Today.

More Counting.
Today.

More Counting.
Probability.
Sampling and counting.

First rule: \(n_1 \times n_2 \cdots \times n_3. \)
Sampling and counting.

First rule: \(n_1 \times n_2 \times \cdots \times n_3 \).

\(k \) Samples with replacement from \(n \) items: \(n^k \).
Sampling and counting.

First rule: \(n_1 \times n_2 \cdots \times n_3 \).

\(k \) Samples with replacement from \(n \) items: \(n^k \).
Sample without replacement: \(\frac{n!}{(n-k)!} \).
Sampling and counting.

First rule: \(n_1 \times n_2 \cdots \times n_3 \).

\(k \) Samples with replacement from \(n \) items: \(n^k \).
Sample without replacement: \(\frac{n!}{(n-k)!} \).

Second rule: when order doesn’t matter divide..when possible.
Sampling and counting.

First rule: \(n_1 \times n_2 \cdots \times n_3 \).

\(k \) Samples with replacement from \(n \) items: \(n^k \).

Sample without replacement: \(\frac{n!}{(n-k)!} \).

Second rule: when order doesn’t matter divide..when possible.

Sample without replacement and order doesn’t matter: \(\binom{n}{k} = \frac{n!}{(n-k)!k!} \).

“\(n \) choose \(k \)”
Sampling and counting.

First rule: \(n_1 \times n_2 \cdots \times n_3 \).

\(k \) Samples with replacement from \(n \) items: \(n^k \).
Sample without replacement: \(\frac{n!}{(n-k)!} \).

Second rule: when order doesn’t matter divide..when possible.
Sample without replacement and order doesn’t matter: \(\binom{n}{k} = \frac{n!}{(n-k)!k!} \).
“\(n \) choose \(k \)”

One-to-one rule: equal in number if one-to-one correspondence.
Sampling and counting.

First rule: \(n_1 \times n_2 \cdots \times n_3 \).

\(k \) Samples with replacement from \(n \) items: \(n^k \).

Sample without replacement: \(\frac{n!}{(n-k)!} \).

Second rule: when order doesn’t matter divide...when possible.

Sample without replacement and order doesn’t matter: \(\binom{n}{k} = \frac{n!}{(n-k)!k!} \).

“\(n \) choose \(k \)”

One-to-one rule: equal in number if one-to-one correspondence.

Sample with replacement and order doesn’t matter: \(\binom{k+n-1}{n-1} \).
Balls in bins.

“k Balls in n bins” \equiv “k samples from n possibilities.”
Balls in bins.

“k Balls in n bins” \equiv “k samples from n possibilities.”
“indistinguishable balls” \equiv “order doesn’t matter”
Balls in bins.

“k Balls in n bins” \equiv “k samples from n possibilities.”

“indistinguishable balls” \equiv “order doesn’t matter”

“only one ball in each bin” \equiv “without replacement”
Balls in bins.

“k Balls in n bins” ≡ “k samples from n possibilities.”
“indistinguishable balls” ≡ “order doesn’t matter”
“only one ball in each bin” ≡ “without replacement”
5 balls into 10 bins
Balls in bins.

“k Balls in n bins” \equiv “k samples from n possibilities.”

“indistinguishable balls” \equiv “order doesn’t matter”

“only one ball in each bin” \equiv “without replacement”

5 balls into 10 bins
5 samples from 10 possibilities with replacement
“k Balls in n bins” ≡ “k samples from n possibilities.”

“indistinguishable balls” ≡ “order doesn’t matter”

“only one ball in each bin” ≡ “without replacement”

5 balls into 10 bins
5 samples from 10 possibilities with replacement

Example: 5 digit phone numbers.
5 Balls/places choose from 10 bins/digits.
Balls in bins.

“k Balls in n bins” \equiv “k samples from n possibilities.”
“indistinguishable balls” \equiv “order doesn’t matter”
“only one ball in each bin” \equiv “without replacement”

5 balls into 10 bins
5 samples from 10 possibilities with replacement
 Example: 5 digit phone numbers.
 5 Balls/places choose from 10 bins/digits.

5 indistinguishable balls into 52 bins only one ball in each bin
Balls in bins.

“k Balls in n bins” ≡ “k samples from n possibilities.”

“indistinguishable balls” ≡ “order doesn’t matter”

“only one ball in each bin” ≡ “without replacement”

5 balls into 10 bins
5 samples from 10 possibilities with replacement
 Example: 5 digit phone numbers.
 5 Balls/places choose from 10 bins/digits.

5 indistinguishable balls into 52 bins only one ball in each bin
5 samples from 52 possibilities without replacement
Balls in bins.

“\(k\) Balls in \(n\) bins” \(\equiv\) “\(k\) samples from \(n\) possibilities.”

“indistinguishable balls” \(\equiv\) “order doesn’t matter”

“only one ball in each bin” \(\equiv\) “without replacement”

5 balls into 10 bins
5 samples from 10 possibilities with replacement
 Example: 5 digit phone numbers.
 5 Balls/places choose from 10 bins/digits.

5 indistinguishable balls into 52 bins only one ball in each bin
5 samples from 52 possibilities without replacement
 Example: Poker hands.
 5 balls/cards into 52 bins/possible cards.
Balls in bins.

“k Balls in n bins” ≡ “k samples from n possibilities.”
“indistinguishable balls” ≡ “order doesn’t matter”
“only one ball in each bin” ≡ “without replacement”

5 balls into 10 bins
5 samples from 10 possibilities with replacement
 Example: 5 digit phone numbers.
 5 Balls/places choose from 10 bins/digits.

5 indistinguishable balls into 52 bins only one ball in each bin
5 samples from 52 possibilities without replacement
 Example: Poker hands.
 5 balls/cards into 52 bins/possible cards.

5 indistinguishable balls into 3 bins
“k Balls in n bins” ≡ “k samples from n possibilities.”

“indistinguishable balls” ≡ “order doesn’t matter”

“only one ball in each bin” ≡ “without replacement”

5 balls into 10 bins
5 samples from 10 possibilities with replacement
 Example: 5 digit phone numbers.
 5 Balls/places choose from 10 bins/digits.

5 indistinguishable balls into 52 bins only one ball in each bin
5 samples from 52 possibilities without replacement
 Example: Poker hands.
 5 balls/cards into 52 bins/possible cards.

5 indistinguishable balls into 3 bins
5 samples from 3 possibilities with replacement and no order
Balls in bins.

“k Balls in n bins” ≡ “k samples from n possibilities.”

“indistinguishable balls” ≡ “order doesn’t matter”

“only one ball in each bin” ≡ “without replacement”

5 balls into 10 bins
5 samples from 10 possibilities with replacement
 Example: 5 digit phone numbers.
 5 Balls/places choose from 10 bins/digits.

5 indistinguishable balls into 52 bins only one ball in each bin
5 samples from 52 possibilities without replacement
 Example: Poker hands.
 5 balls/cards into 52 bins/possible cards.

5 indistinguishable balls into 3 bins
5 samples from 3 possibilities with replacement and no order
 Dividing 5 dollars among Alice, Bob and Eve.
 5 dollars/balls choose from 3 people/bins.
Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.
Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.

“exclusive” or Two Jokers

No jokers

“exclusive” or One Joker

(52 \choose 5) + (52 \choose 4) + (52 \choose 3).

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands?

Choose 4 cards plus one of 2 jokers!

(52 \choose 5) + 2 \times (52 \choose 4) + (52 \choose 3).

Wait a minute!

Same as choosing 5 cards from 54

or (54 \choose 5).

Theorem:

(54 \choose 5) = (52 \choose 5) + 2 \times (52 \choose 4) + (52 \choose 3).

Algebraic Proof:

No need! Above is combinatorial proof.
Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers \(\binom{52}{5} \)

“exclusive” or Two Jokers

\[
\binom{52}{4} + 2 \binom{52}{3}
\]
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}
\]
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers "exclusive" or One Joker "exclusive" or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]
Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck.
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck. How many 5 card poker hands?
Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands?

\[
\binom{52}{5} +
\]

Wait a minute!

Same as choosing 5 cards from 54 or

\[
\binom{54}{5} = \binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}.
\]

Theorem:

\[
\binom{54}{5} = \binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}.
\]

Algebraic Proof:

No need! Above is combinatorial proof.
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers "exclusive" or One Joker "exclusive" or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck. How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

\[
\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}.
\]

Wait a minute! Same as choosing 5 cards from 54 or \(\binom{54}{5}\).
Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?
Sum rule: Can sum over disjoint sets.
No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? **Choose 4 cards plus one of 2 jokers!**

\[
\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}.
\]
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck. How many 5 card poker hands? **Choose 4 cards plus one of 2 jokers!**

\[
\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}
\]

Wait a minute!
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck. How many 5 card poker hands? **Choose 4 cards plus one of 2 jokers!**

\[
\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}
\]

Wait a minute! Same as
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck. How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

\[
\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}
\]

Wait a minute! Same as choosing 5 cards from 54
Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.
No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

\[
\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}
\]

Wait a minute! Same as choosing 5 cards from 54 or
Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[\binom{52}{5} + \binom{52}{4} + \binom{52}{3}. \]

Two distinguishable jokers in 54 card deck. How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

\[\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3} \]

Wait a minute! Same as choosing 5 cards from 54 or

\[\binom{54}{5} \]

Theorem: \(\binom{54}{5} \)
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck. How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

\[
\binom{52}{5} + 2*\binom{52}{4} + \binom{52}{3}
\]

Wait a minute! Same as choosing 5 cards from 54 or

\[
\binom{54}{5}
\]

Theorem: \(\binom{54}{5} = \binom{52}{5} + 2*\binom{52}{4} + \binom{52}{3} \).
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck. How many 5 card poker hands? **Choose 4 cards plus one of 2 jokers!**

\[
\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}
\]

Wait a minute! Same as choosing 5 cards from 54 or

\[
\binom{54}{5}
\]

Theorem: \(\binom{54}{5} = \binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3} \).

Algebraic Proof:
Sum Rule

Two indistinguishable jokers in 54 card deck. How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck. How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

\[
\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}
\]

Wait a minute! Same as choosing 5 cards from 54 or

\[
\binom{54}{5}
\]

Theorem: \(\binom{54}{5} = \binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3} \).

