Today.

Polynomials.

Secret Sharing.

Share secret among n people.
Secrecy: Any $k-1$ knows nothing.
Robustness: Any k knows secret.
Efficient: minimize storage.
The idea of the day.
Two points make a line.
Lots of lines go through one point.

Polynomials

$P(x) = a_dx^d + \cdots + a_0$
is specified by coefficients a_d, \ldots, a_0.

$P(x)$ contains point (a, b) if $b = P(a)$.

Polynomials over reals: $a_1, \ldots, a_d \in \mathbb{R}$, use $x \in \mathbb{R}$.

Polynomials $P(x)$ with arithmetic modulo prime p: $^1 a_i \in \{0, \ldots, p-1\}$ and

$P(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_0 \pmod{p}$,
for $x \in \{0, \ldots, p-1\}$.

1A field is a set of elements with addition and multiplication operations, with inverses. $GF(p) = (\{0, \ldots, p-1\}, + \pmod{p}, \cdot \pmod{p})$.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d + 1$ points. 2
Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

2Points with different x values.
From $d + 1$ points to degree d polynomial?

For a line, $a_1x + a_0 = mx + b$ contains points (1,3) and (2,4).

\[
P(1) = m(1) + b = m + b \equiv 3 \pmod{5} \\
P(2) = m(2) + b = 2m + b \equiv 4 \pmod{5}
\]

Subtract first from second.

\[
m + b = 3 \pmod{5} \\
m = 1 \pmod{5}
\]

Backsolve: $b = 2 \pmod{5}$. Secret is 2.

And the line is...

\[
x + 2 \pmod{5}
\]

Question

Is this always work?

As long as solution exists and it is unique! And...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + \cdots + a_2x^2 + a_1x + a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Roubleness: Any k shares gives secret.

Knowing k pts \Longrightarrow only one $P(x) \Longrightarrow$ evaluate $P(0)$.

Secrecy: Any $k - 1$ shares give nothing.

Knowing $\leq k - 1$ pts \Longrightarrow any $P(0)$ is possible.

Quadratic

For a quadratic polynomial, $a_2x^2 + a_1x + a_0$ hits (1,2);(2,4);(3,0).

Plug in points to find equations.

\[
\begin{align*}
P(1) &= a_2 + a_1 + a_0 &\equiv 2 &\pmod{5} \\
P(2) &= 4a_2 + 2a_1 + a_0 &\equiv 4 &\pmod{5} \\
P(3) &= 9a_2 + 3a_1 + a_0 &\equiv 0 &\pmod{5} \\
2a_2 + a_1 + a_0 &\equiv 2 &\pmod{5} \\
3a_2 + 2a_0 &\equiv 1 &\pmod{5} \\
4a_1 + 2a_0 &\equiv 2 &\pmod{5}
\end{align*}
\]

Subtracting 2nd from 3rd yields: $a_1 = 1$.

\[
a_2 = (2 - 4(a_2))2 + (-2)(2) - (3)(3) = 9 \equiv 4 \pmod{5} \\
a_0 = 2 - 1 - 4 \equiv 2 \pmod{5}
\]

So polynomial is $2x^2 + x + 4 \pmod{5}$
Another Construction: Interpolation!

For a quadratic, \(a_2x^2 + a_1x + a_0\) hits \((1,3);(2,4);(3,0)\).
Find \(\Delta_1(x)\) polynomial contains \((1,1);(2,0);(3,0)\).
Try \((x \equiv 2\pmod{5})\).
Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!!
So “Divide by 2” or multiply by 3.
\(\Delta_1(x) = (x \equiv 2(x \equiv 3)(3)\pmod{5})\) contains \((1,1);(2,0);(3,0)\).
\(\Delta_2(x) = (x \equiv 1(x \equiv 3)(4)\pmod{5})\) contains \((0,0);(2,1);(3,0)\).
\(\Delta_3(x) = (x \equiv 1(x \equiv 3)(5)\pmod{5})\) contains \((1,0);(2,0);(3,1)\).
But wanted to hit \((1,3);(2,4);(3,0)\)!
\(P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)\) works.
Same as before?
...after a lot of calculations... \(P(x) = 2x^2 + 1x + 4 \pmod{5}\).
The same as before!

There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree \(\leq d\) polynomial with
arithmetic modulo prime \(p\) contains \(d + 1\) pts.

