Back to work...with some review.

Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.
Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(w) = 1$.
Random Variables: $X : \Omega \rightarrow R$.
Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Random Variables: $X : \Omega \rightarrow R$.

Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$.
Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Random Variables: $X : \Omega \rightarrow R$.

Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

Independent X and Y if and only if all associated events are independent.

Expectation: $E[X] = \sum a Pr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E[X])^2$.

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.
Back to work...with some review.

Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.
Random Variables: $X : \Omega \rightarrow R$.
 Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$
Independent X and Y if and only if all associated events are independent.
Expectation: $E[X] = \sum_{a} aPr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.
Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Random Variables: $X : \Omega \rightarrow R$.

Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

Independent X and Y if and only if all associated events are independent.

Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.

Back to work...with some review.

Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.
Random Variables: $X : \Omega \rightarrow R$.

Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

Independent X and Y if and only if all associated events are independent.

Expectation: $E[X] = \sum a Pr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$
Probability Space: Ω, $Pr : \Omega \rightarrow [0,1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.
Random Variables: $X : \Omega \rightarrow R$.
Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$
Independent X and Y if and only if all associated events are independent.
Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$
For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Random Variables: $X : \Omega \rightarrow R$.

Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

Independent X and Y if and only if all associated events are independent.

Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$.

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.
Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.
Random Variables: $X : \Omega \rightarrow R$.
Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$
Independent X and Y if and only if all associated events are independent.
Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.
Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$
For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

$X \sim P(\lambda)$
Probability Space: \(\Omega, \ Pr: \Omega \rightarrow [0,1], \sum_{\omega \in \Omega} Pr(\omega) = 1. \)
Random Variables: \(X: \Omega \rightarrow R. \)
 Associated event: \(Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega) \)
Independent \(X \) and \(Y \) if and only if all associated events are independent.
Expectation: \(E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} Pr(\omega) \).
Variance: \(Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2 \)
 For independent \(X, Y \), \(Var(X + Y) = Var(X) + Var(Y) \).
 Also: \(Var(cX) = c^2 Var(X) \) and \(Var(X + b) = Var(X) \).
\(X \sim P(\lambda) \) \(E(X) = \lambda, \ Var(X) = \lambda. \)
Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.
Random Variables: $X : \Omega \rightarrow R$.
Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$
Independent X and Y if and only if all associated events are independent.
Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.
Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$
 For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
 Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

$X \sim P(\lambda)$ $E(X) = \lambda$, $Var(X) = \lambda$.
$X \sim B(n, p)$
Probability Space: Ω, $Pr: \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Random Variables: $X: \Omega \rightarrow R$.

Associated event: $Pr[X = a] = \sum_{\omega: X(\omega) = a} Pr(\omega)$

Independent X and Y if and only if all associated events are independent.

Expectation: $E[X] = \sum_a aPr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.

Variance: $Var(X) = E[(X – E[X])^2] = E[X^2] – (E(X))^2$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

$X \sim P(\lambda)$ $E(X) = \lambda$, $Var(X) = \lambda$.

$X \sim B(n, p)$ $E(X) = np$, $Var(X) = np(1 – p)$
Probability Space: Ω, $Pr : \Omega \to [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.
Random Variables: $X : \Omega \to R$.
Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$
Independent X and Y if and only if all associated events are independent.
Expectation: $E[X] = \sum_{a} a Pr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$
For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.
Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

$X \sim P(\lambda) \quad E(X) = \lambda, \quad Var(X) = \lambda$.
$X \sim B(n, p) \quad E(X) = np, \quad Var(X) = np(1 - p)$
$X \sim U\{1, \ldots, n\}$
Probability Space: Ω, $Pr : \Omega \rightarrow [0, 1]$, $\sum_{\omega \in \Omega} Pr(\omega) = 1$.

Random Variables: $X : \Omega \rightarrow R$.

Associated event: $Pr[X = a] = \sum_{\omega : X(\omega) = a} Pr(\omega)$

Independent X and Y if and only if all associated events are independent.

Expectation: $E[X] = \sum_a a Pr[X = a] = \sum_{\omega \in \Omega} Pr(\omega)$.

Variance: $Var(X) = E[(X - E[X])^2] = E[X^2] - (E(X))^2$

For independent X, Y, $Var(X + Y) = Var(X) + Var(Y)$.

Also: $Var(cX) = c^2 Var(X)$ and $Var(X + b) = Var(X)$.

$X \sim P(\lambda)$ $E(X) = \lambda$, $Var(X) = \lambda$.

$X \sim B(n, p)$ $E(X) = np$, $Var(X) = np(1 - p)$.

$X \sim U[1, \ldots, n]$ $E[X] = \frac{n+1}{2}$, $Var(X) = \frac{n^2-1}{12}$.
Markov.

Markov:

For increasing function $f(x) \rightarrow \mathbb{R}^+$, $\Pr[X \geq a] \leq E[f(X)] f(a)$.

Proof: Take $f(x) = x$ in Markov.

Proof of Markov: Use random variable $Y = f(X)$ in Simple Markov.

Circular!