Algebraic Proof: No need! Above is combinatorial proof.
Sum Rule

Two indistinguishable jokers in 54 card deck.
How many 5 card poker hands?

Sum rule: Can sum over disjoint sets.

No jokers “exclusive” or One Joker “exclusive” or Two Jokers

\[
\binom{52}{5} + \binom{52}{4} + \binom{52}{3}.
\]

Two distinguishable jokers in 54 card deck.
How many 5 card poker hands? Choose 4 cards plus one of 2 jokers!

\[
\binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}
\]

Wait a minute! Same as choosing 5 cards from 54 or

\[
\binom{54}{5}
\]

Theorem: \(\binom{54}{5} = \binom{52}{5} + 2 \times \binom{52}{4} + \binom{52}{3}\).

Algebraic Proof: No need! Above is combinatorial proof.
Combinatorial Proofs.

Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)
Combinatorial Proofs.

Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)?
Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)? \(\binom{n}{k} \)
Combinatorial Proofs.

Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)? \(\binom{n}{k} \)

How many subsets of size \(k \)?
Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)? \(\binom{n}{k} \)

How many subsets of size \(k \)?
Choose a subset of size \(n-k \)
Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)? \(\binom{n}{k} \)

How many subsets of size \(k \)?
Choose a subset of size \(n-k \) and what’s left out
Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)? \(\binom{n}{k} \)

How many subsets of size \(k \)?
Choose a subset of size \(n - k \)
 and what’s left out is a subset of size \(k \).
Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)? \(\binom{n}{k} \)

How many subsets of size \(k \)?
Choose a subset of size \(n - k \)
and what’s left out is a subset of size \(k \).
Choosing a subset of size \(k \) is same
Combinatorial Proofs.

Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)? \(\binom{n}{k} \)

How many subsets of size \(k \)?
Choose a subset of size \(n-k \)
and what’s left out is a subset of size \(k \).
Choosing a subset of size \(k \) is same
as choosing \(n-k \) elements to not take.
Combinatorial Proofs.

Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)? \(\binom{n}{k} \)

How many subsets of size \(k \)?
Choose a subset of size \(n-k \) and what’s left out is a subset of size \(k \).
Choosing a subset of size \(k \) is same as choosing \(n-k \) elements to not take.
\(\Rightarrow \binom{n}{n-k} \) subsets of size \(k \).
Theorem: \(\binom{n}{k} = \binom{n}{n-k} \)

Proof: How many subsets of size \(k \)? \(\binom{n}{k} \)

How many subsets of size \(k \)?
Choose a subset of size \(n - k \)
and what’s left out is a subset of size \(k \).
Choosing a subset of size \(k \) is same
as choosing \(n - k \) elements to not take.
\(\implies \binom{n}{n-k} \) subsets of size \(k \).
Pascal’s Triangle

Row n: coefficients of $(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)$.

- Foil (4 terms): 2^n terms: choose 1 or x from each factor of $(1 + x)$.
- Simplify: collect all terms corresponding to x^k.
- Coefficient of x^k is $\binom{n}{k}$: choose k factors where x is in product.

\[
\begin{array}{ccccccc}
& & & & 0 & & 0 \\
& & & 1 & 1 & & \\
& & 1 & 2 & 1 & & \\
& 1 & 3 & 3 & 1 & & \\
1 & 4 & 6 & 4 & 1 & & \\
\end{array}
\]

Pascal’s rule $\Rightarrow \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$.
Pascal’s Triangle

Row \(n \): coefficients of \((1 + x)^n\) = \((1 + x)(1 + x) \cdots (1 + x)\).

Foil (4 terms): 2 terms: choose 1 or \(x\) from each factor of \((1 + x)\).

Simplify: collect all terms corresponding to \(x^k\).

Coefficient of \(x^k\) is \(\binom{n}{k}\): choose \(k\) factors where \(x\) is in product.

\[
\begin{array}{cccc}
0 \\
1 & 1 \\
2 & 1 & 1 & 1 \\
3 & 1 & 2 & 1 & 1 \\
4 & 1 & 3 & 3 & 1 & 1 \\
5 & 1 & 4 & 6 & 4 & 1 & 1 \\
\end{array}
\]

Pascal’s rule: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}\).
Pascal’s Triangle

\[
\begin{array}{cccc}
0 \\
1 & 1 \\
1 & 2 & 1 \\
\end{array}
\]

Row \(n \): coefficients of \((1 + x)^n\) = \((1 + x)(1 + x)\cdots(1 + x)\).

Foil (4 terms): \(2^n\) terms: choose 1 or \(x\) from each factor of \((1 + x)\).

Simplify: collect all terms corresponding to \(x^k\).

Coefficient of \(x^k\) is \(\binom{n}{k}\): choose \(k\) factors where \(x\) is in product.

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
\end{array}
\]

Pascal’s rule = \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}\).
Pascal’s Triangle

\[
\begin{array}{c}
0 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1
\end{array}
\]
Pascal’s Triangle

\[
\begin{array}{cccccc}
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
\end{array}
\]

Row \(n \): coefficients of \((1 + x)^n\) = \((1 + x)(1 + x) \cdots (1 + x)\).

Foil (4 terms) on steroids: \(2^n\) terms: choose 1 or \(x\) from each factor of \((1 + x)\).

Simplify: collect all terms corresponding to \(x^k\).

Coefficient of \(x^k\) is \(\binom{n}{k}\): choose \(k\) factors where \(x\) is in product.

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
\end{array}
\]

Pascal’s rule \(\Rightarrow\) \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}\).
Pascal’s Triangle

0
1 1
1 2 1
1 3 3 1
1 4 6 4 1

Row \(n \): coefficients of \((1 + x)^n\) = \((1 + x)(1 + x)(1 + x) \cdots\).

Foil (4 terms) on steroids: \(2^n\) terms: choose 1 or \(x\) from each factor of \((1 + x)\).

Simplify: collect all terms corresponding to \(x^k\).

Coefficient of \(x^k\) is \(\binom{n}{k} \): choose \(k\) factors where \(x\) is in product.

\[
\begin{array}{cccc}
0 & 1 & 1 & 1 & 1 \\
1 & 2 & 1 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
\end{array}
\]
Row n: coefficients of $(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)$.

Pascal’s Triangle
Pascal’s Triangle

Row \(n \): coefficients of \((1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)\).

Foil (4 terms)
Pascal’s Triangle

Row n: coefficients of $(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)$.

Foil (4 terms) on steroids:
Pascal’s Triangle

Row n: coefficients of $(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)$.

Foil (4 terms) on steroids:
2^n terms:
Pascal’s Triangle

Row n: coefficients of $(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)$.

Foil (4 terms) on steroids:
2^n terms: choose 1 or x from each factor of $(1 + x)$.

```plaintext
0
1 1
1 2 1
1 3 3 1
1 4 6 4 1
```
Pascal’s Triangle

\[
\begin{array}{ccccccc}
0 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
\end{array}
\]

Row \(n \): coefficients of \((1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)\).

Foil (4 terms) on steroids:
\(2^n\) terms: choose 1 or \(x\) from each factor of \((1 + x)\).
Pascal’s Triangle

Row n: coefficients of $(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)$.

Foil (4 terms) on steroids:

- 2^n terms: choose 1 or x from each factor of $(1 + x)$.

Simplify: collect all terms corresponding to x^k.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Pascal’s rule $\Rightarrow (n + 1)^k = (n)^k + (n - 1)^k$.

Coefficient of x^k is $(n \choose k)$: choose k factors where x is in product.

\[(0 \ 0) \ (1 \ 0) \ (1 \ 1) \ (2 \ 0) \ (2 \ 1) \ (2 \ 2) \ (3 \ 0) \ (3 \ 1) \ (3 \ 2) \ (3 \ 3) \]
Pascal’s Triangle

\[
\begin{array}{cccccc}
0 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
\end{array}
\]

Row \(n \): coefficients of \((1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)\).

Foil (4 terms) on steroids:
\(2^n\) terms: choose 1 or \(x\) from each factor of \((1 + x)\).

Simplify: collect all terms corresponding to \(x^k\).
Coefficient of \(x^k\) is \(\binom{n}{k} \): choose \(k\) factors where \(x\) is in product.
Pascal’s Triangle

\[
\begin{array}{cccccc}
0 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
\end{array}
\]

Row \(n \): coefficients of \((1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)\).

Foil (4 terms) on steroids:
- \(2^n\) terms: choose 1 or \(x\) from each factor of \((1 + x)\).

Simplify: collect all terms corresponding to \(x^k\).
- Coefficient of \(x^k\) is \(\binom{n}{k}\): choose \(k\) factors where \(x\) is in product.

\[
\begin{array}{cccc}
(0) \\
(1) \\
(0) & (1) \\
\end{array}
\]

Pascal’s rule

\[
\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}
\]
Pascal’s Triangle

Row n: coefficients of $(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)$.

Foil (4 terms) on steroids:
- 2^n terms: choose 1 or x from each factor of $(1 + x)$.

Simplify: collect all terms corresponding to x^k.
- Coefficient of x^k is $\binom{n}{k}$: choose k factors where x is in product.

\[
\begin{array}{c}
\binom{0}{0} \\
\binom{1}{0} \quad \binom{1}{1} \\
\binom{2}{0} \quad \binom{2}{1} \quad \binom{2}{2}
\end{array}
\]
Pascal’s Triangle

Row n: coefficients of $(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)$.

Foil (4 terms) on steroids:
- 2^n terms: choose 1 or x from each factor of $(1 + x)$.

Simplify: collect all terms corresponding to x^k.
- Coefficient of x^k is $\binom{n}{k}$: choose k factors where x is in product.
Pascal’s Triangle

Row n: coefficients of $(1 + x)^n = (1 + x)(1 + x) \cdots (1 + x)$.

Foil (4 terms) on steroids:

2^n terms: choose 1 or x from each factor of $(1 + x)$.

Simplify: collect all terms corresponding to x^k.

Coefficient of x^k is $\binom{n}{k}$: choose k factors where x is in product.

Pascal’s rule $\implies \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$.
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}\).