Proof of at least one polynomial:
Given points: \((x_1, y_1);(x_2, y_2); \cdots (x_{d+1}, y_{d+1})\).
\(\Delta_1(x) = \frac{\prod_{j \neq 1}(x - x_j)}{\prod_{j \neq 1}(x - x_j)}\).
Numerator is 0 at \(x_j \neq x_1\).
Denominator makes it 1 at \(x_1\).
And...
\(P(x) = y_1\Delta_1(x) + y_2\Delta_2(x) + \cdots + y_{d+1}\Delta_{d+1}(x)\)
hits points \((x_1, y_1);(x_2, y_2); \cdots (x_{d+1}, y_{d+1})\). Degree \(d\) polynomial!
Construction proves the existence of a polynomial!

Example.

\(\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x - x_j)}\)

Degree 1 polynomial, \(P(x)\), that contains \((1,3)\) and \((3,4)\)?
Work modulo 5.
\(\Delta_1(x)\) contains \((1,1)\) and \((3,0)\).
\(\Delta_1(x) = \frac{(x - 3)}{(x - 3)} = \frac{-1}{1} = -1 = 4\pmod{5}.
\)
For a quadratic, \(a_2x^2 + a_1x + a_0\) hits \((1,3);(2,4);(3,0)\).
Work modulo 5.
Find \(\Delta_1(x)\) polynomial contains \((1,1);(2,0);(3,0)\).
\(\Delta_1(x) = \frac{(x - 3)}{(x - 3)} = \frac{-2(x - 3)}{2} = (x - 2)(x - 3) = 3x^2 + 3 \pmod{5}\)
Put the delta functions together.

Delta Polynomials: Concept.

For set of \(x\)-values, \(x_1, \ldots, x_{d+1}\).
\(\Delta_i(x) = \begin{cases}
1, & \text{if } x = x_i \\
0, & \text{if } x = x_j \text{ for } j \neq i \\
? & \text{otherwise.}
\end{cases} \) (1)

Given \(d + 1\) points, use \(\Delta_i\) functions to go through points?
\((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\).
Will \(y_1\Delta_1(x)\) contain \((x_1, y_1)\)?
Will \(y_2\Delta_2(x)\) contain \((x_2, y_2)\)?

Does \(y_1\Delta_1(x) + y_2\Delta_2(x)\) contain \((x_1, y_1)\) and \((x_2, y_2)\)?

See the idea? Function that contains all points?
\(P(x) = y_1\Delta_1(x) + y_2\Delta_2(x) + \cdots + y_{d+1}\Delta_{d+1}(x)\).

In general.

Given points: \((x_1, y_1);(x_2, y_2); \cdots (x_{d+1}, y_{d+1})\).
\(\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x - x_j)}\).
Numerator is 0 at \(x_j \neq x_i\).
Denominator makes it 1 at \(x_i\).
And...
\(P(x) = y_1\Delta_1(x) + y_2\Delta_2(x) + \cdots + y_{d+1}\Delta_{d+1}(x)\).
hits points \((x_1, y_1);(x_2, y_2); \cdots (x_{d+1}, y_{d+1})\).
Construction proves the existence of the polynomial!
Uniqueness.

Uniqueness Fact. At most one degree d polynomial hits \(d + 1 \) points.
Proof:
Roots fact: Any degree d polynomial has at most d roots.
Assume two different polynomials \(Q(x) \) and \(P(x) \) hit the points.
\(R(x) = Q(x) − P(x) \) has d + 1 roots and is degree d.
Contradiction.
Must prove Roots fact.

Finite Fields

Proof works for reals, rationals, and complex numbers.
...but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime \(p \) has multiplicative inverses...
...and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime \(m \) is a finite field denoted by \(\mathbb{F}_m \) or \(GF(m) \).
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.

Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree \(\leq d \) over \(GF(p) \), \(P(x) \), that hits \(d + 1 \) points.
Shamir’s k out of n Scheme:
Secret \(s \in \{0, \ldots, p - 1\} \)
1. Choose \(a_0 = s \), and randomly \(a_1, \ldots, a_{k-1} \).
2. Let \(P(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{k-1}x^{k-1} \) with \(a_0 = s \).
3. Share \(i \) is point \(\langle i, P(i) \mod p \rangle \).
Roublust: Any k knows secret.
Knowing \(k \) pts, only one \(P(x) \), evaluate \(P(0) \).
Secrecy: Any \(k - 1 \) knows nothing.
Knowing \(\leq k - 1 \) pts, any \(P(0) \) is possible.

Only d roots.