Proof of Simple Markov:

$E[X] = \sum x x \Pr[X = x] \geq \sum x \geq a x \Pr[X = x] \geq a \sum x \geq a x \Pr[X = x] = a \sum x \geq a \Pr[X \geq a]$.

Markov:

For increasing function $f(x) \to R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Proof of Simple Markov:

$$E[X] = \sum x x Pr[X = x] \geq \sum x \geq a x Pr[X = x] \geq \sum x \geq a a Pr[X = x] = a \sum x \geq a Pr[X = x].$$
Markov:

For increasing function $f(x) \rightarrow R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Simple Markov: Not so many can be way above average.
Markov:
For increasing function \(f(x) \rightarrow R^+ \), \(\Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \).

Simple Markov: Not so many can be way above average.
For positive random variable, \(X \), \(\Pr[X \geq a] \leq \frac{E[X]}{a} \).
Markov:

For increasing function $f(x) \to R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Simple Markov: Not so many can be way above average.

For positive random variable, X, $Pr[X \geq a] \leq \frac{E[X]}{a}$.

Proof: Take $f(x) = x$ in Markov.
Markov:

For increasing function $f(x) \rightarrow R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Simple Markov: Not so many can be way above average.

For positive random variable, X, $Pr[X \geq a] \leq \frac{E[X]}{a}$.

Proof: Take $f(x) = x$ in Markov. □.
Markov:
For increasing function $f(x) \to R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Simple Markov: Not so many can be way above average.
For positive random variable, X, $Pr[X \geq a] \leq \frac{E[X]}{a}$.
Proof: Take $f(x) = x$ in Markov. \hfill \Box.

Proof of Markov: Use random variable $Y = f(X)$ in Simple Markov.
Markov:
For increasing function $f(x) \to R^+$, $Pr[X \geq a] \leq \frac{E[f(X)\]}{f(a)}$.

Simple Markov: Not so many can be way above average.
For positive random variable, X, $Pr[X \geq a] \leq \frac{E[X]}{a}$.
Proof: Take $f(x) = x$ in Markov. \square.

Proof of Markov: Use random variable $Y = f(X)$ in Simple Markov. \square.
Markov:

For increasing function $f(x) \to R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Simple Markov: Not so many can be way above average.

For positive random variable, X, $Pr[X \geq a] \leq \frac{E[X]}{a}$.

Proof: Take $f(x) = x$ in Markov.

Proof of Markov: Use random variable $Y = f(X)$ in Simple Markov.

Circular!
Markov:
For increasing function $f(x) \rightarrow R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Simple Markov: Not so many can be way above average.
For positive random variable, X, $Pr[X \geq a] \leq \frac{E[X]}{a}$.
Proof: Take $f(x) = x$ in Markov. □.

Proof of Markov: Use random variable $Y = f(X)$ in Simple Markov. □.

Circular!

Proof of Simple Markov:
$E[X] = \sum_x xPr[X = x]$
Markov:
For increasing function $f(x) \rightarrow R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Simple Markov: Not so many can be way above average.
For positive random variable, X, $Pr[X \geq a] \leq \frac{E[X]}{a}$.
Proof: Take $f(x) = x$ in Markov. \(\square\).

Proof of Markov: Use random variable $Y = f(X)$ in Simple Markov. \(\square\).

Circular!

Proof of Simple Markov:
$E[X] = \sum_x xPr[X = x] \geq \sum_{x \geq a} xPr[X = x]$
Markov:
For increasing function \(f(x) \to R^+ \), \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \).

Simple Markov: Not so many can be way above average.
For positive random variable, \(X \), \(Pr[X \geq a] \leq \frac{E[X]}{a} \).
Proof: Take \(f(x) = x \) in Markov.

Proof of Markov: Use random variable \(Y = f(X) \) in Simple Markov.

Circular!

Proof of Simple Markov:
\[
E[X] = \sum_x xPr[X = x] \geq \sum_{x \geq a} xPr[X = x] \\
geq \sum_{x \geq a} aPr[X = x]
\]
Markov:
For increasing function $f(x) \to R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Simple Markov: Not so many can be way above average.
For positive random variable, X, $Pr[X \geq a] \leq \frac{E[X]}{a}$.
Proof: Take $f(x) = x$ in Markov. □.

Proof of Markov: Use random variable $Y = f(X)$ in Simple Markov. □.

Circular!
Proof of Simple Markov:
$E[X] = \sum_x xPr[X = x] \geq \sum_{x \geq a} xPr[X = x]$
$\geq \sum_{x \geq a} aPr[X = x] = a \sum_{x \geq a} Pr[X = x]$
Markov:

For increasing function \(f(x) \to R^+ \), \(Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)} \).

Simple Markov: Not so many can be way above average.

For positive random variable, \(X \), \(Pr[X \geq a] \leq \frac{E[X]}{a} \).

Proof: Take \(f(x) = x \) in Markov.

\[\square. \]

Proof of Markov: Use random variable \(Y = f(X) \) in Simple Markov.

\[\square. \]

Circular!