Proof: How many size \(k\) subsets of \(n+1\)?
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many contain the first element?
Choose first element, need to choose \(k-1 \) more from remaining \(n \) elements.

\[\Rightarrow \binom{n}{k-1} \]

How many don't contain the first element?
Need to choose \(k \) elements from remaining \(n \) elts.

\[\Rightarrow \binom{n}{k} \]

So,

\[\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k} \]
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
Theorem: \((\binom{n+1}{k}) = \binom{n}{k} + \binom{n}{k-1}\).

Proof: How many size \(k\) subsets of \(n+1\)? \((\binom{n+1}{k})\).

How many size \(k\) subsets of \(n+1\)?
How many contain the first element?
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?

How many contain the first element?

Choose first element,
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
Choose first element,
 need to choose \(k - 1 \) more from remaining \(n \) elements.
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
Choose first element,
need to choose \(k - 1 \) more from remaining \(n \) elements.
\(\implies \) \(\binom{n}{k-1} \)
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?

How many contain the first element?
Choose first element, need to choose \(k-1 \) more from remaining \(n \) elements.

\[\Rightarrow \binom{n}{k-1} \]
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
Choose first element,
need to choose \(k - 1 \) more from remaining \(n \) elements.
\[\Rightarrow \binom{n}{k-1} \]

How many don’t contain the first element?
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?

How many contain the first element?

Choose first element,

need to choose \(k-1 \) more from remaining \(n \) elements.

\(\implies \binom{n}{k-1} \)

How many don’t contain the first element?

Need to choose \(k \) elements from remaining \(n \) elts.
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
Choose first element,
need to choose \(k - 1 \) more from remaining \(n \) elements.
\(\implies \binom{n}{k-1} \)

How many don’t contain the first element?
Need to choose \(k \) elements from remaining \(n \) elts.
\(\implies \binom{n}{k} \)
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
Choose first element,
 need to choose \(k - 1 \) more from remaining \(n \) elements.
\[\Rightarrow \binom{n}{k-1} \]

How many don’t contain the first element?
Need to choose \(k \) elements from remaining \(n \) elts.
\[\Rightarrow \binom{n}{k} \]
Combinatorial Proofs.

Theorem: \({n+1 \choose k} = {n \choose k} + {n \choose k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \({n+1 \choose k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
Choose first element,
need to choose \(k - 1 \) more from remaining \(n \) elements.
\[\Rightarrow {n \choose k-1} \]

How many don’t contain the first element?
Need to choose \(k \) elements from remaining \(n \) elts.
\[\Rightarrow {n \choose k} \]

So, \({n \choose k-1} + {n \choose k} \).
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n + 1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n + 1 \)?
How many contain the first element?
Choose first element, need to choose \(k - 1 \) more from remaining \(n \) elements.
\[\implies \binom{n}{k-1} \]

How many don’t contain the first element?
Need to choose \(k \) elements from remaining \(n \) elts.
\[\implies \binom{n}{k} \]

So, \(\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k} \). \qed
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).
Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[\{1, \ldots, i, \ldots, n\} \]

Must choose \(k - 1 \) elements from \(n - i \) remaining elements.
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1}. \)

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[\{1, \ldots, i, \ldots, n\} \]

Must choose \(k - 1 \) elements from \(n - i \) remaining elements.

\[\Rightarrow \binom{n-i}{k-1} \] such subsets.
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[
\{1, \ldots, i, \ldots, n\}
\]

Must choose \(k - 1 \) elements from \(n - i \) remaining elements.

\(\Rightarrow \binom{n-i}{k-1} \) such subsets.

Note term \(\binom{n-i}{k-1} \) corresponds to subsets where first item is \(i \).
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen. \(\{1, \ldots, i, \ldots, n\} \)

Must choose \(k - 1 \) elements from \(n - i \) remaining elements.

\[\Rightarrow \binom{n-i}{k-1} \text{ such subsets.} \]

Note term \(\binom{n-i}{k-1} \) corresponds to subsets where first item is \(i \).

Do the terms correspond to disjoint Groups?
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[\{1, \ldots, i, \ldots, n\} \]

Must choose \(k-1 \) elements from \(n-i \) remaining elements.

\[\Rightarrow \binom{n-i}{k-1} \] such subsets.

Note term \(\binom{n-i}{k-1} \) corresponds to subsets where first item is \(i \).

Do the terms correspond to disjoint Groups? Yes?
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[
\{1, \ldots, i, \ldots, n\}
\]

Must choose \(k - 1 \) elements from \(n - i \) remaining elements.
\[
\Rightarrow \binom{n-i}{k-1} \text{ such subsets.}
\]

Note term \(\binom{n-i}{k-1} \) corresponds to subsets where first item is \(i \).

Do the terms correspond to disjoint Groups? Yes? No?
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[
\{1, \ldots, i, \ldots, n\}
\]

Must choose \(k - 1 \) elements from \(n - i \) remaining elements.

\[\Rightarrow \binom{n-i}{k-1} \text{ such subsets.}\]

Note term \(\binom{n-i}{k-1} \) corresponds to subsets where first item is \(i \).

Do the terms correspond to disjoint Groups? Yes? No?

Any pair of subsets in different Groups have different first items.
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[
\{1, \ldots, i, \ldots, n\}
\]

Must choose \(k-1 \) elements from \(n-i \) remaining elements.

\[\Rightarrow \binom{n-i}{k-1} \] such subsets.

Note term \(\binom{n-i}{k-1} \) corresponds to subsets where first item is \(i \).

Do the terms correspond to disjoint Groups? Yes? No?

Any pair of subsets in different Groups have different first items.

So Yes!!
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[\{1, \ldots, i, \ldots, n\} \]

Must choose \(k - 1 \) elements from \(n - i \) remaining elements.

\[\Rightarrow \binom{n-i}{k-1} \] such subsets.

Note term \(\binom{n-i}{k-1} \) corresponds to subsets where first item is \(i \).

Do the terms correspond to disjoint Groups? Yes? No?
 Any pair of subsets in different Groups have different first items.
 So Yes!!

Add their sizes up to get the total number of subsets of size \(k \).
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[\{1, \ldots, i, \ldots, n\} \]

Must choose \(k - 1 \) elements from \(n - i \) remaining elements.

\[\Rightarrow \binom{n-i}{k-1} \text{ such subsets.} \]

Note term \(\binom{n-i}{k-1} \) corresponds to subsets where first item is \(i \).

Do the terms correspond to disjoint Groups? Yes? No?

Any pair of subsets in different Groups have different first items.

So Yes!!

Add their sizes up to get the total number of subsets of size \(k \) which is also \(\binom{n}{k} \).
Combinatorial Proof.

Theorem: \(\binom{n}{k} = \binom{n-1}{k-1} + \cdots + \binom{k-1}{k-1} \).

Proof: Consider size \(k \) subset where \(i \) is the first element chosen.

\[\{1, \ldots, i, \ldots, n\} \]

Must choose \(k - 1 \) elements from \(n - i \) remaining elements.

\[\Rightarrow \binom{n-i}{k-1} \text{ such subsets.} \]

Note term \(\binom{n-i}{k-1} \) corresponds to subsets where first item is \(i \).

Do the terms correspond to disjoint Groups? Yes? No?

Any pair of subsets in different Groups have different first items.

So Yes!!

Add their sizes up to get the total number of subsets of size \(k \) which is also \(\binom{n}{k} \).
Binomial Theorem: \(x = 1 \)

Theorem: \(2^n = \binom{n}{n} + \binom{n}{n-1} + \cdots + \binom{n}{0} \)
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$

Proof: How many subsets of \{1, \ldots, n\}?
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$

Proof: How many subsets of $\{1, \ldots, n\}$?

Construct a subset with sequence of n choices:
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{1} + \binom{n}{n-1} + \cdots + \binom{n}{0}$

Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices:
- element i is in or is not in the subset: 2 poss.
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{n} + \binom{n}{n-1} + \cdots + \binom{n}{0}$

Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices:
- element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2 = 2^n$ subsets.
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{n} + \binom{n}{n-1} + \cdots + \binom{n}{0}$

Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices:
- element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2 = 2^n$ subsets.

How many subsets of $\{1, \ldots, n\}$?
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{n} + \binom{n}{n-1} + \cdots + \binom{n}{0}$

Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices:
- element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2 = 2^n$ subsets.

How many subsets of $\{1, \ldots, n\}$?
- $\binom{n}{i}$ ways to choose i elts of $\{1, \ldots, n\}$.
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$

Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices:
- element i **is in** or **is not** in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2 = 2^n$ subsets.

How many subsets of $\{1, \ldots, n\}$?
- $\binom{n}{i}$ ways to choose i elts of $\{1, \ldots, n\}$.
Disjoint?
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$

Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices:
- element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2 = 2^n$ subsets.

How many subsets of $\{1, \ldots, n\}$?
- $\binom{n}{i}$ ways to choose i elts of $\{1, \ldots, n\}$.
 Disjoint? Different size if in different group.
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$

Proof: How many subsets of $\{1, \ldots, n\}$?

Construct a subset with sequence of n choices:
- element i is in or is not in the subset: 2 poss.
- First rule of counting: $2 \times 2 \cdots \times 2 = 2^n$ subsets.

How many subsets of $\{1, \ldots, n\}$?
- $\binom{n}{i}$ ways to choose i elts of $\{1, \ldots, n\}$.
- Disjoint? Different size if in different group. So..Yes!.
Binomial Theorem: \(x = 1 \)

Theorem: \(2^n = \binom{n}{n} + \binom{n}{n-1} + \cdots + \binom{n}{0} \)

Proof: How many subsets of \(\{1,\ldots,n\} \)?
Construct a subset with sequence of \(n \) choices:
- Element \(i \) is in or is not in the subset: 2 poss.
First rule of counting: \(2 \times 2 \cdots \times 2 = 2^n \) subsets.

How many subsets of \(\{1,\ldots,n\} \)?
- \(\binom{n}{i} \) ways to choose \(i \) elts of \(\{1,\ldots,n\} \).
- Disjoint? Different size if in different group. So..Yes!.
Sum over \(i \) to get total number of subsets..
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{n} + \binom{n}{n-1} + \cdots + \binom{n}{0}$

Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices:
- element i is in or is not in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2 = 2^n$ subsets.

