6, 3\}
\end{align*}

See,
Modular Arithmetic and multiplicative inverses.

\[3^{-1} \pmod{7} \text{? } 5 \]
\[5^{-1} \pmod{7} \text{? } 3 \]

Inverse Unique? Yes.

Proof: \(a \) and \(b \) inverses of \(x \) \(\pmod{n} \)

\[ax = bx = 1 \pmod{n} \]
\[axb = bxb = b \pmod{n} \]
\[a = b \pmod{n}. \]

\[3^{-1} \pmod{6} \text{? } \text{No, no, no....} \]

\[\{3(1), 3(2), 3(3), 3(4), 3(5)\} \]
\[\{3, 6, 3, 6, 3\} \]

See,... no inverse!
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $\gcd(x, m) = 1$.

Finding \gcd.

\[
\gcd(x, y) = \gcd(y, x - y) = \gcd(y, x \mod y)
\]

Give recursive algorithm!

Base Case?

\[
\gcd(x, 0) = x
\]

Extended-gcd(x, y) returns (d, a, b) such that $d = \gcd(x, y)$ and $d = ax + by$.

Idea: egcd.

\[\gcd\text{ produces 1 by adding and subtracting multiples of } x \text{ and } y\]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$. Group structures more generally.
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:

$\{0 \cdot x, \ldots, (m - 1) \cdot x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

$gcd(x, y) = gcd(y, x - y)$.

Give recursive Algorithm!

Base Case?

$gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b) $d = gcd(x, y)$ and $d = ax + by$.

Multiplicative inverse of (x, m).

egcd(x, m) = $(1, a, b)$ a is inverse!

$1 = ax + bm = ax \pmod{m}$.
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
$\{0x, \ldots, (m - 1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y)\]
Modular Arithmetic Inverses and GCD

\(x \) has inverse modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Group structures more generally.

Proof Idea:
\(\{0x, \ldots, (m-1)x\} \) are distinct modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Finding gcd.
\[
\gcd(x, y) = \gcd(y, x - y) = \gcd(y, x \mod y).
\]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{0, x, ..., (m - 1)x} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y))$.

Give recursive Algorithm!
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.
Proof Idea:
$\{0x, \ldots, (m-1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \ (mod \ y))$.

Give recursive Algorithm! Base Case?
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if gcd(x, m) = 1.

Group structures more generally.

Proof Idea:
{0x, \ldots, (m-1)x} are distinct modulo m if and only if gcd(x, m) = 1.

Finding gcd.
\(gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y) \).

Give recursive Algorithm! Base Case? \(gcd(x, 0) = x \).
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y)\].

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y)
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m - 1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-$gcd(x, y)$ returns (d, a, b)
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:

\{0x, \ldots, (m-1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

$gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y)$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)

\[d = gcd(x, y) \]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
$\{0x, \ldots, (m-1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
$d = gcd(x, y)$ and $d = ax + by$
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m - 1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y)$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by \]

Multiplicative inverse of (x, m).

Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m – 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x \mod y) = gcd(y, (x \mod y)).\]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y)\] and \[d = ax + by\]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b)\]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y}) \]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by \]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b) \]
\[a \text{ is inverse!} \]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})\].

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by\]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b)\]
\[a \text{ is inverse! } 1 = ax + bm\]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:

\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})\].

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)

\[d = gcd(x, y) \text{ and } d = ax + by\]

Multiplicative inverse of (x, m).

\[egcd(x, m) = (1, a, b)\]

\[a \text{ is inverse! } 1 = ax + bm = ax \pmod{m}\].
Modular Arithmetic Inverses and GCD

\(x\) has inverse modulo \(m\) if and only if \(\text{gcd}(x, m) = 1\).

Group structures more generally.

Proof Idea:
\(\{0x, \ldots, (m-1)x\}\) are distinct modulo \(m\) if and only if \(\text{gcd}(x, m) = 1\).