Proof of Simple Markov:

\[
E[X] = \sum_x xPr[X = x] \geq \sum_{x \geq a} xPr[X = x] \\
\geq \sum_{x \geq a} aPr[X = x] = a \sum_{x \geq a} Pr[X = x] = aPr[X \geq a].
\]
Markov:

For increasing function $f(x) \rightarrow R^+$, $Pr[X \geq a] \leq \frac{E[f(X)]}{f(a)}$.

Simple Markov: Not so many can be way above average.

For positive random variable, X, $Pr[X \geq a] \leq \frac{E[X]}{a}$.

Proof: Take $f(x) = x$ in Markov.

Proof of Markov: Use random variable $Y = f(X)$ in Simple Markov.

Circular!

Proof of Simple Markov:

$E[X] = \sum_x xPr[X = x] \geq \sum_{x \geq a} xPr[X = x]$

$\geq \sum_{x \geq a} aPr[X = x] = a \sum_{x \geq a} Pr[X = x] = aPr[X \geq a]$.

\[\square\]
Markov Inequality Example: $P(\lambda)$

Let $X = P(\lambda)$.
Markov Inequality Example: \(P(\lambda) \)

Let \(X = P(\lambda) \). Recall that \(E[X] = \)
Markov Inequality Example: $P(\lambda)$

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$, $Var(X) = \lambda$ and so $E[X^2] =$
Markov Inequality Example: $P(\lambda)$

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$, $Var(X) = \lambda$ and so $E[X^2] = \lambda + \lambda^2$.
Markov Inequality Example: \(P(\lambda) \)

Let \(X = P(\lambda) \). Recall that \(E[X] = \lambda \), \(\text{Var}(X) = \lambda \) and so \(E[X^2] = \lambda + \lambda^2 \).

Choosing \(f(x) = x \), we get
Markov Inequality Example: $P(\lambda)$

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$, $Var(X) = \lambda$ and so $E[X^2] = \lambda + \lambda^2$.

Choosing $f(x) = x$, we get

$$Pr[X \geq a] \leq \frac{E[X]}{a} = \frac{\lambda}{a}.$$
Markov Inequality Example: \(P(\lambda) \)

Let \(X = P(\lambda) \). Recall that \(E[X] = \lambda \), \(\text{Var}(X) = \lambda \) and so \(E[X^2] = \lambda + \lambda^2 \).

Choosing \(f(x) = x \), we get

\[
Pr[X \geq a] \leq \frac{E[X]}{a} = \frac{\lambda}{a}.
\]

Choosing \(f(x) = x^2 \), we get
Markov Inequality Example: $P(\lambda)$

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$, $\text{Var}(X) = \lambda$ and so $E[X^2] = \lambda + \lambda^2$.

Choosing $f(x) = x$, we get

$$Pr[X \geq a] \leq \frac{E[X]}{a} = \frac{\lambda}{a}.$$

Choosing $f(x) = x^2$, we get

$$Pr[X \geq a] \leq \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.$$
Markov Inequality Example: $P(\lambda)$

Let $X = P(\lambda)$. Recall that $E[X] = \lambda$, $\text{Var}(X) = \lambda$ and so $E[X^2] = \lambda + \lambda^2$.

Choosing $f(x) = x$, we get

$$Pr[X \geq a] \leq \frac{E[X]}{a} = \frac{\lambda}{a}.$$

Choosing $f(x) = x^2$, we get

$$Pr[X \geq a] \leq \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.$$
Chebyshev’s Inequality

This is Pafnuty’s inequality:

\[\Pr \left(|X - E[X]| > a \right) \leq \frac{\text{var}[X]}{a^2}, \text{for all } a > 0. \]
Chebyshev’s Inequality

This is Pafnuty’s inequality:

Theorem:

\[
Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}, \text{ for all } a > 0.
\]
Chebyshev’s Inequality

This is Pafnuty’s inequality:

Theorem:

\[
\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}, \text{ for all } a > 0.
\]

Proof: Let \(Y = |X - E[X]| \) and \(f(y) = y^2 \).
This is Pafnuty’s inequality:

Theorem:

\[
Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}, \text{ for all } a > 0.
\]

Proof: Let \(Y = |X - E[X]| \) and \(f(y) = y^2 \). Then,

\[
Pr[Y \geq a] \leq \frac{E[f(Y)]}{f(a)}
\]
Chebyshev’s Inequality

This is Pafnuty’s inequality:

Theorem:

\[Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}, \text{ for all } a > 0. \]

Proof: Let \(Y = |X - E[X]| \) and \(f(y) = y^2 \). Then,

\[Pr[Y \geq a] \leq \frac{E[f(Y)]}{f(a)} = \frac{\text{var}[X]}{a^2}. \]
Chebyshev’s Inequality

This is Pafnuty’s inequality:

Theorem:

\[
Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}, \text{ for all } a > 0.
\]

Proof: Let \(Y = |X - E[X]| \) and \(f(y) = y^2 \). Then,

\[
Pr[Y \geq a] \leq \frac{E[f(Y)]}{f(a)} = \frac{\text{var}[X]}{a^2}.
\]
Chebyshev’s Inequality

This is Pafnuty’s inequality:

Theorem:

\[\Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}, \text{ for all } a > 0. \]

Proof: Let \(Y = |X - E[X]| \) and \(f(y) = y^2 \). Then,

\[\Pr[Y \geq a] \leq \frac{E[f(Y)]}{f(a)} = \frac{\text{var}[X]}{a^2}. \]

Yes!
Chebyshev’s Inequality

This is Pafnuty’s inequality:

Theorem:

\[Pr[|X - E[X]| > a] \leq \frac{\text{var}[X]}{a^2}, \] for all \(a > 0 \).