Lemma 1: \(P(x) \) has root a iff \(P(x)/(x - a) \) has remainder 0: \(P(x) = (x - a)Q(x) \).
Proof: \(P(x) = (x - a)Q(x) + r \).
Plug in a: \(P(a) = r \).
It is a root if and only if \(r = 0 \).
Lemma 2: \(P(x) \) has d roots: \(r_1, \ldots, r_d \) then \(P(x) = c(x - r_1)(x - r_2)\cdots(x - r_d) \).
Proof Sketch: By induction.
Induction Step: \(P(x) = (x - n)Q(x) \) by Lemma 1. \(Q(x) \) has smaller degree so use the induction hypothesis.
\(d + 1 \) roots implies degree is at least \(d + 1 \).
Roots fact: Any degree d polynomial has at most d roots.

Minimality.

Need \(p > n \) to hand out \(n \) shares: \(P(1) \ldots P(n) \).
For b-bit secret, must choose a prime \(p > 2^b \).
Theorem: There is always a prime between \(n \) and \(2n \).
Working over numbers within 1 bit of secret size. Minimality.
With \(k \) shares, reconstruct polynomial, \(P(x) \).
With \(k - 1 \) shares, any of \(p \) values possible for \(P(0) \)!
(Almost) any b-bit string possible!
(Almost) the same as what is missing: one \(P(i) \).
Runtime.

Runtime: polynomial in k, n, and $\log p$.
1. Evaluate degree $k - 1$ polynomial n times using $\log p$-bit numbers.
2. Reconstruct secret by solving system of k equations using $\log p$-bit arithmetic.

A bit more counting.

What is the number of degree d polynomials over $GF(m)$?

\bullet m^{d+1}: $d + 1$ coefficients from $\{0, \ldots, m - 1\}$.
\bullet m^{d+1}: $d + 1$ points with y-values from $\{0, \ldots, m - 1\}$

Infinite number for reals, rationals, complex numbers!

Erasure Codes.

Satellite

GPS device

3 packet message. So send 6!
Lose 3 out 6 packets.
Gets packets 1, 1, and 3.

Problem: Want to send a message with n packets.
Channel: Lossy channel: loses k packets.
Question: Can you send $n + k$ packets and recover message?
A degree $n - 1$ polynomial determined by any n points!
Erasure Coding Scheme: message $= m_0, m_2, \ldots, m_{n-1}$.
1. Choose prime $p \approx 2^b$ for packet size b.
2. $P(x) = m_0 + x^{n-1} + \cdots + m_0 \pmod p$.
3. Send $P(1), \ldots, P(n+k)$.

Any n of the $n+k$ packets gives polynomial ...and message!

Solution Idea.

n packet message, channel that loses k packets.
Must send $n + k$ packets!
Any n packets should allow reconstruction of n packet message.
Any n point values allow reconstruction of degree $n - 1$ polynomial.
Alright!!!!!!
Use polynomials.
Information Theory.

Size: Can choose a prime between 2^{n-1} and 2^n.
(Lose at most 1 bit per packet.)

But: packets need label for x value.

There are Galois Fields GF(2^n) where one loses nothing.
– Can also run the Fast Fourier Transform.

– In practice, O(n) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

– Secret Sharing: each share is size of whole secret.

Coding: Each packet has size $1/n$ of the whole message.

Bad reception!

Send: (1, 1), (2, 4), (3, 4), (4, 7), (5, 2), (6, 0)

Receive: (1, 1), (3, 4), (6, 0)

Reconstruct?

Format: (i, R(i)).

Lagrange or linear equations.

\[
\begin{align*}
P(1) &= a_2 + a_1 + a_0 \equiv 1 \pmod{7} \\
P(2) &= 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7} \\
P(6) &= 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}
\end{align*}
\]

Channeling Sahai ...

\[
P(x) = 2x^2 + 4x + 2
\]

Message? $P(1) = 1, P(2) = 4, P(3) = 4$.

Polynomials.

\[\Rightarrow \] give Secret Sharing.
\[\Rightarrow \] give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.

Questions for Review

You want to encode a secret consisting of 1, 4, 4.

How big should modulus be?

Larger than 144 and prime!

You want to send a message consisting of packets 1, 4, 2, 3, 0 through a noisy channel that loses 3 packets.

How big should modulus be?

Larger than 8 and prime!

Send n packets b-bit packets, with k errors.

Modulus should be larger than $n + k$ and also larger than 2^b.

Erasure Code: Example.

Send message of 1, 4, and 4.

Make polynomial with $P(1) = 1, P(2) = 4, P(3) = 4$.

How?

Lagrange Interpolation.

Linear System.

Work modulo 5.

\[
P(x) = x^2 \pmod{5}
\]

\[
P(1) = 1, P(2) = 4, P(3) = 9 \equiv 4 \pmod{5}
\]

Send $(0, P(0)) \ldots (5, P(5))$.