Finding gcd.
\[
\text{gcd}(x, y) = \text{gcd}(y, x - y) = \text{gcd}(y, x \pmod{y}).
\]

Give recursive Algorithm! Base Case? \(\text{gcd}(x, 0) = x\).

Extended-gcd\((x, y)\) returns \((d, a, b)\)
\[
d = \text{gcd}(x, y) \quad \text{and} \quad d = ax + by
\]

Multiplicative inverse of \((x, m)\).
\[
\text{egcd}(x, m) = (1, a, b)
\]
\[
a \text{ is inverse! } 1 = ax + bm = ax \pmod{m}.
\]

Idea: egcd.
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
$\{0x, \ldots, (m-1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)

$d = gcd(x, y)$ and $d = ax + by$

Multiplicative inverse of (x, m).

$egcd(x, m) = (1, a, b)$

a is inverse! $1 = ax + bm = ax \pmod{m}$.

Idea: egcd.

gcd produces 1
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y}) \]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by \]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b) \]
\[a \text{ is inverse! } 1 = ax + bm = ax \pmod{m} \]

Idea: egcd.
\[gcd \text{ produces 1} \]
\[\text{by adding and subtracting multiples of } x \text{ and } y \]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m-1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\(gcd(x, y) = gcd(y, x-y) = gcd(y, x \pmod{y}) \).

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by \]

Multiplicative inverse of (x, m).
\(egcd(x, m) = (1, a, b) \)
\[a \text{ is inverse! } 1 = ax + bm = ax \pmod{m}. \]

Idea: egcd.
\(gcd \) produces 1
by adding and subtracting multiples of x and y
Example: $p = 7$, $q = 11$.
Example: $p = 7$, $q = 11$.

$N = 77$.
Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$
Example: $p = 7, \ q = 11$.

$N = 77.$

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

egcd(7, 60).

$7(0) + 60(1) = 60$

$7(1) + 60(0) = 7$

$7(−8) + 60(1) = 4$

$7(9) + 60(−1) = 3$

$7(−17) + 60(2) = 1$

Confirm: $−119 + 120 = 1$

$d = e - 1 = −17 = 43 \pmod{60}$
Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

$7(0) + 60(1) = 60$

$7(1) + 60(0) =$

$7(-8) + 60(1) =$

$7(9) + 60(-1) =$

$7(-17) + 60(2) =$

Confirm: $-119 + 120 = 1$

$d = e - 1 = 43 = (\mod 60)$
Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

\[\text{egcd}(7, 60). \]

\[
7(0) + 60(1) = 60
\]
Example: $p = 7, \ q = 11$.

$N = 77$.
$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
egin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7
\end{align*}
\]
Example: $p = 7, \ q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4
\end{align*}
\]
Example: \(p = 7, \ q = 11. \)

\[N = 77. \]
\[(p - 1)(q - 1) = 60 \]

Choose \(e = 7, \) since \(\gcd(7, 60) = 1. \)

\(\gcd(7, 60). \)

\[
\begin{align*}
7(0) + 60(1) & = 60 \\
7(1) + 60(0) & = 7 \\
7(-8) + 60(1) & = 4 \\
7(9) + 60(-1) & = 3
\end{align*}
\]
Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

\[\text{egcd}(7, 60). \]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1 \\
\end{align*}
\]
Example: $p = 7, \ q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}$
Example: $p = 7, \ q = 11$.

$N = 77.$

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

egcd(7,60).

\[
\begin{align*}
7(0) + 60(1) & = 60 \\
7(1) + 60(0) & = 7 \\
7(-8) + 60(1) & = 4 \\
7(9) + 60(-1) & = 3 \\
7(-17) + 60(2) & = 1
\end{align*}
\]

Confirm:
Example: \(p = 7, \ q = 11\).

\[N = 77.\]

\[(p - 1)(q - 1) = 60\]

Choose \(e = 7\), since \(\gcd(7, 60) = 1\).

\[\text{egcd}(7, 60).\]

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1 \\
\end{align*}
\]