Proof: Let \(Y = |X - E[X]| \) and \(f(y) = y^2 \). Then,

\[Pr[Y \geq a] \leq \frac{E[f(Y)]}{f(a)} = \frac{\text{var}[X]}{a^2}. \]

Yes! The variance does measure the “deviations from the mean.”
Chebyshev and Poisson

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $\text{var}[X] = \lambda$. Thus,

$$\Pr[|X - \lambda| \geq n] \leq \frac{\text{var}[X]}{n^2} = \frac{\lambda}{n^2}.$$
Chebyshev and Poisson

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $var[X] =$
Chebyshev and Poisson

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $var[X] = \lambda$.
Chebyshev and Poisson

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $\text{var}[X] = \lambda$. Thus,

$$\Pr[|X - \lambda| \geq n] \leq \frac{\text{var}[X]}{n^2} = \frac{\lambda}{n^2}.$$
Chebyshev and Poisson

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $var[X] = \lambda$. Thus,

$$Pr[|X - \lambda| \geq n] \leq \frac{var[X]}{n^2} = \frac{\lambda}{n^2}.$$
Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $\text{var}[X] = \lambda$.

By Markov's inequality,

$$\Pr[X \geq a] \leq \frac{E[X^2]}{a^2} = \lambda + \lambda^2 a^2.$$

Also, if $a > \lambda$, then $X \geq a \Rightarrow X - \lambda \geq a - \lambda > 0 \Rightarrow |X - \lambda| \geq a - \lambda$.

Hence, for $a > \lambda$,

$$\Pr[X \geq a] \leq \Pr[|X - \lambda| \geq a - \lambda] \leq \lambda(\lambda - a).$$
Chebyshev and Poisson (continued)

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $\text{var}[X] = \lambda$. By Markov’s inequality,

$$Pr[X \geq a] \leq \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.$$
Chebyshev and Poisson (continued)

Let \(X = P(\lambda) \). Then, \(E[X] = \lambda \) and \(var[X] = \lambda \). By Markov’s inequality,

\[
Pr[X \geq a] \leq \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.
\]

Also, if \(a > \lambda \), then \(X \geq a \Rightarrow X - \lambda \geq a - \lambda > 0 \)
Chebyshev and Poisson (continued)

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $\text{var}[X] = \lambda$. By Markov's inequality,

$$
Pr[X \geq a] \leq \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.
$$

Also, if $a > \lambda$, then $X \geq a \Rightarrow X - \lambda \geq a - \lambda > 0 \Rightarrow |X - \lambda| \geq a - \lambda$.
Chebyshev and Poisson (continued)

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $\text{var}[X] = \lambda$. By Markov’s inequality,

$$\Pr[X \geq a] \leq \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.$$

Also, if $a > \lambda$, then $X \geq a \Rightarrow X - \lambda \geq a - \lambda > 0 \Rightarrow |X - \lambda| \geq a - \lambda$.

Hence, for $a > \lambda$,
Chebyshev and Poisson (continued)

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $\text{var}[X] = \lambda$. By Markov's inequality,

$$Pr[X \geq a] \leq \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.$$

Also, if $a > \lambda$, then $X \geq a \Rightarrow X - \lambda \geq a - \lambda > 0 \Rightarrow |X - \lambda| \geq a - \lambda$.

Hence, for $a > \lambda$, $Pr[X \geq a] \leq Pr[|X - \lambda| \geq a - \lambda] \leq \frac{\lambda}{(a - \lambda)^2}$.

Chebyshev and Poisson (continued)

Let $X = P(\lambda)$. Then, $E[X] = \lambda$ and $\text{var}[X] = \lambda$. By Markov’s inequality,

$$Pr[X \geq a] \leq \frac{E[X^2]}{a^2} = \frac{\lambda + \lambda^2}{a^2}.\tag{1}$$

Also, if $a > \lambda$, then $X \geq a \Rightarrow X - \lambda \geq a - \lambda > 0 \Rightarrow |X - \lambda| \geq a - \lambda$.
Hence, for $a > \lambda$, $Pr[X \geq a] \leq Pr[|X - \lambda| \geq a - \lambda] \leq \frac{\lambda}{(a-\lambda)^2}.\tag{2}$

[Graph showing Chebyshev and Markov inequalities with $X = P(\lambda), \lambda = 10$. The graph illustrates the comparison between the two inequalities with $g(x) = x^2$. The Chebyshev inequality is shown with a yellow line, while the Markov inequality is shown with a blue line. The graph includes points at $a = 14, 16, 18, 20, 22, 24$. The y-axis ranges from 0.0 to 0.7, and the x-axis ranges from 14 to 24.]
Fraction of H’s

Here is a classical application of Chebyshev’s inequality.

\[
\text{Let } X_m = 1 \text{ if the } m\text{-th flip of a fair coin is } H \text{ and } X_m = 0 \text{ otherwise.}
\]

Define
\[
Y_n = X_1 + \cdots + X_n,
\]
for \(n \geq 1 \).

