Today.

Polynomials.

Secret Sharing.
Secret Sharing.

Share secret among n people.

Secrecy: Any $k - 1$ knows nothing.

Roubustness: Any k knows secret.

Efficient: minimize storage.

The idea of the day.

 Two points make a line.
 Lots of lines go through one point.
Polynomials

A polynomial

\[P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0. \]

is specified by coefficients \(a_d, \ldots, a_0 \).

\(P(x) \) contains point \((a, b)\) if \(b = P(a) \).

Polynomials over reals: \(a_1, \ldots, a_d \in \mathbb{R} \), use \(x \in \mathbb{R} \).

Polynomials \(P(x) \) with arithmetic modulo \(p \): \(^1\) \(a_i \in \{0, \ldots, p - 1\} \) and

\[P(x) = a_d x^d + a_{d-1} x^{d-1} \cdots + a_0 \pmod{p}, \]

for \(x \in \{0, \ldots, p - 1\} \).

\(^1\)A field is a set of elements with addition and multiplication operations, with inverses. \(GF(p) = (\{0, \ldots, p - 1\}, + \pmod{p}, \ast \pmod{p}) \).
Polynomial: $P(x) = a_dx^4 + \cdots + a_0$

Line: $P(x) = a_1x + a_0 = mx + b$

Parabola: $P(x) = a_2x^2 + a_1x + a_0 = ax^2 + bx + c$
Polynomial: $P(x) = a_d x^4 + \cdots + a_0 \pmod{p}$

Finding an intersection.

$x + 2 \equiv 3x + 1 \pmod{5} \implies 2x \equiv 1 \pmod{5} \implies x \equiv 3 \pmod{5}$

3 is multiplicative inverse of 2 modulo 5.
Good when modulus is prime!!
Two points make a line.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d + 1$ points.

Two points specify a line. Three points specify a parabola.

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

2Points with different x values.
3 points determine a parabola.

Fact: Exactly 1 degree $\leq d$ polynomial contains $d + 1$ points. 3

3Points with different x values.
2 points not enough.

There is $P(x)$ contains blue points and *any* $(0, y)$!
Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Shamir’s k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$

1. Choose $a_0 = s$, and random a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any k shares gives secret.
Knowing k pts \implies only one $P(x) \implies$ evaluate $P(0)$.
Secrecy: Any $k - 1$ shares give nothing.
Knowing $\leq k - 1$ pts \implies any $P(0)$ is possible.
From $d + 1$ points to degree d polynomial?

For a line, $a_1 x + a_0 = mx + b$ contains points $(1,3)$ and $(2,4)$.

\[P(1) = m(1) + b \equiv m + b \equiv 3 \pmod{5} \]
\[P(2) = m(2) + b \equiv 2m + b \equiv 4 \pmod{5} \]

Subtract first from second..

\[m + b \equiv 3 \pmod{5} \]
\[m \equiv 1 \pmod{5} \]

Backsolve: $b \equiv 2 \pmod{5}$. Secret is 2.

And the line is...

\[x + 2 \mod 5. \]
For a quadratic polynomial, \(a_2x^2 + a_1x + a_0 \) hits \((1,2); (2,4); (3,0)\). Plug in points to find equations.

\[
P(1) = a_2 + a_1 + a_0 \equiv 2 \pmod{5} \\
P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{5} \\
P(3) = 4a_2 + 3a_1 + a_0 \equiv 0 \pmod{5}
\]

\[
a_2 + a_1 + a_0 \equiv 2 \pmod{5} \\
3a_1 + 2a_0 \equiv 1 \pmod{5} \\
4a_1 + 2a_0 \equiv 2 \pmod{5}
\]

Subtracting 2nd from 3rd yields: \(a_1 = 1 \).

\[
a_0 = (2 - 4(a_1))2^{-1} = (-2)(2^{-1}) = (3)(3) = 9 \equiv 4 \pmod{5}
\]

\[
a_2 = 2 - 1 - 4 \equiv 2 \pmod{5}.
\]

So polynomial is \(2x^2 + 1x + 4 \pmod{5} \)
In general..

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

Solve...

\[
\begin{align*}
a_{k-1}x_1^{k-1} + \cdots + a_0 & \equiv y_1 \pmod{p} \\
a_{k-1}x_2^{k-1} + \cdots + a_0 & \equiv y_2 \pmod{p} \\
& \quad \vdots \\
a_{k-1}x_k^{k-1} + \cdots + a_0 & \equiv y_k \pmod{p}
\end{align*}
\]

Will this always work?

As long as solution **exists** and it is **unique**! And...