How many subsets of $\{1, \ldots, n\}$?
- $\binom{n}{i}$ ways to choose i elts of $\{1, \ldots, n\}$.
- Disjoint? Different size if in different group. So..Yes!.
Sum over i to get total number of subsets..which is also 2^n.
Binomial Theorem: $x = 1$

Theorem: $2^n = \binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}$

Proof: How many subsets of $\{1, \ldots, n\}$?
Construct a subset with sequence of n choices:
- element i **is in** or **is not** in the subset: 2 poss.
First rule of counting: $2 \times 2 \cdots \times 2 = 2^n$ subsets.

How many subsets of $\{1, \ldots, n\}$?
- $\binom{n}{i}$ ways to choose i elts of $\{1, \ldots, n\}$.
- Disjoint? Different size if in different group. So..Yes!.
Sum over i to get total number of subsets..which is also 2^n.

\[\square \]
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$
Used to reason about all subsets
 by adding number of subsets of size 1, 2, 3, . . .
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, \(|S \cup T| = |S| + |T|\)
Used to reason about all subsets
 by adding number of subsets of size 1, 2, 3,…

Also reasoned about subsets that contained
 or didn’t contain an element. (E.g., first element, first i elements.)
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$
Used to reason about all subsets
 by adding number of subsets of size 1, 2, 3,...

Also reasoned about subsets that contained
 or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Used to reason about all subsets by adding number of subsets of size 1, 2, 3,\ldots

Also reasoned about subsets that contained or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|.$
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Used to reason about all subsets by adding number of subsets of size 1, 2, 3,\ldots

Also reasoned about subsets that contained or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

In $T. \implies |T|$
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Used to reason about all subsets by adding number of subsets of size 1, 2, 3,\ldots

Also reasoned about subsets that contained or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:

For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

![Venn Diagram](image-url)
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Used to reason about all subsets by adding number of subsets of size 1, 2, 3,\ldots

Also reasoned about subsets that contained or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Elements in $S \cap T$ are counted twice.
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|

Used to reason about all subsets by adding number of subsets of size 1, 2, 3, ...

Also reasoned about subsets that contained or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

In T. $\implies |T|$

In S. $\implies + |S|$

Elements in $S \cap T$ are counted twice. Subtract. $\implies - |S \cap T|$
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Used to reason about all subsets by adding number of subsets of size 1, 2, 3, ...

Also reasoned about subsets that contained or didn’t contain an element. (E.g., first element, first i elements.)

Inclusion/Exclusion Rule:
For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Elements in $S \cap T$ are counted twice. Subtract $|S \cap T|$.

$|S \cup T| = |S| + |T| - |S \cap T|$
Using Inclusion/Exclusion.

Inclusion/Exclusion Rule: For any S and T,
\[|S \cup T| = |S| + |T| - |S \cap T|. \]
Using Inclusion/Exclusion.

Inclusion/Exclusion Rule: For any S and T,
\[|S \cup T| = |S| + |T| - |S \cap T|. \]

Example: How many 10-digit phone numbers have 7 as their first or second digit?
Using Inclusion/Exclusion.

Inclusion/Exclusion Rule: For any S and T,

$$|S \cup T| = |S| + |T| - |S \cap T|.$$

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S =$ phone numbers with 7 as first digit.

$T =$ phone numbers with 7 as second digit.

$S \cap T =$ phone numbers with 7 as first and second digit.

Answer:

$$|S| + |T| - |S \cap T| = 10^9 + 10^9 - 10^8.$$
Using Inclusion/Exclusion.

Inclusion/Exclusion Rule: For any \(S \) and \(T \),
\[
|S \cup T| = |S| + |T| - |S \cap T|.
\]

Example: How many 10-digit phone numbers have 7 as their first or second digit?
\(S = \) phone numbers with 7 as first digit. \(|S| = 10^9 \)
Using Inclusion/Exclusion.

Inclusion/Exclusion Rule: For any S and T,
\[|S \cup T| = |S| + |T| - |S \cap T|. \]

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S =$ phone numbers with 7 as first digit. $|S| = 10^9$

$T =$ phone numbers with 7 as second digit.
Using Inclusion/Exclusion.

Inclusion/Exclusion Rule: For any S and T,

$$|S \cup T| = |S| + |T| - |S \cap T|.$$

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S = $ phone numbers with 7 as first digit. $|S| = 10^9$

$T = $ phone numbers with 7 as second digit. $|T| = 10^9$.
Using Inclusion/Exclusion.

Inclusion/Exclusion Rule: For any S and T,
$|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S =$ phone numbers with 7 as first digit. $|S| = 10^9$

$T =$ phone numbers with 7 as second digit. $|T| = 10^9$.

$S \cap T =$ phone numbers with 7 as first and second digit.
Using Inclusion/Exclusion.

Inclusion/Exclusion Rule: For any S and T,

$$|S \cup T| = |S| + |T| - |S \cap T|.$$

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S =$ phone numbers with 7 as first digit. $|S| = 10^9$

$T =$ phone numbers with 7 as second digit. $|T| = 10^9$.

$S \cap T =$ phone numbers with 7 as first and second digit. $|S \cap T| = 10^8$.
Using Inclusion/Exclusion.

Inclusion/Exclusion Rule: For any S and T,
$$|S \cup T| = |S| + |T| - |S \cap T|.$$

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S =$ phone numbers with 7 as first digit. $|S| = 10^9$

$T =$ phone numbers with 7 as second digit. $|T| = 10^9$.

$S \cap T =$ phone numbers with 7 as first and second digit. $|S \cap T| = 10^8$.

Answer: $|S| + |T| - |S \cap T| = 10^9 + 10^9 - 10^8$.
Summary.

First Rule of counting:

Objects from a sequence of choices:

\[n_1 \times n_2 \times \cdots \times n_k \text{ objects.} \]

Second Rule of counting:

If order does not matter.

Count with order.

Divide by number of orderings/sorted object.

Typically:

\[\binom{n+k-1}{k}. \]

Stars and Bars:

Sample \(k \) objects with replacement from \(n \).

Order doesn't matter.

Typically:

\[\binom{n+k-1}{k}. \]

Inclusion/Exclusion: two sets of objects.

Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.

Pascal's Triangle Example:

\[\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}. \]

RHS: Number of subsets of \(n+1 \) items size \(k \).

LHS:

\[\binom{n}{k-1} \text{ counts subsets of } n+1 \text{ items with first item.} \]

\[\binom{n}{k} \text{ counts subsets of } n+1 \text{ items without first item.} \]

Disjoint – so add!
Summary.

First Rule of counting: Objects from a sequence of choices:
Summary.

First Rule of counting: Objects from a sequence of choices:

\[n_i \] possibilities for \(i \)th choice.
Summary.

First Rule of counting: Objects from a sequence of choices:

- n_i possibilities for ith choice.
- $n_1 \times n_2 \times \cdots \times n_k$ objects.
Summary.

First Rule of counting: Objects from a sequence of choices:
- n_i possibilities for ith choice.
- $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting:
Summary.

First Rule of counting: Objects from a sequence of choices:
 \(n_i \) possibilities for \(i \)th choice.
 \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
Summary.

First Rule of counting: Objects from a sequence of choices:
- \(n_i \) possibilities for \(i \)th choice.
- \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
Count with order.
Summary.

First Rule of counting: Objects from a sequence of choices:
- \(n_i \) possibilities for \(i \)th choice.
- \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
- Count with order.
- Divide by number of orderings/sorted object.
Summary.

First Rule of counting: Objects from a sequence of choices:
- \(n_i \) possibilities for \(i \)th choice.
- \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
- Count with order.
- Divide by number of orderings/sorted object.
- Typically: \(\binom{n}{k} \).

Stars and Bars: Sample \(k \) objects with replacement from \(n \).
- Order doesn't matter.
- Typically: \(\binom{n+k-1}{k} \).

Inclusion/Exclusion: two sets of objects.
- Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.

Pascal's Triangle Example:
- \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).
- RHS: Number of subsets of \(n+1 \) items size \(k \).
- LHS: \(\binom{n}{k-1} \) counts subsets of \(n+1 \) items with first item.
- \(\binom{n}{k} \) counts subsets of \(n+1 \) items without first item.
- Disjoint—so add!
Summary.

First Rule of counting: Objects from a sequence of choices:
- \(n_i \) possibilities for \(i \)th choice.
- \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
- Count with order.
- Divide by number of orderings/sorted object.
- Typically: \(\binom{n}{k} \).

Stars and Bars:
Summary.

First Rule of counting: Objects from a sequence of choices:
- \(n_i\) possibilities for \(i^{th}\) choice.
- \(n_1 \times n_2 \times \cdots \times n_k\) objects.

Second Rule of counting: If order does not matter.
Count with order. Divide by number of orderings/sorted object.
Typically: \(^n_k\).

Stars and Bars: Sample \(k\) objects with replacement from \(n\).
Summary.

First Rule of counting: Objects from a sequence of choices:
- \(n_i \) possibilities for \(i \)th choice.
- \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
- Count with order.
- Divide by number of orderings/sorted object.
- Typically: \(\binom{n}{k} \).

Stars and Bars: Sample \(k \) objects with replacement from \(n \).
- Order doesn’t matter.
Summary.

First Rule of counting: Objects from a sequence of choices:
- n_i possibilities for ith choice.
- $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.
- Count with order. Divide by number of orderings/sorted object.
- Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.
- Order doesn’t matter.
- Typically: $\binom{n+k-1}{k}$.
Summary.

First Rule of counting: Objects from a sequence of choices:

- n_i possibilities for ith choice.
- $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.
- Count with order. Divide by number of orderings/sorted object.
 Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.
- Order doesn’t matter.
 Typically: $\binom{n+k-1}{k}$.

Inclusion/Exclusion: two sets of objects.
Summary.

First Rule of counting: Objects from a sequence of choices:
 n_i possibilities for ith choice.
 $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.
 Count with order. Divide by number of orderings/sorted object.
 Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.
 Order doesn’t matter.
 Typically: $\binom{n+k-1}{k}$.