We want to estimate
\[
\Pr \left[\left| Y_n - \frac{1}{2} \right| \geq 0.1 \right] = \Pr \left[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6 \right].
\]
By Chebyshev,
\[
\Pr \left[\left| Y_n - \frac{1}{2} \right| \geq 0.1 \right] \leq \frac{\text{var} \left[Y_n \right]}{0.1^2} = 100 \text{var} \left[Y_n \right].
\]
Now,
\[
\text{var} \left[Y_n \right] = \frac{1}{n^2} \left(\text{var} \left[X_1 \right] + \cdots + \text{var} \left[X_n \right] \right) \leq \frac{1}{4n}.
\]
Var \((X_i) = p (1 - lp) \leq (0.5)(0.5) = 0.25 \)
Fraction of \(H \)'s

Here is a classical application of Chebyshev’s inequality. How likely is it that the fraction of \(H \)'s differs from 50%?

\[
\text{Let } X_m = \begin{cases}
1 & \text{if the } m\text{-th flip of a fair coin is } H \\
0 & \text{otherwise}
\end{cases}
\]

Define \(Y_n = X_1 + \cdots + X_n \), for \(n \geq 1 \).

We want to estimate \(\Pr[|Y_n - 0.5| \geq 0.1] = \Pr[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6] \).

By Chebyshev, \(\Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{\text{var}[Y_n]}{(0.1)^2} = 100 \text{ var}[Y_n] \).

Now, \(\text{var}[Y_n] = \frac{1}{n^2} (\text{var}[X_1] + \cdots + \text{var}[X_n]) = \frac{1}{n^2} \cdot \frac{1}{4} = \frac{1}{4n} \).

\[
\text{Var}(X_i) = p(1-p) \leq (0.5)(0.5) = 0.25
\]
Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?
Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise.
Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?
Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise.
Define
\[Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1. \]
Fraction of H’s

Here is a classical application of Chebyshev’s inequality. How likely is it that the fraction of H’s differs from 50%?

Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise.

Define

$$Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.$$

We want to estimate

$$Pr[|Y_n - 0.5| \geq 0.1] = Pr[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6].$$
Fraction of H’s

Here is a classical application of Chebyshev’s inequality. How likely is it that the fraction of H’s differs from 50%?

Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise.

Define

$$Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.$$

We want to estimate

$$Pr[|Y_n - 0.5| \geq 0.1] = Pr[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6].$$

By Chebyshev,
Fraction of H’s

Here is a classical application of Chebyshev’s inequality. How likely is it that the fraction of H’s differs from 50%?

Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise.

Define

$$Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.$$

We want to estimate

$$Pr[|Y_n - 0.5| \geq 0.1] = Pr[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6].$$

By Chebyshev,

$$Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{\text{var}[Y_n]}{(0.1)^2} = 100 \text{var}[Y_n].$$
Fraction of H’s

Here is a classical application of Chebyshev’s inequality. How likely is it that the fraction of H’s differs from 50%?

Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise. Define

$$Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.$$

We want to estimate

$$Pr[|Y_n - 0.5| \geq 0.1] = Pr[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6].$$

By Chebyshev,

$$Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{\text{var}[Y_n]}{(0.1)^2} = 100\text{var}[Y_n].$$

Now,
Fraction of H’s

Here is a classical application of Chebyshev’s inequality.

How likely is it that the fraction of H’s differs from 50%?

Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise.

Define

$$Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.$$

We want to estimate

$$Pr[|Y_n - 0.5| \geq 0.1] = Pr[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6].$$

By Chebyshev,

$$Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{\text{var}[Y_n]}{(0.1)^2} = 100 \text{var}[Y_n].$$

Now,

$$\text{var}[Y_n] = \frac{1}{n^2}(\text{var}[X_1] + \cdots + \text{var}[X_n]).$$
Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?
Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise.
Define
\[
Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.
\]

We want to estimate
\[
Pr[|Y_n - 0.5| \geq 0.1] = Pr[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6].
\]

By Chebyshev,
\[
Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{\text{var}[Y_n]}{(0.1)^2} = 100 \text{var}[Y_n].
\]

Now,
\[
\text{var}[Y_n] = \frac{1}{n^2} (\text{var}[X_1] + \cdots + \text{var}[X_n]) = \frac{1}{n} \text{var}[X_1]
\]
Fraction of H’s

Here is a classical application of Chebyshev’s inequality.
How likely is it that the fraction of H’s differs from 50%?
Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise.
Define

$$Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.$$

We want to estimate

$$Pr[|Y_n - 0.5| \geq 0.1] = Pr[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6].$$

By Chebyshev,

$$Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{\text{var}[Y_n]}{(0.1)^2} = 100 \text{var}[Y_n].$$

Now,

$$\text{var}[Y_n] = \frac{1}{n^2}(\text{var}[X_1] + \cdots + \text{var}[X_n]) = \frac{1}{n} \text{var}[X_1] \leq \frac{1}{4n}.$$
Here is a classical application of Chebyshev's inequality.