Modular Arithmetic Fact: Exactly 1 degree \(\leq d \) polynomial with arithmetic modulo prime \(p \) contains \(d + 1 \) pts.
Another Construction: Interpolation!

For a quadratic, $a_2 x^2 + a_1 x + a_0$ hits $(1, 3); (2, 4); (3, 0)$.

Find $\Delta_1(x)$ polynomial contains $(1, 1); (2, 0); (3, 0)$.

Try $(x - 2)(x - 3)$ (mod 5).

Value is 0 at 2 and 3. Value is 2 at 1. Not 1! Doh!

So “Divide by 2” or multiply by 3.

$\Delta_1(x) = (x - 2)(x - 3)(3)$ (mod 5) contains $(1, 1); (2, 0); (3, 0)$.

$\Delta_2(x) = (x - 1)(x - 3)(4)$ (mod 5) contains $(1, 0); (2, 1); (3, 0)$.

$\Delta_3(x) = (x - 1)(x - 2)(3)$ (mod 5) contains $(1, 0); (2, 0); (3, 1)$.

But wanted to hit $(1, 3); (2, 4); (3, 0)$!

$P(x) = 3\Delta_1(x) + 4\Delta_2(x) + 0\Delta_3(x)$ works.

Same as before?

...after a lot of calculations... $P(x) = 2x^2 + 1x + 4$ mod 5.

The same as before!
We will work with polynomials with arithmetic modulo p.
Delta Polynomials: Concept.

For set of x-values, x_1, \ldots, x_{d+1}.

$$\Delta_i(x) = \begin{cases} 1, & \text{if } x = x_i. \\ 0, & \text{if } x = x_j \text{ for } j \neq i. \\ ?, & \text{otherwise.} \end{cases}$$

(1)

Given $d + 1$ points, use Δ_i functions to go through points?

$(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$.

Will $y_1 \Delta_1(x)$ contain (x_1, y_1)?

Will $y_2 \Delta_2(x)$ contain (x_2, y_2)?

Does $y_1 \Delta_1(x) + y_2 \Delta_2(x)$ contain (x_1, y_1)? and (x_2, y_2)?

See the idea? Function that contains all points?

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) \ldots + y_{d+1} \Delta_{d+1}(x).$$
There exists a polynomial...

Modular Arithmetic Fact: Exactly 1 degree $\leq d$ polynomial with arithmetic modulo prime p contains $d + 1$ pts.

Proof of at least one polynomial:
Given points: $(x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})$.

$$\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}.$$

Numerator is 0 at $x_j \neq x_i$.
Denominator makes it 1 at x_i.
And..

$$P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_{d+1} \Delta_{d+1}(x).$$

hits points $(x_1, y_1); (x_2, y_2) \cdots (x_{d+1}, y_{d+1})$. Degree d polynomial!

Construction proves the existence of a polynomial!
Example.

\[\Delta_i(x) = \frac{\prod_{j \neq i} (x - x_j)}{\prod_{j \neq i} (x_i - x_j)}. \]

Degree 1 polynomial, \(P(x) \), that contains \((1, 3)\) and \((3, 4)\)?

Work modulo \(5\).

\(\Delta_1(x) \) contains \((1, 1)\) and \((3, 0)\).

\[\Delta_1(x) = \frac{(x-3)}{1-3} = \frac{x-3}{2} = 2(x - 3) = 2x - 6 = 2x + 4 \pmod{5}. \]

For a quadratic, \(a_2 x^2 + a_1 x + a_0 \) hits \((1, 3); (2, 4); (3, 0)\).

Work modulo \(5\).

Find \(\Delta_1(x) \) polynomial contains \((1, 1); (2, 0); (3, 0)\).

\[\Delta_1(x) = \frac{(x-2)(x-3)}{(1-2)(1-3)} = \frac{(x-2)(x-3)}{2} = 3(x - 2)(x - 3) = 3x^2 + 3 \pmod{5} \]

Put the delta functions together.
In general.

Given points: \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

\[
\Delta_i(x) = \frac{\prod_{j \neq i}(x - x_j)}{\prod_{j \neq i}(x_i - x_j)}.
\]

Numerator is 0 at \(x_j \neq x_i\).
Denominator makes it 1 at \(x_i\).
And..

\[
P(x) = y_1 \Delta_1(x) + y_2 \Delta_2(x) + \cdots + y_k \Delta_k(x).
\]

hits points \((x_1, y_1); (x_2, y_2) \cdots (x_k, y_k)\).

