1 Count It!

For each of the following collections, determine and briefly explain whether it is finite, countably infinite (like the natural numbers), or uncountably infinite (like the reals):

(a) \mathbb{N}, the set of all natural numbers.

(b) \mathbb{Z}, the set of all integers.

(c) \mathbb{Q}, the set of all rational numbers.

(d) \mathbb{R}, the set of all real numbers.

(e) The integers which divide 8.

(f) The integers which 8 divides.

(g) The functions from \mathbb{N} to \mathbb{N}.

(h) Computer programs that halt.

(i) Computer programs that always correctly tell if a program halts or not.

(j) Numbers that are the roots of nonzero polynomials with integer coefficients.

2 Halting Problem Sanity Check

Suppose you want to prove that a program A is uncomputable. Which of the following should you do?

(a) Show that A can be solved if the halting problem could be solved.

(b) Show that the halting problem could be solved if A could be solved.
3 Code Reachability

Consider triplets \((M,x,L)\) where

- \(M\) is a Java program
- \(x\) is some input
- \(L\) is an integer

and the question of: if we execute \(M(x)\), do we ever hit line \(L\)?

Prove this problem is undecidable.

4 Hello World!

Determine the computability of the following tasks. If it’s not computable, write a reduction or self-reference proof. If it is, write the program.

(a) You want to determine whether a program \(P\) on input \(x\) outputs "Hello World!". Is there a computer program that can perform this task? Justify your answer.

(b) You want to determine whether a program \(P\) prints "Hello World!" before running the \(k\)th line in the program. Is there a computer program that can perform this task? Justify your answer.

(c) You want to determine whether a program \(P\) prints "Hello World!" in the first \(k\) steps of its execution. Is there a computer program that can perform this task? Justify your answer.