How likely is it that the fraction of H's differs from 50%?

Let $X_m = 1$ if the m-th flip of a fair coin is H and $X_m = 0$ otherwise.

Define

$$Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.$$

We want to estimate

$$Pr[|Y_n - 0.5| \geq 0.1] = Pr[Y_n \leq 0.4 \text{ or } Y_n \geq 0.6].$$

By Chebyshev,

$$Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{\text{var}[Y_n]}{(0.1)^2} = 100 \text{var}[Y_n].$$

Now,

$$\text{var}[Y_n] = \frac{1}{n^2} (\text{var}[X_1] + \cdots + \text{var}[X_n]) = \frac{1}{n} \text{var}[X_1] \leq \frac{1}{4n}.$$

$$\text{Var}(X_i) = p(1 - lp) \leq (.5)(.5) = \frac{1}{4}$$
Fraction of H’s

\[Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1. \]

\[Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{25}{n}. \]
Fraction of H’s

\[Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1. \]

\[Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{25}{n}. \]

For $n = 1,000$, we find that this probability is less than 2.5%.
Fraction of H’s

\[
Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.
\]

\[
Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{25}{n}.
\]

For $n = 1,000$, we find that this probability is less than 2.5%.

As $n \to \infty$, this probability goes to zero.
Fraction of H’s

\[Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1. \]

\[Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{25}{n}. \]

For $n = 1,000$, we find that this probability is less than 2.5%.

As $n \to \infty$, this probability goes to zero.

In fact, for any $\varepsilon > 0$,
Fraction of H's

$$Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1.$$

$$Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{25}{n}.$$

For $n = 1,000$, we find that this probability is less than 2.5%.
As $n \to \infty$, this probability goes to zero.
In fact, for any $\varepsilon > 0$, as $n \to \infty$,

Fraction of H’s

\[Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1. \]

\[Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{25}{n}. \]

For $n = 1,000$, we find that this probability is less than 2.5%.

As $n \to \infty$, this probability goes to zero.

In fact, for any $\varepsilon > 0$, as $n \to \infty$, the probability that the fraction of Hs is within $\varepsilon > 0$ of 50% approaches 1:
Fraction of H’s

\[Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1. \]

\[Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{25}{n}. \]

For $n = 1,000$, we find that this probability is less than 2.5%.

As $n \to \infty$, this probability goes to zero.

In fact, for any $\varepsilon > 0$, as $n \to \infty$, the probability that the fraction of Hs is within $\varepsilon > 0$ of 50% approaches 1:

\[Pr[|Y_n - 0.5| \leq \varepsilon] \to 1. \]
Fraction of H's

\[Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1. \]

\[Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{25}{n}. \]

For $n = 1,000$, we find that this probability is less than 2.5%.

As $n \to \infty$, this probability goes to zero.

In fact, for any $\varepsilon > 0$, as $n \to \infty$, the probability that the fraction of Hs is within $\varepsilon > 0$ of 50% approaches 1:

\[Pr[|Y_n - 0.5| \leq \varepsilon] \to 1. \]

This is an example of the Law of Large Numbers.
Fraction of H’s

\[Y_n = \frac{X_1 + \cdots + X_n}{n}, \text{ for } n \geq 1. \]

\[Pr[|Y_n - 0.5| \geq 0.1] \leq \frac{25}{n}. \]

For $n = 1,000$, we find that this probability is less than 2.5%.

As $n \to \infty$, this probability goes to zero.

In fact, for any $\varepsilon > 0$, as $n \to \infty$, the probability that the fraction of Hs is within $\varepsilon > 0$ of 50% approaches 1:

\[Pr[|Y_n - 0.5| \leq \varepsilon] \to 1. \]

This is an example of the Law of Large Numbers.

We look at a calculation of this next.
Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\varepsilon > 0$, $\Pr[|X_1 + \cdots + X_n - n\mu| \geq \varepsilon] \to 0$, as $n \to \infty$.

Proof:

Let $Y_n = X_1 + \cdots + X_n$. Then

$$\Pr[|Y_n - n\mu| \geq \varepsilon] \leq \text{var}(Y_n) \frac{\varepsilon^2}{\text{var}(X_1 + \cdots + X_n)} = \frac{n\text{var}(X_1)}{n\varepsilon^2} \to 0,$$

as $n \to \infty$.