Construction proves the existence of the polynomial!
Uniqueness Fact. At most one degree \(d \) polynomial hits \(d + 1 \) points.

Proof:

Roots fact: Any degree \(d \) polynomial has at most \(d \) roots.

Assume two different polynomials \(Q(x) \) and \(P(x) \) hit the points.

\[R(x) = Q(x) - P(x) \]

has \(d + 1 \) roots and is degree \(d \).

Contradiction.

Must prove Roots fact.
Polynomial Division.
Divide $4x^2 - 3x + 2$ by $(x - 3)$ modulo 5.

\[
\begin{array}{c}
4x^2 - 3x + 2 \\
\underline{ (x - 3) } \\
4x^2 - 2x \\
\underline{ 4x + 2} \\
4x - 2 \\
\underline{ 4} \\
\end{array}
\]

$4x^2 - 3x + 2 \equiv (x - 3)(4x + 4) + 4 \pmod{5}$

In general, divide $P(x)$ by $(x - a)$ gives $Q(x)$ and remainder r.
That is, $P(x) = (x - a)Q(x) + r$
Only d roots.

Lemma 1: $P(x)$ has root a iff $P(x)/(x - a)$ has remainder 0: $P(x) = (x - a)Q(x)$.

Proof: $P(x) = (x - a)Q(x) + r$. Plugin a: $P(a) = r$. It is a root if and only if $r = 0$.

Lemma 2: $P(x)$ has d roots; r_1, \ldots, r_d then $P(x) = c(x - r_1)(x - r_2)\cdots(x - r_d)$.

Proof Sketch: By induction.

Induction Step: $P(x) = (x - r_1)Q(x)$ by Lemma 1. $Q(x)$ has smaller degree so use the induction hypothesis. $d + 1$ roots implies degree is at least $d + 1$.

Roots fact: Any degree d polynomial has at most d roots.
Finite Fields

Proof works for reals, rationals, and complex numbers.
..but not for integers, since no multiplicative inverses.
Arithmetic modulo a prime p has multiplicative inverses..
..and has only a finite number of elements.
Good for computer science.
Arithmetic modulo a prime m is a **finite field** denoted by F_m or $GF(m)$.
Intuitively, a field is a set with operations corresponding to addition, multiplication, and division.
Secret Sharing

Modular Arithmetic Fact: Exactly one polynomial degree $\leq d$ over $GF(p)$, $P(x)$, that hits $d + 1$ points.

Shamir's k out of n Scheme:
Secret $s \in \{0, \ldots, p - 1\}$

1. Choose $a_0 = s$, and randomly a_1, \ldots, a_{k-1}.
2. Let $P(x) = a_{k-1}x^{k-1} + a_{k-2}x^{k-2} + \cdots + a_0$ with $a_0 = s$.
3. Share i is point $(i, P(i) \mod p)$.

Robustness: Any k knows secret.
Knowing k pts, only one $P(x)$, evaluate $P(0)$.

Secrecy: Any $k - 1$ knows nothing.
Knowing $\leq k - 1$ pts, any $P(0)$ is possible.
Minimality.

Need $p > n$ to hand out n shares: $P(1) \ldots P(n)$.
For b-bit secret, must choose a prime $p > 2^b$.

Theorem: There is always a prime between n and $2n$.

Working over numbers within 1 bit of secret size. **Minimality.**

With k shares, reconstruct polynomial, $P(x)$.
With $k - 1$ shares, any of p values possible for $P(0)$!
(Almost) any b-bit string possible!
(Almost) the same as what is missing: one $P(i)$.

Runtime.

Runtime: polynomial in k, n, and $\log p$.

1. Evaluate degree $k - 1$ polynomial n times using $\log p$-bit numbers.

2. Reconstruct secret by solving system of k equations using $\log p$-bit arithmetic.
A bit more counting.

What is the number of degree d polynomials over $GF(m)$?

- m^{d+1}: $d + 1$ coefficients from $\{0, \ldots, m-1\}$.
- m^{d+1}: $d + 1$ points with y-values from $\{0, \ldots, m-1\}$

Infinite number for reals, rationals, complex numbers!
Erasure Codes.

Satellite

3 packet message. So send 6!

3 Lose 3 out 6 packets.

GPS device

Gets packets 1, 1, and 3.
Solution Idea.

n packet message, channel that loses k packets.

Must send $n + k$ packets!

- Any n packets should allow reconstruction of n packet message.
- Any n point values allow reconstruction of degree $n - 1$ polynomial.

Alright!!!!!!

Use polynomials.
Problem: Want to send a message with n packets.

Channel: Lossy channel: loses k packets.