Inclusion/Exclusion: two sets of objects.
 Add number of each subtract intersection of sets.
Summary.

First Rule of counting: Objects from a sequence of choices:
 \(n_i \) possibilities for \(i \)th choice.
 \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
 Count with order. Divide by number of orderings/sorted object.
 Typically: \(\binom{n}{k} \).

Stars and Bars: Sample \(k \) objects with replacement from \(n \).
 Order doesn’t matter.
 Typically: \(\binom{n+k-1}{k} \).

Inclusion/Exclusion: two sets of objects.
 Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.
Summary.

First Rule of counting: Objects from a sequence of choices:
- \(n_i \) possibilities for \(i \)th choice.
- \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
- Count with order.
- Divide by number of orderings/sorted object.
 Typically: \(\binom{n}{k} \).

Stars and Bars: Sample \(k \) objects with replacement from \(n \).
- Order doesn’t matter.
 Typically: \(\binom{n+k-1}{k} \).

Inclusion/Exclusion: two sets of objects.
 Add number of each subtract intersection of sets.
Sum Rule: If disjoint just add.
Summary.

First Rule of counting: Objects from a sequence of choices:
- n_i possibilities for ith choice.
- $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.
- Count with order. Divide by number of orderings/sorted object.
- Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.
- Order doesn’t matter.
- Typically: $\binom{n+k-1}{k}$.

Inclusion/Exclusion: two sets of objects.
- Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
Summary.

First Rule of counting: Objects from a sequence of choices:
- \(n_i \) possibilities for \(i \)th choice.
- \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
- Count with order. Divide by number of orderings/sorted object.
- Typically: \(\binom{n}{k} \).

Stars and Bars: Sample \(k \) objects with replacement from \(n \).
- Order doesn’t matter.
- Typically: \(\binom{n+k-1}{k} \).

Inclusion/Exclusion: two sets of objects.
- Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
- Pascal’s Triangle Example: \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \).
Summary.

First Rule of counting: Objects from a sequence of choices:
 - \(n_i \) possibilities for \(i \)th choice.
 - \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
 - Count with order. Divide by number of orderings/sorted object.
 - Typically: \(\binom{n}{k} \).

Stars and Bars: Sample \(k \) objects with replacement from \(n \).
 - Order doesn’t matter.
 - Typically: \(\binom{n+k-1}{k} \).

Inclusion/Exclusion: two sets of objects.
 - Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
 - Pascal’s Triangle Example: \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \).
 - RHS: Number of subsets of \(n+1 \) items size \(k \).
Summary.

First Rule of counting: Objects from a sequence of choices:
 \(n_i \) possibilities for \(i \)th choice.
 \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
 Count with order. Divide by number of orderings/sorted object.
 Typically: \(\binom{n}{k} \).

Stars and Bars: Sample \(k \) objects with replacement from \(n \).
 Order doesn’t matter.
 Typically: \(\binom{n+k-1}{k} \).

Inclusion/Exclusion: two sets of objects.
 Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
 Pascal’s Triangle Example: \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \).
 RHS: Number of subsets of \(n + 1 \) items size \(k \).
 LHS: \(\binom{n}{k-1} \) counts subsets of \(n + 1 \) items with first item.
Summary.

First Rule of counting: Objects from a sequence of choices:
- n_i possibilities for ith choice.
- $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.
- Count with order. Divide by number of orderings/sorted object.
- Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.
- Order doesn’t matter.
- Typically: $\binom{n+k-1}{k}$.

Inclusion/Exclusion: two sets of objects.
- Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
- Pascal’s Triangle Example: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.
 - RHS: Number of subsets of $n + 1$ items size k.
 - LHS: $\binom{n}{k-1}$ counts subsets of $n + 1$ items with first item.
 $\binom{n}{k}$ counts subsets of $n + 1$ items without first item.
Summary.

First Rule of counting: Objects from a sequence of choices:
- \(n_i \) possibilities for \(i \)th choice.
- \(n_1 \times n_2 \times \cdots \times n_k \) objects.

Second Rule of counting: If order does not matter.
- Count with order. Divide by number of orderings/sorted object.
 Typically: \(\binom{n}{k} \).

Stars and Bars: Sample \(k \) objects with replacement from \(n \).
- Order doesn’t matter.
 Typically: \(\binom{n+k-1}{k} \).

Inclusion/Exclusion: two sets of objects.
- Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
Pascal’s Triangle Example: \(\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k} \).
RHS: Number of subsets of \(n+1 \) items size \(k \).
LHS: \(\binom{n}{k-1} \) counts subsets of \(n+1 \) items with first item.
\(\binom{n}{k} \) counts subsets of \(n+1 \) items without first item.
Disjoint
Summary.

First Rule of counting: Objects from a sequence of choices:

- n_i possibilities for ith choice.
- $n_1 \times n_2 \times \cdots \times n_k$ objects.

Second Rule of counting: If order does not matter.
- Count with order.
- Divide by number of orderings/sorted object.
- Typically: $\binom{n}{k}$.

Stars and Bars: Sample k objects with replacement from n.
- Order doesn’t matter.
- Typically: $\binom{n+k-1}{k}$.

Inclusion/Exclusion: two sets of objects.
- Add number of each subtract intersection of sets.

Sum Rule: If disjoint just add.

Combinatorial Proofs: Identity from counting same in two ways.
- Pascal’s Triangle Example: $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$.
 - RHS: Number of subsets of $n+1$ items size k.
 - LHS: $\binom{n}{k-1}$ counts subsets of $n+1$ items with first item.
 $\binom{n}{k}$ counts subsets of $n+1$ items without first item.
 Disjoint – so add!
CS70: On to probability.

Modeling Uncertainty: Probability Space
CS70: On to probability.

Modeling Uncertainty: Probability Space

1. Key Points
2. Random Experiments
3. Probability Space
Key Points

▶ Uncertainty does not mean "nothing is known"
▶ How to best make decisions under uncertainty?
▶ Buy stocks
▶ Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
▶ Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
▶ How to best use 'artificial' uncertainty?
▶ Play games of chance
▶ Design randomized algorithms.
▶ Probability
▶ Models knowledge about uncertainty
▶ Discovers best way to use that knowledge in making decisions
Key Points

▶ Uncertainty does not mean “nothing is known”
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
 - Play games of chance
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
 - Play games of chance
 - Design randomized algorithms.
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability
 - Models knowledge about uncertainty
Key Points

- Uncertainty does not mean “nothing is known”
- How to best make decisions under uncertainty?
 - Buy stocks
 - Detect signals (transmitted bits, speech, images, radar, diseases, etc.)
 - Control systems (Internet, airplane, robots, self-driving cars, schedule surgeries in a hospital, etc.)
- How to best use ‘artificial’ uncertainty?
 - Play games of chance
 - Design randomized algorithms.
- Probability
 - Models knowledge about uncertainty
 - Discovers best way to use that knowledge in making decisions
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: a precise, unambiguous, simple (!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.
The Magic of Probability

Uncertainty:

- vague,
- fuzzy,
- confusing,
- scary,
- hard to think about.

Probability:
- a precise,
- unambiguous,
- simple (!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.
The Magic of Probability

Uncertainty: vague,
The Magic of Probability

Uncertainty: vague, fuzzy,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability:
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.
Probability: A precise, unambiguous, simple(!)
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Uncertainty = Fear

Probability = Serenity
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability,
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost:
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention
The Magic of Probability

Uncertainty: vague, fuzzy, confusing, scary, hard to think about.

Probability: A precise, unambiguous, simple(!) way to think about uncertainty.

Our mission: help you discover the serenity of Probability, i.e., enable you to think clearly about uncertainty.

Your cost: focused attention and practice on examples and problems.
Random Experiment: Flip one Fair Coin

- Flip a fair coin: (One flips or tosses a coin)
- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: H: 50% and T: 50%
Random Experiment: Flip one Fair Coin

Flip a fair coin:
Flip a *fair* coin: (*One flips or tosses a coin*)
Random Experiment: Flip one Fair Coin

Flip a fair coin: *(One flips or tosses a coin)*
Random Experiment: Flip one Fair Coin

Flip a fair coin: (*One flips or tosses a coin*)

- Possible outcomes:
 - Heads (H): 50%
 - Tails (T): 50%
Random Experiment: Flip one Fair Coin

Flip a fair coin: (*One flips or tosses a coin*)

- **Possible outcomes:** Heads (*H*)
Random Experiment: Flip one Fair Coin

Flip a fair coin: *(One flips or tosses a coin)*

- Possible outcomes: Heads *(H)* and Tails *(T)*
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: *(One flips or tosses a coin)*

- Possible outcomes: Heads *(H)* and Tails *(T)*
 (One flip yields either ‘heads’ or ‘tails’.
Random Experiment: Flip one Fair Coin

Flip a fair coin: (One flips or tosses a coin)

Possible outcomes: Heads (H) and Tails (T) (One flip yields either ‘heads’ or ‘tails’.)

Likelihoods:
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: *(One flips or tosses a coin)*

- Possible outcomes: Heads *(H)* and Tails *(T)* *(One flip yields either ‘heads’ or ‘tails’).*
- Likelihoods: *(H) : 50\% and (T) : 50\%*
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

▶ Single coin flip: 50% chance of 'tails' [subjectivist]

▶ Many coin flips: About half yield 'tails' [frequentist]

Makes sense for many flips

▶ Question: Why does the fraction of tails converge to the same value every time?

Statistical Regularity! Deep!
Random Experiment: Flip one Fair Coin

Flip a **fair** coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- **Single coin flip:** 50% chance of 'tails' (subjectivist)
- **Many coin flips:** About half yield 'tails' (frequentist)

Why does the fraction of tails converge to the same value every time?