Confirm: \(-119 + 120 = 1\)
Example: $p = 7, \ q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\text{gcd}(7,60) = 1$.

\[
\text{egcd}(7,60).
\]

\[
\begin{align*}
7(0) + 60(1) & = 60 \\
7(1) + 60(0) & = 7 \\
7(-8) + 60(1) & = 4 \\
7(9) + 60(-1) & = 3 \\
7(-17) + 60(2) & = 1
\end{align*}
\]

Confirm: $-119 + 120 = 1$

$d = e^{-1} = -17 = 43 = (\text{mod}\ 60)$
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{ a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p} \}$.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p - 1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p - 1\}$.

Since multiplication is commutative,

$$a^{p-1} \equiv 1 \pmod{p}.$$
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function:
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{ a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p} \}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

Since multiplication is commutative.

$a \cdot (p-1) \cdot (1 \cdot \ldots \cdot (p-1)) \equiv (1 \cdot \ldots \cdot (p-1)) \pmod{p}$.

Each of $2, \ldots, (p-1)$ has an inverse modulo p, multiply by inverses to get...

$a \cdot (p-1) \equiv 1 \pmod{p}$.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.

$$\implies T = S.$$
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.

$$\implies T = S.$$

Product of elts of $T = Product of elts of S$.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.

$\implies T = S$.

Product of elts of $T = $ Product of elts of S.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}, \]
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \neq 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.

$\implies T = S$.

Product of elts of $T = \text{Product of elts of } S$.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},$$

Since multiplication is commutative.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{ a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p} \}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

- $T \subseteq S$ since $0 \notin T$.
- p is prime.

$\implies T = S$.

Product of elts of $T = \text{Product of elts of } S$.

\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}, \]

Since multiplication is commutative.

\[a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]
Fermat from Bijection.

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Consider \(T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\} \).

\(T \) is range of function \(f(x) = ax \pmod{p} \) for set \(S = \{1, \ldots, p-1\} \).

Invertible function: one-to-one.

\(T \subseteq S \) since \(0 \not\in T \).

\(p \) is prime.

\(\implies T = S. \)

Product of elts of \(T = \) Product of elts of \(S. \)
\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},
\]
Since multiplication is commutative.
\[
a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.
\]
Each of \(2, \ldots (p-1) \) has an inverse modulo \(p \),
Fermat from Bijection.

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Consider \(T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\} \).

\(T \) is range of function \(f(x) = ax \pmod{p} \) for set \(S = \{1, \ldots, p-1\} \).

Invertible function: one-to-one.

\(T \subseteq S \) since \(0 \not\in T \).

\(p \) is prime.

\(\implies T = S \).

Product of elts of \(T = \) Product of elts of \(S \).

\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},
\]

Since multiplication is commutative.

\[
a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.
\]

Each of \(2, \ldots (p-1) \) has an inverse modulo \(p \),
multiply by inverses to get...
Fermat from Bijection.

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Consider \(T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\} \).

\(T \) is range of function \(f(x) = ax \pmod{p} \) for set \(S = \{1, \ldots, p-1\} \).

Invertible function: one-to-one.

\(T \subseteq S \) since \(0 \not\in T \).

\(p \) is prime.

\(\implies T = S \).

Product of els of \(T = \) Product of els of \(S \).

\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},
\]

Since multiplication is commutative.

\[
a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.
\]

Each of \(2, \ldots (p-1) \) has an inverse modulo \(p \),
multiply by inverses to get...

\[
a^{(p-1)} \equiv 1 \pmod{p}.
\]
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.
Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.
p is prime.

$\implies T = S$.

Product of elts of $T = \text{Product of elts of } S$.
\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}, \]
Since multiplication is commutative.
\[a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]

Each of $2, \ldots (p-1)$ has an inverse modulo p,
multiply by inverses to get...
\[a^{(p-1)} \equiv 1 \pmod{p}. \]
RSA

RSA:

\[N = p \times q \] with \(\gcd(e, (p-1)(q-1)) = 1 \).

\[d = e - 1 \pmod{(p-1)(q-1)} \].