Question: Can you send $n + k$ packets and recover message?

A degree $n - 1$ polynomial determined by any n points!

Erasure Coding Scheme: message = $m_0, m_2, \ldots, m_{n-1}$.

1. Choose prime $p \approx 2^b$ for packet size b.
2. $P(x) = m_{n-1}x^{n-1} + \cdots m_0 \pmod p$.
3. Send $P(1), \ldots, P(n+k)$.

Any n of the $n + k$ packets gives polynomial ...and message!
Erasure Codes.

Satellite

1 2 \cdots n+k

GPS device

\[n \text{ packet message. So send } n+k! \]

Lose \(k \) packets.

\[\text{Any } n \text{ packets is enough!} \]

\[n \text{ packet message.} \]

Optimal.
Size: Can choose a prime between \(2^{b-1}\) and \(2^b\). (Lose at most 1 bit per packet.)

But: packets need label for \(x\) value.

There are Galois Fields \(GF(2^n)\) where one loses nothing.

– Can also run the Fast Fourier Transform.

In practice, \(O(n)\) operations with almost the same redundancy.

Comparison with Secret Sharing: information content.

 Secret Sharing: each share is size of whole secret.
 Coding: Each packet has size \(1/n\) of the whole message.
Send message of 1, 4, and 4.

Make polynomial with \(P(1) = 1, P(2) = 4, P(3) = 4 \).

How?

Lagrange Interpolation.
Linear System.

Work modulo 5.

\[P(x) = x^2 \pmod{5} \]
\[P(1) = 1, P(2) = 4, P(3) = 9 = 4 \pmod{5} \]

Send \((0, P(0))\ldots(5, P(5))\).

6 points. Better work modulo 7 at least!

Why? \((0, P(0)) = (5, P(5)) \pmod{5} \)
Example

Make polynomial with $P(1) = 1$, $P(2) = 4$, $P(3) = 4$. Modulo 7 to accommodate at least 6 packets.

Linear equations:

\[
P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}
\]
\[
P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}
\]
\[
P(3) = 2a_2 + 3a_1 + a_0 \equiv 4 \pmod{7}
\]

\[
6a_1 + 3a_0 = 2 \pmod{7}, \quad 5a_1 + 4a_0 = 0 \pmod{7}
\]

\[
a_1 = 2a_0. \quad a_0 = 2 \pmod{7} \quad a_1 = 4 \pmod{7} \quad a_2 = 2 \pmod{7}
\]

\[
P(x) = 2x^2 + 4x + 2
\]

\[
P(1) = 1, \ P(2) = 4, \text{ and } P(3) = 4
\]

Send

Packets: (1, 1), (2, 4), (3, 4), (4, 7), (5, 2), (6, 0)

Notice that packets contain “x-values”.

Bad reception!

Send: (1, 1), (2, 4), (3, 4), (4, 7), (5, 2), (6, 0)

Recieve: (1, 1), (3, 4), (6, 0)
Reconstruct?

Format: \((i, R(i))\).

Lagrange or linear equations.

\[
P(1) = a_2 + a_1 + a_0 \equiv 1 \pmod{7}
\]
\[
P(2) = 4a_2 + 2a_1 + a_0 \equiv 4 \pmod{7}
\]
\[
P(6) = 2a_2 + 3a_1 + a_0 \equiv 0 \pmod{7}
\]

Channeling Sahai ...

\[
P(x) = 2x^2 + 4x + 2
\]

Message? \(P(1) = 1, P(2) = 4, P(3) = 4\).
Questions for Review

You want to encode a secret consisting of 1,4,4.
 How big should modulus be?
 Larger than 144 and prime!

You want to send a message consisting of packets 1,4,2,3,0
 through a noisy channel that loses 3 packets.
 How big should modulus be?
 Larger than 8 and prime!

Send n packets b-bit packets, with k errors.
 Modulus should be larger than $n + k$ and also larger than 2^b.
Polynomials.

- give Secret Sharing.
- give Erasure Codes.

Error Correction:

Noisy Channel: corrupts k packets. (rather than loss.)

Additional Challenge: Finding which packets are corrupt.
Error Correction

Satellite

3 packet message. **Send 5.**

Corrupts 1 packets.
The Scheme.

Problem: Communicate n packets m_1, \ldots, m_n on noisy channel that corrupts $\leq k$ packets.

Reed-Solomon Code:

1. Make a polynomial, $P(x)$ of degree $n - 1$, that encodes message.
 - $P(1) = m_1, \ldots, P(n) = m_n$.
 - Comment: could encode with packets as coefficients.