Statistical Regularity! Deep!
Random Experiment: Flip one Fair Coin

Flip a *fair* coin:

What do we mean by the *likelihood of tails* is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’
Random Experiment: Flip one Fair Coin

Flip a *fair* coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ [frequentist]
Random Experiment: Flip one Fair Coin

Flip a **fair** coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ [frequentist]

 Makes sense for many flips
What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ [frequentist]

 Makes sense for many flips

Question:
Random Experiment: Flip one Fair Coin

Flip a *fair* coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ *subjectivist*

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ *frequentist*

 Makes sense for many flips

- Question: Why does the fraction of tails converge to the same value every time?
Random Experiment: Flip one Fair Coin

Flip a fair coin:

What do we mean by the likelihood of tails is 50%?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ [subjectivist]

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ [frequentist]

 Makes sense for many flips

- Question: Why does the fraction of tails converge to the same value every time? Statistical Regularity!
Random Experiment: Flip one Fair Coin

Flip a **fair** coin:

What do we mean by the **likelihood of tails is 50%**?

Two interpretations:

- Single coin flip: 50% chance of ‘tails’ **[subjectivist]**

 Willingness to bet on the outcome of a single flip

- Many coin flips: About half yield ‘tails’ **[frequentist]**

 Makes sense for many flips

- Question: Why does the fraction of tails converge to the same value every time? **Statistical Regularity! Deep!**
Random Experiment: Flip one Fair Coin

Flip a fair coin:
Random Experiment: Flip one Fair Coin

Flip a *fair* coin: model
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: model

- Physical Experiment
- Probability Model

\[\Omega = \{ H, T \} \]

\[\Pr[H] = 0.5, \quad \Pr[T] = 0.5. \]
Random Experiment: Flip one Fair Coin

Flip a *fair* coin: model

- The physical experiment is complex.

![Physical Experiment](image1.png)

![Probability Model](image2.png)
Random Experiment: Flip one Fair Coin

Flip a **fair** coin: model

- The physical experiment is complex. (Shape, density, initial momentum and position, ...)

![Physical Experiment](image1)

![Probability Model](image2)

- $\Omega = \{H, T\}$
- $\Pr[H] = 0.5$
- $\Pr[T] = 0.5$
Random Experiment: Flip one Fair Coin

Flip a fair coin: model

- The physical experiment is complex. (Shape, density, initial momentum and position, ...)
- The Probability model is simple:
Random Experiment: Flip one Fair Coin

Flip a fair coin: model

- The physical experiment is complex. (Shape, density, initial momentum and position, ...)

- The Probability model is simple:
 - A set Ω of outcomes: $\Omega = \{H, T\}$.
Random Experiment: Flip one Fair Coin

Flip a *fair* coin: model

The physical experiment is complex. (Shape, density, initial momentum and position, ...)

The Probability model is simple:

- A set Ω of outcomes: $\Omega = \{H, T\}$.
- A probability assigned to each outcome: $Pr[H] = 0.5, Pr[T] = 0.5$.
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

▶ Possible outcomes: Heads (H) and Tails (T)
▶ Likelihoods:
 - H: \(p \in (0, 1) \) and T: \(1 - p \)

▶ Frequentist Interpretation: Flip many times ⇒ Fraction \(1 - p \) of tails

▶ Question: How can one figure out \(p \)?

Flip many times

▶ Tautology? No: Statistical regularity!
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- H: 45%
- T: 55%
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

Possible outcomes:

- H: 45%
- T: 55%
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)

- Likelihoods:
 - H: $p \in (0, 1)$
 - T: $1 - p$

- Frequentist Interpretation:
 Flip many times \Rightarrow Fraction $1 - p$ of tails

- Question: How can one figure out p?
 Flip many times

- Tautology? No: Statistical regularity!
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

possibilities:

- Heels (H) and Tails (T)
- Likelihoods:
 - H: 45%
 - T: 55%

Possible outcomes: Heads (H) and Tails (T)
Likelihods:
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H : p \in (0, 1)$ and $T : 1 - p$

H: 45%
T: 55%
Random Experiment: Flip one Unfair Coin

Flip an **unfair** (biased, loaded) coin:

- **Possible outcomes**: Heads (\(H\)) and Tails (\(T\))
- **Likelihoods**: \(H : p \in (0, 1)\) and \(T : 1 - p\)
- **Frequentist Interpretation**:

\[
\text{H: 45\%} \\
\text{T: 55\%}
\]
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: $H : p \in (0, 1)$ and $T : 1 - p$
- Frequentist Interpretation:

 Flip many times \Rightarrow Fraction $1 - p$ of tails
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads \((H)\) and Tails \((T)\)
- Likelihoods: \(H: p \in (0, 1)\) and \(T: 1 - p\)
- Frequentist Interpretation:

 Flip many times \(\Rightarrow\) Fraction \(1 - p\) of tails

- Question:
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

Possible outcomes: Heads (H) and Tails (T)
Likelihoods: $H : p \in (0, 1)$ and $T : 1 - p$
Frequentist Interpretation:
 Flip many times \Rightarrow Fraction $1 - p$ of tails
Question: How can one figure out p?
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (H) and Tails (T)
- Likelihoods: \(H : p \in (0, 1) \) and \(T : 1 - p \)
- Frequentist Interpretation:

 Flip many times \(\Rightarrow \) Fraction \(1 - p \) of tails

Question: How can one figure out \(p \)? Flip many times
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (\(H\)) and Tails (\(T\))
- Likelihoods: \(H : p \in (0, 1)\) and \(T : 1 - p\)
- Frequentist Interpretation:

 Flip many times \(\Rightarrow\) Fraction \(1 - p\) of tails
- Question: How can one figure out \(p\)? Flip many times
- Tautology?
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin:

- Possible outcomes: Heads (\(H\)) and Tails (\(T\))
- Likelihoods: \(H : p \in (0, 1)\) and \(T : 1 - p\)
- Frequentist Interpretation:
 - Flip many times \(\Rightarrow\) Fraction \(1 - p\) of tails
- Question: How can one figure out \(p\)? Flip many times
- Tautology? No: Statistical regularity!
Random Experiment: Flip one Unfair Coin
Random Experiment: Flip one Unfair Coin

Flip an unfair (biased, loaded) coin: model
Random Experiment: Flip one Unfair Coin

Flip an **unfair** (biased, loaded) coin: model

![Physical Experiment](image)

![Probability Model](image)
Flip Two Fair Coins

Possible outcomes: \{HH, HT, TH, TT\} \equiv \{H, T\}^2.

Note: \(A \times B := \{(a, b) | a \in A, b \in B\}\) and \(A^2 := A \times A\).

Likelihoods: \(\frac{1}{4}\) each.
Flip Two Fair Coins

Possible outcomes:

\{HH, HT, TH, TT\} \equiv \{H, T\}^2.

Note: $A \times B := \{(a, b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$. Likelihoods: $1/4$ each.
Flip Two Fair Coins

Possible outcomes: \{HH, HT, TH, TT\}
Flip Two Fair Coins

- Possible outcomes: \(\{HH, HT, TH, TT\} \equiv \{H, T\}^2 \).
Flip Two Fair Coins

- Possible outcomes: \(\{HH, HT, TH, TT\} \equiv \{H, T\}^2 \).
- Note: \(A \times B := \{(a, b) \mid a \in A, b \in B\} \)
Flip Two Fair Coins

Possible outcomes: \(\{HH, HT, TH, TT\} \equiv \{H, T\}^2 \).

Note: \(A \times B := \{(a, b) \mid a \in A, b \in B\} \) and \(A^2 := A \times A \).
Flip Two Fair Coins

- Possible outcomes: $\{HH, HT, TH, TT\} \equiv \{H, T\}^2$.
- Note: $A \times B := \{(a, b) \mid a \in A, b \in B\}$ and $A^2 := A \times A$.
- Likelihoods:
Flip Two Fair Coins

- Possible outcomes: \(\{HH, HT, TH, TT\} \equiv \{H, T\}^2 \).
- Note: \(A \times B := \{(a, b) \mid a \in A, b \in B\} \) and \(A^2 := A \times A \).
- Likelihoods: 1/4 each.
Flip Two Fair Coins

- Possible outcomes: \(\{HH, HT, TH, TT\} \equiv \{H, T\}^2 \).
- Note: \(A \times B := \{(a, b) \mid a \in A, b \in B\} \) and \(A^2 := A \times A \).
- Likelihoods: 1/4 each.
Flip Glued Coins

Flips two coins glued together side by side:

▶ Possible outcomes: \{HH, TT\}.

▶ Likelihoods: HH: 0.5, TT: 0.5.

Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes: {HH, TT}.

Likelihoods: HH: 0.5, TT: 0.5.

Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes: {HH, TT}.

Likelihoods: HH: 0.5, TT: 0.5.

Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes:
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \(\{HH, TT\}\).
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \(\{HH, TT\} \).
- Likelihoods:
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes: \{HH, TT\}.
Likelihoods: \(HH : 0.5\), \(TT : 0.5\).
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \{HH, TT\}.
- Likelihoods: \(HH : 0.5, TT : 0.5\).
- Note: Coins are glued so that they show the same face.
Flip Glued Coins

Flip two coins glued together side by side:

- Possible outcomes: \{HT, TH\}.
- Likelihoods: HT: 0.5, TH: 0.5.

Note: Coins are glued so that they show different faces.
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes: {HT, TH}

Likelihoods: HT: 0.5, TH: 0.5.

Note: Coins are glued so that they show different faces.
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: HT, TH
- Likelihoods: HT: 0.5, TH: 0.5

Note: Coins are glued so that they show different faces.
Flip Glued Coins

Flips two coins glued together side by side:

Possible outcomes:

- HT: 0.5
- TH: 0.5

Note: Coins are glued so that they show different faces.
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \(\{HT, TH\}\).
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \{HT, TH\}.
- Likelihoods:
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \{HT, TH\}.
- Likelihoods: \(HT : 0.5\), \(TH : 0.5\).
Flip Glued Coins

Flips two coins glued together side by side:

- Possible outcomes: \(\{ HT, TH \} \).
- Likelihoods: \(HT : 0.5, TH : 0.5 \).
- Note: Coins are glued so that they show different faces.
Flip two Attached Coins

Flips two coins attached by a spring:

▶ Possible outcomes: {HH, HT, TH, TT}.