Theorem:

\[x^{ed} = x \pmod{N} \]

Proof:

\[x^{ed} - x \]

is divisible by \(p \) and \(q \) \(\Rightarrow \) theorem!

\[x^{ed} - x = x^k(p-1)(q-1) + 1 - x = x((x^k(q-1))^{p-1}) - 1 \]

If \(x \) is divisible by \(p \), the product is.

Otherwise \((x^k(q-1))^{p-1} = 1 \pmod{p} \) by Fermat.

\(\Rightarrow \) \((x^k(q-1))^{p-1} - 1 \) divisible by \(p \).

Similarly for \(q \).
RSA

RSA:
\[N = p, q \]
RSA:

\[N = p, \ q \]

\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p-1)(q-1)) = 1. \]
\[d = e^{-1} \pmod{(p-1)(q-1)}. \]
RSA:

$N = p, q$

e with $\gcd(e, (p - 1)(q - 1)) = 1$.

$d = e^{-1} \pmod{(p - 1)(q - 1)}$.

Theorem: $x^{ed} = x \pmod{N}$
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p-1)(q-1)) = 1. \]
\[d = e^{-1} \pmod{(p-1)(q-1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!

\(x^{ed} - x \)
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\[x^{ed} - x \text{ is divisible by } p \text{ and } q \implies \text{ theorem!} \]
\[x^{ed} - x = x^{k(p-1)(q-1)+1} - x \]
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p-1)(q-1)) = 1. \]
\[d = e^{-1} \pmod{(p-1)(q-1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!
\[x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)}p^{-1} - 1) \]
RSA:

\[N = p, q \]
\[e \] with \(\gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!

\[x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1) \]

If \(x \) is divisible by \(p \), the product is.
RSA:

$N = p, q$

\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]

\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: $x^{ed} = x \pmod{N}$

Proof:

$x^{ed} - x$ is divisible by p and q \implies theorem!

\[x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1) \]

If x is divisible by p, the product is.

Otherwise $(x^{k(q-1)})^{p-1} = 1 \pmod{p}$ by Fermat.
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!

\[x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1) \]

If \(x \) is divisible by \(p \), the product is.
Otherwise \((x^{k(q-1)})^{p-1} = 1 \pmod{p} \) by Fermat.
\(\implies (x^{k(q-1)})^{p-1} - 1 \) divisible by \(p \).
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\[x^{ed} - x \text{ is divisible by } p \text{ and } q \implies \text{ theorem!} \]
\[x^{ed} - x = x^{k(p - 1)(q - 1) + 1} - x = x((x^{k(q - 1)})^{p - 1} - 1) \]

If \(x \) is divisible by \(p \), the product is.
Otherwise \((x^{k(q - 1)})^{p - 1} = 1 \pmod{p}\) by Fermat.
\[\implies (x^{k(q - 1)})^{p - 1} - 1 \text{ divisible by } p. \]

Similarly for \(q \).
RSA

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!
\[
 x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1)
\]

If \(x \) is divisible by \(p \), the product is.
Otherwise \((x^{k(q-1)})^{p-1} = 1 \pmod{p} \) by Fermat.
\(\implies (x^{k(q-1)})^{p-1} - 1 \) divisible by \(p \).

Similarly for \(q \).
RSA, Public Key, and Signatures.
RSA, Public Key, and Signatures.

RSA:

N = p, q

d = e − 1 (mod (p−1)(q−1)).

Public Key Cryptography:

D(E(m, K), k) = (me)d mod N = m.

Signature scheme:

S(C) = D(C).

Announce (C, S(C))

Verify: Check C = E(C).

E(D(C, k), K) = (Cd)e = C (mod N).
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
RSA, Public Key, and Signatures.

RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p-1)(q-1)). \]
\[d = e^{-1} \mod (p-1)(q-1). \]
RSA, Public Key, and Signatures.

RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \mod (p - 1)(q - 1). \]

Public Key Cryptography:
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]
RSA, Public Key, and Signatures.

RSA:

$N = p, q$

e with $\gcd(e, (p - 1)(q - 1))$.

d = $e^{-1} \pmod{(p - 1)(q - 1)}$.

Public Key Cryptography:

$D(E(m, K), k) = (m^e)^d \mod N = m$.

Signature scheme:
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N = m}. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)} \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)
RSA, Public Key, and Signatures.

RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \mod (p - 1)(q - 1). \]

Public Key Cryptography:

\[D(E(m, K), k) = (m^e)^d \mod N = m. \]

Signature scheme:

\[S(C) = D(C). \]
Announce \((C, S(C)) \)
Verify: Check \(C = E(C). \)
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)
Verify: Check \(C = E(C)\).
\[E(D(C, k), K) = (C^d)^e = C \pmod{N}. \]
Midterm format

Time: 120 minutes.
Midterm format

Time: 120 minutes.
Some short answers.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well:
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast,
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium:
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower,
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
Midterm format

Time: 120 minutes.

Some short answers.
Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well:
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs,
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms,
Midterm format

Time: 120 minutes.

Some short answers.
Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
Proofs, algorithms, properties.
Midterm format

Time: 120 minutes.

Some short answers.
Get at ideas that you learned.

Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.
Proofs, algorithms, properties.
Not so much calculation.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms, properties.
 Not so much calculation.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms, properties.
 Not so much calculation.

Will post midterm from 4 years ago to get an idea.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms, properties.
 Not so much calculation.

Will post midterm from 4 years ago to get an idea.
 Back when I was young
Midterm format

Time: 120 minutes.

Some short answers.

Get at ideas that you learned.

Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.

Some longer questions.

Proofs, algorithms, properties.
Not so much calculation.

Will post midterm from 4 years ago to get an idea.
Back when I was younger.
Midterm format

Time: 120 minutes.

Some short answers.
 Get at ideas that you learned.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
 Proofs, algorithms, properties.
 Not so much calculation.

Will post midterm from 4 years ago to get an idea.
 Back when I was younger.
Fermat/RSA

$3^6 \pmod{7}$?
$3^6 \pmod{7} = 1.$
Fermat/RSA

$3^6 \pmod{7}$? 1. Fermat: $p = 7, p - 1 = 6$
1. Fermat: $p = 7$, $p - 1 = 6$

$3^6 \pmod{7}$?
$3^{18} \pmod{7}$?
Fermat/RSA

$3^6 \pmod{7}$? 1. Fermat: $p = 7, p - 1 = 6$

$3^{18} \pmod{7}$? 1.

$3^{60} \pmod{7}$?
Fermat/RSA

$3^6 \pmod{7}$? 1. Fermat: $p = 7$, $p - 1 = 6$

$3^{18} \pmod{7}$? 1.

$3^{60} \pmod{7}$? 1.

$3^{61} \pmod{7}$?
Fermat/RSA

$3^6 \pmod{7}$? 1. Fermat: $p = 7$, $p - 1 = 6$
$3^{18} \pmod{7}$? 1.
$3^{60} \pmod{7}$? 1.
$3^{61} \pmod{7}$? 3.
Fermat/RSA

3^6 \pmod{7}? 1. Fermat: \(p = 7, p - 1 = 6 \)
3^{18} \pmod{7}? 1.
3^{60} \pmod{7}? 1.
3^{61} \pmod{7}? 3.
2^{12} \pmod{21}?
$3^6 \pmod{7} \text{? 1. Fermat: } p = 7, \ p - 1 = 6$

$3^{18} \pmod{7} \text{? 1.}$

$3^{60} \pmod{7} \text{? 1.}$

$3^{61} \pmod{7} \text{? 3.}$

$2^{12} \pmod{21} \text{? 1.}$

$21 = (3)(7)$
$3^6 \pmod{7}$? 1. Fermat: $p = 7$, $p - 1 = 6$
$3^{18} \pmod{7}$? 1.
$3^{60} \pmod{7}$? 1.
$3^{61} \pmod{7}$? 3.
$2^{12} \pmod{21}$? 1.