2. Send $P(1), \ldots, P(n+2k)$.

After noisy channel: Recieve values $R(1), \ldots, R(n+2k)$.

Properties:

1. $P(i) = R(i)$ for at least $n + k$ points i,
2. $P(x)$ is unique degree $n - 1$ polynomial that contains $\geq n + k$ received points.
Properties: proof.

\(P(x) \): degree \(n - 1 \) polynomial.
Send \(P(1), \ldots, P(n + 2k) \)
Receive \(R(1), \ldots, R(n + 2k) \)
At most \(k \) \(i \)'s where \(P(i) \neq R(i) \).

Properties:
(1) \(P(i) = R(i) \) for at least \(n + k \) points \(i \),
(2) \(P(x) \) is unique degree \(n - 1 \) polynomial
 that contains \(\geq n + k \) received points.

Proof:
(1) Sure. Only \(k \) corruptions.
(2) Degree \(n - 1 \) polynomial \(Q(x) \) consistent with \(n + k \) points.
 \(Q(x) \) agrees with \(R(i) \), \(n + k \) times.
 \(P(x) \) agrees with \(R(i) \), \(n + k \) times.
 Total points contained by both: \(2n + 2k \). \(P \) Pigeons.
 Total points to choose from : \(n + 2k \). \(H \) Holes.
 Points contained by both : \(\geq n \). \(\geq P - H \) Collisions.
 \(\implies Q(i) = P(i) \) at \(n \) points.
 \(\implies Q(x) = P(x). \)
Example.

Message: 3, 0, 6.
Reed Solomon Code: $P(x) = x^2 + x + 1 \pmod{7}$ has $P(1) = 3, P(2) = 0, P(3) = 6$ modulo 7.
Send: $P(1) = 3, P(2) = 0, P(3) = 6, P(4) = 0, P(5) = 3$.
(Aside: Message in plain text!)
Receive $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$.
$P(i) = R(i)$ for $n + k = 3 + 1 = 4$ points.
Slow solution.

Brute Force:
For each subset of \(n + k \) points
- Fit degree \(n - 1 \) polynomial, \(Q(x) \), to \(n \) of them.
- Check if consistent with \(n + k \) of the total points.
 - If yes, output \(Q(x) \).

- For subset of \(n + k \) pts where \(R(i) = P(i) \), method will reconstruct \(P(x) \)!

- For any subset of \(n + k \) pts,
 1. there is unique degree \(n - 1 \) polynomial \(Q(x) \) that fits \(n \) of them
 2. and where \(Q(x) \) is consistent with \(n + k \) points
 \[\Rightarrow P(x) = Q(x). \]

Reconstructs \(P(x) \) and only \(P(x) \)!!
Example.

Received $R(1) = 3, R(2) = 1, R(3) = 6, R(4) = 0, R(5) = 3$
Find $P(x) = p_2x^2 + p_1x + p_0$ that contains $n + k = 3 + 1$ points.
All equations..

\[
\begin{align*}
p_2 + p_1 + p_0 & \equiv 3 \pmod{7} \\
4p_2 + 2p_1 + p_0 & \equiv 1 \pmod{7} \\
2p_2 + 3p_1 + p_0 & \equiv 6 \pmod{7} \\
2p_2 + 4p_1 + p_0 & \equiv 0 \pmod{7} \\
1p_2 + 5p_1 + p_0 & \equiv 3 \pmod{7}
\end{align*}
\]

Assume point 1 is wrong and solve.. no consistent solution!
Assume point 2 is wrong and solve... consistent solution!
In general,

\[P(x) = p_{n-1}x^{n-1} + \cdots + p_0 \] and receive \(R(1), \ldots, R(m = n + 2k) \).

\[
\begin{align*}
p_{n-1} + \cdots + p_0 & \equiv R(1) \pmod{p} \\
p_{n-1}2^{n-1} + \cdots + p_0 & \equiv R(2) \pmod{p} \\
\vdots & \\
p_{n-1}i^{n-1} + \cdots + p_0 & \equiv R(i) \pmod{p} \\
\vdots & \\
p_{n-1}(m)^{n-1} + \cdots + p_0 & \equiv R(m) \pmod{p}
\end{align*}
\]

Error!! Where???
Could be anywhere!!! ...so try everywhere.
Runtime: \(\binom{n+2k}{k} \) possibilities.

Something like \((n/k)^k \) ...Exponential in \(k \).

How do we find where the bad packets are efficiently?!?!?!
Ditty...

Where oh where can my bad packets be ... On Tuesday.