▶ Likelihoods:
 - HH: 0.4
 - HT: 0.1
 - TH: 0.1
 - TT: 0.4

▶ Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.
Flip two Attached Coins

Flips two coins attached by a spring:

Possible outcomes:
- HH
- HT
- TH
- TT

Likelihoods:
- HH: 0.4
- HT: 0.1
- TH: 0.1
- TT: 0.4

Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.
Flip two Attached Coins

Flips two coins attached by a spring:
Flip two Attached Coins

Flips two coins attached by a spring:

- Possible outcomes:
 - HH: 0.4
 - HT: 0.1
 - TH: 0.1
 - TT: 0.4

Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.
Flip two Attached Coins

Flips two coins attached by a spring:

- **Possible outcomes:** \{HH, HT, TH, TT\}.
Flip two Attached Coins

Flips two coins attached by a spring:

- Possible outcomes: \{HH, HT, TH, TT\}.
- Likelihoods:
Flip two Attached Coins

Flips two coins attached by a spring:

Possible outcomes: \(\{HH, HT, TH, TT\}\).

Likelihoods: \(HH : 0.4, HT : 0.1, TH : 0.1, TT : 0.4\).
Flip two Attached Coins

Flips two coins attached by a spring:

- Possible outcomes: \{HH, HT, TH, TT\}.
- Likelihoods: \(HH : 0.4, HT : 0.1, TH : 0.1, TT : 0.4\).
- Note: Coins are attached so that they tend to show the same face, unless the spring twists enough.
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: $[1]$;
- Glued coins: $[3, 4]$;

Flipping Two Coins

Here is a way to summarize the four random experiments:
Flipping Two Coins

Here is a way to summarize the four random experiments:

1. **Ω**
 - TH: 0.25
 - HH: 0.25
 - TT: 0.25
 - HT: 0.25

2. **Ω**
 - TH: 0.1
 - HH: 0.4
 - TT: 0.4
 - HT: 0.1

3. **Ω**
 - TH: 0
 - HH: 0.5
 - TT: 0.5
 - HT: 0

4. **Ω**
 - TH: 0.5
 - HH: 0
 - TT: 0
 - HT: 0.5
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;

![Diagram showing four experiments with different probabilities for TT, TH, HT, and HH outcomes.]

[1] Ω: TH 0.25 0.25, TT 0.25 0.25

[2] Ω: TH 0.1 0.4, TT 0.4 0.1

[3] Ω: TH 0 0.5, TT 0.5 0

[4] Ω: TH 0.5 0, TT 0 0.5
Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);

![Diagrams showing outcomes and probabilities for each experiment.](Diagram)
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins:
Flipping Two Coins

Here is a way to summarize the four random experiments:

▶ Ω is the set of possible outcomes;
▶ Each outcome has a probability (likelihood);
▶ The probabilities are ≥ 0 and add up to 1;
▶ Fair coins: [1];
Flipping Two Coins

Here is a way to summarize the four random experiments:

1. Ω is the set of possible outcomes;
2. Each outcome has a probability (likelihood);
3. The probabilities are ≥ 0 and add up to 1;
4. Fair coins: [1]; Glued coins:
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4];
Flipping Two Coins

Here is a way to summarize the four random experiments:

- Ω is the set of possible outcomes;
- Each outcome has a probability (likelihood);
- The probabilities are ≥ 0 and add up to 1;
- Fair coins: [1]; Glued coins: [3], [4];
 Spring-attached coins:
Flipping Two Coins

Here is a way to summarize the four random experiments:

▪ Ω is the set of possible outcomes;
▪ Each outcome has a probability (likelihood);
▪ The probabilities are ≥ 0 and add up to 1;
▪ Fair coins: [1]; Glued coins: [3], [4];
 Spring-attached coins: [2];
Flipping Two Coins
Here is a way to summarize the four random experiments:

[1] \[\Omega = \{TH, TT, HT, HH\} \quad \text{with probabilities} \quad \{0.25, 0.25, 0.25, 0.25\} \]

[2] \[\Omega = \{TH, TT, HT, HH\} \quad \text{with probabilities} \quad \{0.1, 0.4, 0.1, 0.4\} \]

[3] \[\Omega = \{TH, TT, HT, HH\} \quad \text{with probabilities} \quad \{0, 0.5, 0.5, 0\} \]

[4] \[\Omega = \{TH, TT, HT, HH\} \quad \text{with probabilities} \quad \{0.5, 0, 0, 0.5\} \]
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:
Flipping Two Coins

Here is a way to summarize the four random experiments:

![Diagram of four circles representing outcomes of flipping two coins]

Important remarks:

- Each outcome describes the two coins.
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:

- Each outcome describes the two coins.
- E.g., \(HT \) is one outcome of the experiment.
Flipping Two Coins
Here is a way to summarize the four random experiments:

Important remarks:

- Each outcome describes the two coins.
- E.g., \(HT\) is one outcome of the experiment.
- It is wrong to think that the outcomes are \(\{H, T\}\) and that one picks twice from that set.
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:

- Each outcome describes the two coins.
- E.g., HT is one outcome of the experiment.
- It is wrong to think that the outcomes are $\{H, T\}$ and that one picks twice from that set.
- Indeed, this viewpoint misses the relationship between the two flips.
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:

- Each outcome describes the two coins.
- E.g., HT is one outcome of the experiment.
- It is wrong to think that the outcomes are $\{H, T\}$ and that one picks twice from that set.
- Indeed, this viewpoint misses the relationship between the two flips.
- Each $\omega \in \Omega$ describes one outcome of the complete experiment.
Flipping Two Coins

Here is a way to summarize the four random experiments:

Important remarks:

▶ Each outcome describes the two coins.
▶ E.g., HT is one outcome of the experiment.
▶ It is wrong to think that the outcomes are \{H, T\} and that one picks twice from that set.
▶ Indeed, this viewpoint misses the relationship between the two flips.
▶ Each \(\omega \in \Omega\) describes one outcome of the complete experiment.
▶ \(\Omega\) and the probabilities specify the random experiment.
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

Thus, 2^n possible outcomes.

Note:
\[
\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n.
\]

$A_n := \left\{ (a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A \right\}$.

$|A_n| = |A|^n$.

Likelihoods: $\frac{1}{2^n}$ each.
Flipping n times
Flip a **fair** coin n times (some $n \geq 1$):

- Possible outcomes:
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$.

\[
A_n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}.
\]

\[
|A_n| = |A|^n.
\]
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$.

Thus, 2^n possible outcomes.
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.

$A^n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}$.

$|A^n| = |A|^n$.

- Likelihoods: $\frac{1}{2^n}$ each.
Flipping n times
Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.

$A^n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}$.
Flipping n times
Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \ldots T, TT \ldots H, \ldots, HH \ldots H\}$. Thus, 2^n possible outcomes.

- Note: $\{TT \ldots T, TT \ldots H, \ldots, HH \ldots H\} = \{H, T\}^n$.

$A^n := \{(a_1, \ldots, a_n) | a_1 \in A, \ldots, a_n \in A\}$. $|A^n| = |A|^n$.
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: \{TT \ldots T, TT \ldots H, \ldots, HH \ldots H\}. Thus, 2^n possible outcomes.
- Note: \{TT \ldots T, TT \ldots H, \ldots, HH \ldots H\} = \{H, T\}^n.
 \[A^n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}. \quad |A^n| = |A|^n. \]
- Likelihoods:
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$.
 Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.
- $A^n := \{(a_1, \ldots, a_n) \mid a_1 \in A, \ldots, a_n \in A\}$. $|A^n| = |A|^n$.
- Likelihoods: $1/2^n$ each.
Flipping n times

Flip a fair coin n times (some $n \geq 1$):

- Possible outcomes: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\}$. Thus, 2^n possible outcomes.
- Note: $\{TT \cdots T, TT \cdots H, \ldots, HH \cdots H\} = \{H, T\}^n$.

 $A^n := \{(a_1, \ldots, a_n) | a_1 \in A, \ldots, a_n \in A\}$. $|A^n| = |A|^n$.
- Likelihoods: $1/2^n$ each.
Roll two Dice

Roll a balanced 6-sided die twice:
Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes:
Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes: \(\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \leq a, b \leq 6\} \).
Roll two Dice

Roll a **balanced** 6-sided die twice:

- Possible outcomes: \(\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \leq a, b \leq 6\} \).
- Likelihoods: \(\frac{1}{36} \) for each.
Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes: \(\{1, 2, 3, 4, 5, 6\}^2 = \{(a, b) \mid 1 \leq a, b \leq 6\} \).
- Likelihoods: \(1/36 \) for each.
Roll two Dice

Roll a balanced 6-sided die twice:

- Possible outcomes: \(\{1, 2, 3, 4, 5, 6\}^2 = \{ (a, b) \mid 1 \leq a, b \leq 6 \} \).
- Likelihoods: 1/36 for each.
Probability Space.

1. A “random experiment”:
1. A “random experiment”:

 (a) Flip a biased coin;
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: \(\Omega \).
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$;
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$; $|\Omega| =$
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$; $|\Omega| = 4$;
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$; $|\Omega| = 4$;
 (c) $\Omega = \{A♠ A♦ A♣ A♥ K♠, A♠ A♦ A♣ A♥ Q♠, \ldots\}$
 $|\Omega| =$
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$; $|\Omega| = 4$;
 (c) $\Omega = \{ A\spadesuit A\diamondsuit A\clubsuit A\heartsuit K\spadesuit, A\spadesuit A\diamondsuit A\clubsuit A\heartsuit Q\spadesuit, \ldots \}$
 $|\Omega| = \binom{52}{5}$.
1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$; $|\Omega| = 4$;
 (c) $\Omega = \{A\spadesuit A\heartsuit A\clubsuit A\diamondsuit K\spadesuit, A\spadesuit A\diamondsuit A\clubsuit A\heartsuit Q\spadesuit, \ldots\}$
 $|\Omega| = \left(\begin{array}{c} 52 \\ 5 \end{array}\right)$.

3. Assign a probability to each outcome: $Pr : \Omega \to [0, 1]$.
 (a) $Pr[H] = p, Pr[T] = 1 - p$ for some $p \in [0, 1]$
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}; |\Omega| = 4$;
 (c) $\Omega = \{A\spadesuit A\diamondsuit A\clubsuit A\heartsuit \text{K}\spadesuit, A\spadesuit A\diamondsuit A\clubsuit A\heartsuit Q\spadesuit, \ldots\}$
 $|\Omega| = \binom{52}{5}$.