6 points. Better work modulo 7 at least!

Why? $(0, P(0)) = (5, P(5)) \pmod{5}$

Example

Make polynomial with $P(1) = 1, P(2) = 4, P(3) = 4$.

Modulo 7 to accommodate at least 6 packets.

Linear equations:

\[
\begin{align*}
P(1) &= a_2 + a_1 + a_0 = 1 \pmod{7} \\
P(2) &= 4a_2 + 2a_1 + a_0 = 4 \pmod{7} \\
P(3) &= 2a_2 + 3a_1 + a_0 = 4 \pmod{7}
\end{align*}
\]

\[
6a_1 + 3a_0 = 2 \pmod{7}, \quad 5a_1 + 4a_0 = 0 \pmod{7}
\]

\[
a_1 = 2a_3, \quad a_0 = 2 \pmod{7}\]

\[
a_1 = 4 \quad a_2 = 2 \pmod{7}\]

\[
P(x) = 2x^2 + 4x + 2
\]

Send\n
Packets: (1, 1), (2, 4), (3, 4), (4, 7), (5, 2), (6, 0)

Notice that packets contain “x-values”.

Send message of 1, 4, and 4.

Make polynomial with $P(1) = 1, P(2) = 4, P(3) = 4$.

Lose at most 1 bit per packet.

You want to encode a secret consisting of 1, 4, 4.

Larger than 144 and prime!

You want to send a message consisting of packets 1, 4, 2, 3, 0 through a noisy channel that loses 3 packets.

Larger than 8 and prime!

Send n packets b-bit packets, with k errors.

Modulus should be larger than $n + k$ and also larger than 2^b.
Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:
1. Make a polynomial, $P(x)$ of degree $n-1$, that encodes message.
 - $P(1) = m_1, \ldots, P(n) = m_n$.
 - Comment: could encode with packets as coefficients.
2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Receive values $R(1), \ldots, R(n+2k)$.

Properties:
1. $P(i) = R(i)$ for at least $n+k$ points i.
2. $P(x)$ is unique degree $n-1$ polynomial that contains $\geq n+k$ received points.

Example.
Message: 3, 0, 6.
Reed Solomon Code: $P(x) = x^2 + x + 1$ (mod 7) has $P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3$.

Send: $P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3$.
(Aside: Message in plain text)
Receive $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$.
$P(i) = R(i)$ for $n+k = 3 + 1 = 4$ points.

Slow solution.

Brute Force:
For each subset of $n+k$ points
Fit degree $n-1$ polynomial $Q(x)$, to n of them.
Check if consistent with $n+k$ of the total points.
If yes, output $Q(x)$.
 - For subset of $n+k$ pts where $R(i) = P(i)$, method will reconstruct $P(x)$!
 - For any subset of $n+k$ pts,
 1. there is unique degree $n-1$ polynomial $Q(x)$ that fits n of them
 2. and where $Q(x)$ is consistent with $n+k$ points
 $\implies P(x) = Q(x)$.
Reconstructs $P(x)$ and only $P(x)$!!

Example.
Received $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$.
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n+k = 3+1$ points.
All equations:

\[
\begin{align*}
p_2 + p_1 + p_0 &= 3 \pmod{7} \\
4p_2 + 2p_1 + p_0 &= 1 \pmod{7} \\
2p_2 + 3p_1 + p_0 &= 6 \pmod{7} \\
2p_2 + 4p_1 + p_0 &= 0 \pmod{7} \\
1p_2 + 5p_1 + p_0 &= 3 \pmod{7}
\end{align*}
\]

Assume point 1 is wrong and solve...no consistent solution!
Assume point 2 is wrong and solve...consistent solution!
In general,

\[P(x) = p_{n-1}x^{n-1} + \cdots + p_0 \] and receive \(R(1), \ldots, R(m = n + 2k) \).

\[
\begin{align*}
 p_{n-1} + \cdots + p_0 &= R(1) \pmod{p} \\
 p_{n-2} x + p_0 &= R(2) \pmod{p} \\
 \vdots \\
 p_{n-1} x^{i-1} + \cdots + p_0 &= R(i) \pmod{p} \\
 p_{n-1} x^{m-1} + \cdots + p_0 &= R(m) \pmod{p}
\end{align*}
\]

Error!! Where???
Could be anywhere!!! so try everywhere.
Runtime: \(\binom{n+2k}{k} \) possibilities.
Something like \(\frac{n}{k} \) ...Exponential in \(k \).
How do we find where the bad packets are efficiently??!!

Ditty...

Where oh where can my bad packets be ...
On Tuesday.