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ.
Theorem Weak Law of Large Numbers

Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\varepsilon > 0$,

$$Pr[|\frac{X_1 + \cdots + X_n}{n} - \mu| \geq \varepsilon] \to 0, \text{ as } n \to \infty.$$
Weak Law of Large Numbers

Theorem Weak Law of Large Numbers
Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\varepsilon > 0$,

$$Pr\left[\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| \geq \varepsilon \right] \to 0, \text{ as } n \to \infty.$$

Proof:
Let $Y_n = \frac{X_1 + \cdots + X_n}{n}$. Then
Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\varepsilon > 0$,

$$Pr\left[\left|\frac{X_1 + \cdots + X_n}{n} - \mu\right| \geq \varepsilon\right] \to 0, \text{ as } n \to \infty.$$

Proof:

Let $Y_n = \frac{X_1 + \cdots + X_n}{n}$. Then

$$Pr[|Y_n - \mu| \geq \varepsilon] \leq \frac{\text{var}[Y_n]}{\varepsilon^2}.$$
Theorem Weak Law of Large Numbers

Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\varepsilon > 0$,

$$Pr\left[\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| \geq \varepsilon \right] \rightarrow 0, \text{ as } n \rightarrow \infty.$$

Proof:

Let $Y_n = \frac{X_1 + \cdots + X_n}{n}$. Then

$$Pr\left[|Y_n - \mu| \geq \varepsilon \right] \leq \frac{\text{var}[Y_n]}{\varepsilon^2} = \frac{\text{var}[X_1 + \cdots + X_n]}{n^2 \varepsilon^2}$$
Theorem Weak Law of Large Numbers

Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\epsilon > 0$,

$$
Pr[|\frac{X_1 + \cdots + X_n}{n} - \mu| \geq \epsilon] \to 0, \text{ as } n \to \infty.
$$

Proof:

Let $Y_n = \frac{X_1 + \cdots + X_n}{n}$. Then

$$
Pr[|Y_n - \mu| \geq \epsilon] \leq \frac{\text{var}[Y_n]}{\epsilon^2} = \frac{\text{var}[X_1 + \cdots + X_n]}{n^2 \epsilon^2} = \frac{n \text{var}[X_1]}{n^2 \epsilon^2}
$$
Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\varepsilon > 0$,

\[
Pr\left[\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| \geq \varepsilon \right] \to 0, \text{ as } n \to \infty.
\]

Proof:

Let $Y_n = \frac{X_1 + \cdots + X_n}{n}$. Then

\[
Pr[|Y_n - \mu| \geq \varepsilon] \leq \frac{\text{var}[Y_n]}{\varepsilon^2} = \frac{\text{var}[X_1 + \cdots + X_n]}{n^2 \varepsilon^2} = \frac{n \text{var}[X_1]}{n^2 \varepsilon^2} = \frac{\text{var}[X_1]}{n \varepsilon^2}
\]

as $n \to \infty$.

Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\varepsilon > 0$,

$$Pr\left[\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| \geq \varepsilon \right] \to 0, \text{ as } n \to \infty.$$

Proof:

Let $Y_n = \frac{X_1 + \cdots + X_n}{n}$. Then

$$Pr[|Y_n - \mu| \geq \varepsilon] \leq \frac{\text{var}[Y_n]}{\varepsilon^2} = \frac{\text{var}[X_1 + \cdots + X_n]}{n^2 \varepsilon^2} = \frac{n \text{var}[X_1]}{n^2 \varepsilon^2} = \frac{\text{var}[X_1]}{n \varepsilon^2} \to 0, \text{ as } n \to \infty.$$
Weak Law of Large Numbers

Theorem Weak Law of Large Numbers

Let X_1, X_2, \ldots be pairwise independent with the same distribution and mean μ. Then, for all $\varepsilon > 0$,

$$Pr\left[\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| \geq \varepsilon \right] \to 0, \text{ as } n \to \infty.$$

Proof:

Let $Y_n = \frac{X_1 + \cdots + X_n}{n}$. Then

$$Pr[|Y_n - \mu| \geq \varepsilon] \leq \frac{\text{var}[Y_n]}{\varepsilon^2} = \frac{\text{var}[X_1 + \cdots + X_n]}{n^2 \varepsilon^2}$$

$$= \frac{n \text{var}[X_1]}{n^2 \varepsilon^2} = \frac{\text{var}[X_1]}{n \varepsilon^2} \to 0, \text{ as } n \to \infty.$$
Summary

Variance; Inequalities; WLLN
Summary

Variance; Inequalities; WLLN

Variance; Inequalities; WLLN

- **Variance:** \(\text{var}[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2 \)
- **Fact:** \(\text{var}[aX + b] = a^2 \text{var}[X] \)
Summary

- **Variance**: \(\text{var}[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2 \)
- **Fact**: \(\text{var}[aX + b] = a^2 \text{var}[X] \)
- **Sum**: \(X, Y, Z \) pairwise ind. \(\Rightarrow \text{var}[X + Y + Z] = \cdots \)
Summary

Variance; Inequalities; WLLN

- **Variance:** \(\text{var}[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2 \)
- **Fact:** \(\text{var}[aX + b] = a^2 \text{var}[X] \)
- **Sum:** \(X, Y, Z \) pairwise ind. \(\Rightarrow \text{var}[X + Y + Z] = \cdots \)
- **Markov:** \(\Pr[X \geq a] \leq E[f(X)]/f(a) \) where ...
Summary