$21 = (3)(7)(p - 1)(q - 1) = (2)(6) = 12$
Fermat/RSA

3^6 \pmod{7} \equiv 1. \quad \text{Fermat: } p = 7, \ p - 1 = 6

3^{18} \pmod{7} \equiv 1.

3^{60} \pmod{7} \equiv 1.

3^{61} \pmod{7} \equiv 3.

2^{12} \pmod{21} \equiv 1.

21 = (3)(7) (p - 1)(q - 1) = (2)(6) = 12

\gcd(2,12) = 1, \ x^{(p-1)(q-1)} \equiv 1 \pmod{pq}
Fermat/RSA

\[3^6 \pmod{7} \? 1. \quad \text{Fermat: } p = 7, \; p - 1 = 6 \]
\[3^{18} \pmod{7} \? 1. \]
\[3^{60} \pmod{7} \? 1. \]
\[3^{61} \pmod{7} \? 3. \]

\[2^{12} \pmod{21} \? 1. \]
\[21 = (3)(7) \; (p - 1)(q - 1) = (2)(6) = 12 \]
\[\gcd(2, 12) = 1, \; x^{(p-1)(q-1)} = 1 \; \pmod{pq} \; 2^{12} = 1 \; \pmod{21}. \]
Fermat/RSA

$3^6 \pmod{7} \equiv 1$. Fermat: $p = 7$, $p - 1 = 6$

$3^{18} \pmod{7} \equiv 1.$

$3^{60} \pmod{7} \equiv 1.$

$3^{61} \pmod{7} \equiv 3.$

$2^{12} \pmod{21} \equiv 1.$

$21 = (3)(7) (p - 1)(q - 1) = (2)(6) = 12$

$gcd(2, 12) = 1$, $x^{(p-1)(q-1)} \equiv 1 \pmod{pq}$ $2^{12} = 1 \pmod{21}$.

$2^{14} \pmod{21}?$
3^6 \pmod{7}? 1. Fermat: \(p = 7, p - 1 = 6 \)

3^{18} \pmod{7}? 1.

3^{60} \pmod{7}? 1.

3^{61} \pmod{7}? 3.

2^{12} \pmod{21}? 1.

21 = (3)(7) (p - 1)(q - 1) = (2)(6) = 12

gcd(2, 12) = 1, x^{(p-1)(q-1)} = 1 \pmod{pq} \ 2^{12} = 1 \pmod{21}.

2^{14} \pmod{21}? 4.
3^6 \pmod{7}? 1. Fermat: \(p = 7, p - 1 = 6 \)
3^{18} \pmod{7}? 1.
3^{60} \pmod{7}? 1.
3^{61} \pmod{7}? 3.
2^{12} \pmod{21}? 1.
\[21 = (3)(7)(p - 1)(q - 1) = (2)(6) = 12 \]
\[\gcd(2, 12) = 1, \quad x^{(p-1)(q-1)} = 1 \pmod{pq} \]
\[2^{12} = 1 \pmod{21}. \]
2^{14} \pmod{21}? 4. Technically 4 \pmod{21}.

Wrapup.
Wrapup.

If you sent me email about Midterm conflicts
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email from me.
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email from me.

Other issues....
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
 satishr@cs.berkeley.edu
 Private message on piazza.

Good (sort of last minute)
Studying!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
 satishr@cs.berkeley.edu
 Private message on piazza.

Good (sort of last minute)
Studying!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
 satishr@cs.berkeley.edu
 Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!!
If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
 satishr@cs.berkeley.edu
 Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!!!!!
Wrapup.

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email from me.

Other issues....
satishr@cs.berkeley.edu
Private message on piazza.

Good (sort of last minute)
Studying!!!!!!!!!