3. Assign a probability to each outcome: $Pr : \Omega \rightarrow [0, 1]$.
 (a) $Pr[H] = p, Pr[T] = 1 - p$ for some $p \in [0, 1]$
 (b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
Probability Space.

1. A “random experiment”:
 (a) Flip a biased coin;
 (b) Flip two fair coins;
 (c) Deal a poker hand.

2. A set of possible outcomes: Ω.
 (a) $\Omega = \{H, T\}$;
 (b) $\Omega = \{HH, HT, TH, TT\}$; $|\Omega| = 4$;
 (c) $\Omega = \{A\spadesuit A\diamondsuit A\clubsuit A\heartsuit \text{K}\spadesuit, A\spadesuit A\diamondsuit A\clubsuit A\heartsuit \text{Q}\spadesuit, \ldots\}$
 $|\Omega| = \binom{52}{5}$.

3. Assign a probability to each outcome: $Pr : \Omega \to [0, 1]$.
 (a) $Pr[H] = p, Pr[T] = 1 - p$ for some $p \in [0, 1]$;
 (b) $Pr[HH] = Pr[HT] = Pr[TH] = Pr[TT] = \frac{1}{4}$
 (c) $Pr[\underline{A\spadesuit A\diamondsuit A\clubsuit A\heartsuit \text{K}\spadesuit}] = \cdots = 1/\binom{52}{5}$
Probability Space: formalism.

Ω is the sample space.
Probability Space: formalism.

\(\Omega\) is the **sample space**.
\(\omega \in \Omega\) is a **sample point**.
Probability Space: formalism.

\(\Omega \) is the **sample space**.
\(\omega \in \Omega \) is a **sample point**. (Also called an **outcome**.)
Probability Space: formalism.

Ω is the **sample space**.
$\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.)
Sample point ω has a probability $Pr[\omega]$ where
Probability Space: formalism.

Ω is the **sample space**.
$\omega \in \Omega$ is a **sample point**. (Also called an **outcome**.)
Sample point ω has a probability $Pr[\omega]$ where

- $0 \leq Pr[\omega] \leq 1$;
Probability Space: formalism.

\(\Omega \) is the **sample space.**
\(\omega \in \Omega \) is a **sample point.** (Also called an **outcome.**)
Sample point \(\omega \) has a probability \(Pr[\omega] \) where

- \(0 \leq Pr[\omega] \leq 1 \);
- \(\sum_{\omega \in \Omega} Pr[\omega] = 1 \).
Probability Space: formalism.

\(\Omega \) is the **sample space**.
\(\omega \in \Omega \) is a **sample point**. (Also called an **outcome**.)
Sample point \(\omega \) has a probability \(Pr[\omega] \) where

- \(0 \leq Pr[\omega] \leq 1 \);
- \(\sum_{\omega \in \Omega} Pr[\omega] = 1 \).

![Sample Space Diagram](image-url)
Probability Space: Formalism.

In a **uniform probability space** each outcome ω is **equally probable**: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Examples:

▶ Flipping two fair coins, dealing a poker hand are uniform probability spaces.

▶ Flipping a biased coin is not a uniform probability space.
Probability Space: Formalism.

In a **uniform probability space** each outcome ω is **equally probable**: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

![Uniform Probability Space Diagram](image_url)
In a uniform probability space each outcome ω is equally probable: $Pr[\omega] = \frac{1}{|\Omega|}$ for all $\omega \in \Omega$.

Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
In a **uniform probability space** each outcome ω is **equally probable**:

$$Pr[\omega] = \frac{1}{|\Omega|}$$

for all $\omega \in \Omega$.

Examples:

- Flipping two fair coins, dealing a poker hand are uniform probability spaces.
- Flipping a biased coin is not a uniform probability space.
Probability Space: Formalism

Simplest physical model of a *uniform* probability space:

A bag of identical balls, except for their color (or a label).
If the bag is well shaken, every ball is equally likely to be picked.

\[\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \} \]

\[\Pr[\text{blue}] = \frac{1}{8} \]
Probability Space: Formalism

Simplest physical model of a uniform probability space:

\[\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \} \]

\[Pr[\omega] = \frac{1}{8} \]

Physical experiment

Probability model
A bag of identical balls, except for their color (or a label).
Probability Space: Formalism

Simplest physical model of a uniform probability space:

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.
A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

\[\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \} \]
Probability Space: Formalism
Simplest physical model of a uniform probability space:

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

\[\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \} \]

\[Pr[\text{blue}] = \]
Probability Space: Formalism

Simplest physical model of a **uniform** probability space:

A bag of identical balls, except for their color (or a label). If the bag is well shaken, every ball is equally likely to be picked.

\[\Omega = \{ \text{white, red, yellow, grey, purple, blue, maroon, green} \} \]

\[Pr[\text{blue}] = \frac{1}{8}. \]
Simplest physical model of a non-uniform probability space:
Probability Space: Formalism

Simplest physical model of a **non-uniform** probability space:

\[\Omega = \{ \text{Red}, \text{Green}, \text{Yellow}, \text{Blue} \} \]

\[\Pr[\omega] = \begin{cases}
\frac{3}{10} & \text{Red} \\
\frac{4}{10} & \text{Green} \\
\frac{2}{10} & \text{Yellow} \\
\frac{1}{10} & \text{Blue}
\end{cases} \]
Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \frac{3}{10} \]

\[Pr[\text{Green}] = \frac{4}{10} \]

\[Pr[\text{Yellow}] = \frac{2}{10} \]

\[Pr[\text{Blue}] = \frac{1}{10} \]
Probability Space: Formalism

Simplest physical model of a **non-uniform** probability space:

\[\Omega = \{\text{Red, Green, Yellow, Blue}\} \]

\[Pr[\text{Red}] = \frac{3}{10}, \]

\[Pr[\text{Green}] = \frac{4}{10}, \]

\[Pr[\text{Yellow}] = \frac{2}{10}, \]

\[Pr[\text{Blue}] = \frac{1}{10} \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10} \]

\[Pr[\text{Yellow}] = \frac{2}{10}, \quad Pr[\text{Blue}] = \frac{1}{10} \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{ \text{Red, Green, Yellow, Blue} \} \]

\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10}, \quad \text{etc.} \]
Probability Space: Formalism

Simplest physical model of a non-uniform probability space:

\[\Omega = \{\text{Red, Green, Yellow, Blue}\} \]

\[Pr[\text{Red}] = \frac{3}{10}, \quad Pr[\text{Green}] = \frac{4}{10}, \text{ etc.} \]

Note: Probabilities are restricted to rational numbers: \(\frac{N_k}{N} \).
Probability Space: Formalism

Physical model of a general non-uniform probability space:

- Physical experiment
- Probability model
 - Purple = 2
 - Green = 1
 - Yellow

\(\Omega = \{1, 2, 3, \ldots, N\} \)

\(\Pr[\omega] = p_\omega \)

The roulette wheel stops in sector \(\omega \) with probability \(p_\omega \).
Probability Space: Formalism

Physical model of a general **non-uniform** probability space:

- Physical experiment
- Probability model

The roulette wheel stops in sector ω with probability p_ω.

$\Omega = \{1, 2, 3, \ldots, N\}$, $Pr[\omega] = p_\omega$.

- Green = 1
- Purple = 2
- Yellow

Fraction p_1 of circumference

$P_r[\omega]$
Probability Space: Formalism

Physical model of a general non-uniform probability space:

The roulette wheel stops in sector ω with probability p_ω.

Physical experiment

Probability model
Probability Space: Formalism

Physical model of a general non-uniform probability space:

\[\Omega = \{1, 2, 3, \ldots, N\}, \]

The roulette wheel stops in sector \(\omega \) with probability \(p_\omega \).
Probability Space: Formalism

Physical model of a general non-uniform probability space:

The roulette wheel stops in sector ω with probability p_ω.

$$\Omega = \{1, 2, 3, \ldots, N\}, \Pr[\omega] = p_\omega.$$
An important remark

- The random experiment selects one and only one outcome in Ω.
An important remark

- The random experiment selects one and only one outcome in Ω.
- For instance, when we flip a fair coin twice
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, it's wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
An important remark

- The random experiment selects **one and only one** outcome in \(\Omega \).

- For instance, when we flip a fair coin **twice**

 - \(\Omega = \{HH, TH, HT, TT\} \)

 - The experiment selects **one** of the elements of \(\Omega \).

- In this case, it's wrong to think that \(\Omega = \{H, T\} \) and that the experiment selects two outcomes.

- Why?
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, its wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, it's wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way.
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, its wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets HH or TT with probability 50% each.
An important remark

- The random experiment selects **one and only one** outcome in Ω.
- For instance, when we flip a fair coin **twice**
 - $\Omega = \{HH, TH, HT, TT\}$
 - The experiment selects **one** of the elements of Ω.
- In this case, it's wrong to think that $\Omega = \{H, T\}$ and that the experiment selects two outcomes.
- Why? Because this would not describe how the two coin flips are related to each other.
- For instance, say we glue the coins side-by-side so that they face up the same way. Then one gets HH or TT with probability 50% each. This is not captured by ‘picking two outcomes.’
1. Random Experiment

2. Probability Space:
\[\Omega; \Pr[\omega] \in [0, 1]; \sum_{\omega} \Pr[\omega] = 1. \]

3. Uniform Probability Space:
\[\Pr[\omega] = \frac{1}{|\Omega|} \text{ for all } \omega \in \Omega. \]
Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment
Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment

2. Probability Space: $\Omega; Pr[\omega] \in [0, 1]; \sum_{\omega} Pr[\omega] = 1$.
Modeling Uncertainty: Probability Space

1. Random Experiment
2. Probability Space: $\Omega; Pr[\omega] \in [0, 1]; \sum_\omega Pr[\omega] = 1.$
3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega.$
Lecture 15: Summary

Modeling Uncertainty: Probability Space

1. Random Experiment

2. Probability Space: $\Omega; Pr[\omega] \in [0, 1]; \sum_{\omega} Pr[\omega] = 1.$

3. Uniform Probability Space: $Pr[\omega] = 1/|\Omega|$ for all $\omega \in \Omega.$