Variance; Inequalities; WLLN

- **Variance:** \(\text{var}[X] := E[(X - E[X])^2] = E[X^2] - E[X]^2 \)
- **Fact:** \(\text{var}[aX + b] = a^2 \text{var}[X] \)
- **Sum:** \(X, Y, Z \) pairwise ind. \(\Rightarrow \text{var}[X + Y + Z] = \cdots \)
- **Markov:** \(\Pr[X \geq a] \leq E[f(X)]/f(a) \) where ...
- **Chebyshev:** \(\Pr[|X - E[X]| \geq a] \leq \text{var}[X]/a^2 \)

Fact: \(\text{var}[aX + b] = a^2 \text{var}[X] \)

Sum: \(X, Y, Z \) pairwise ind. \(\Rightarrow \text{var}[X + Y + Z] = \cdots \)

Markov: \(\Pr[X \geq a] \leq E[f(X)]/f(a) \) where ...

Chebyshev: \(\Pr[|X - E[X]| \geq a] \leq \text{var}[X]/a^2 \)

WLLN: \(X_m \) i.i.d. \(\Rightarrow \frac{X_1 + \cdots + X_n}{n} \approx E[X] \)
Probability: Midterm 2 Review.

- Framework:
 - Probability Space
 - Conditional Probability & Bayes’ Rule
 - Independence
 - Mutual Independence
Review: Probability Space

- Sample Space
- Ω
- ω_1, ω_2
- Samples (Outcomes)

- $0 \leq \Pr[\omega] \leq 1$
- $\sum_{\omega} \Pr[\omega] = 1$
Review: Probability Space

Sample Space

Ω

ω_1, ω_2

Samples (Outcomes)

$0 \leq Pr[\omega] \leq 1$

$\sum_{\omega} Pr[\omega] = 1$

Pr[$A|B$] = Pr[$A \cap B$] / Pr[B].

Pr[$A \cap B \cap C$] = Pr[A] * Pr[$B|A$] * Pr[$C|A \cap B$].
Review: Probability Space

Sample Space

Ω

$\omega_1, \omega_2, \ldots$

Samples (Outcomes)

$0 \leq Pr[\omega] \leq 1$

$\sum_{\omega} Pr[\omega] = 1$

Pr[$A|B$] = Pr[$A \cap B$]/Pr[B].
Pr[$A \cap B \cap C$] = Pr[A]Pr[$B|A$]Pr[$C|A \cap B$].
Review: Probability Space

Sample Space

\[\Omega \]

Samples (Outcomes)

Fraction \(p_1 \) of circumference

\[\sum_{\omega} Pr[\omega] = 1 \]

\[0 \leq Pr[\omega] \leq 1 \]

Pr[\(A \mid B \)] = \(\frac{Pr[A \cap B]}{Pr[B]} \).

\[Pr[A \cap B \cap C] = Pr[A]Pr[B \mid A]Pr[C \mid A \cap B]. \]
Review: Bayes’ Rule
Review: Bayes’ Rule

- Priors: $Pr[A_n] = p_n, n = 1, \ldots, M$
Review: Bayes’ Rule

- Priors: \(Pr[A_n] = p_n, n = 1, \ldots, M \)
- Conditional Probabilities: \(Pr[B|A_n] = q_n, n = 1, \ldots, N \)
Review: Bayes’ Rule

- Priors: \(Pr[A_n] = p_n, n = 1, \ldots, M \)
- Conditional Probabilities: \(Pr[B|A_n] = q_n, n = 1, \ldots, N \)
- \(\Rightarrow \) Postiors: \(Pr[A_n|B] = \frac{p_n q_n}{p_1 q_1 + \cdots + p_N q_N} \)
Review: Bayes’ Rule

- **Priors:** $Pr[A_n] = p_n, n = 1, \ldots, M$
- **Conditional Probabilities:** $Pr[B|A_n] = q_n, n = 1, \ldots, N$
- \Rightarrow **Posteriors:** $Pr[A_n|B] = \frac{p_n q_n}{p_1 q_1 + \cdots + p_N q_N}$
Bayes’ Rule: Examples

Let $p'_n = \Pr[A_n | B]$ be the posterior probabilities. Thus, $p'_n = \frac{p_n q_n}{p_1 q_1 + \cdots + p_N q_n}$.

Questions:

▶ if $q_n > q_k$, then $p'_n > p'_k$? Not necessarily.
▶ if $p_n > p_k$, then $p'_n > p'_k$? Not necessarily.
▶ if $p_n > p_k$ and $q_n > q_k$, then $p'_n > p'_k$? Yes.
▶ if $q_n = 1$, then $p'_n > 0$? Not necessarily.
▶ if $p_n = \frac{1}{N}$ for all n, then MLE = MAP? Yes.
Let $p'_n = Pr[A_n|B]$ be the posterior probabilities.
Bayes’ Rule: Examples

Let $p'_n = Pr[A_n|B]$ be the posterior probabilities. Thus, $p'_n = p_n q_n / (p_1 q_1 + \cdots + p_N q_n)$.

Questions: Is it true that

▶ if $q_n > q_k$, then $p'_n > p'_k$?
Not necessarily.

▶ if $p_n > p_k$, then $p'_n > p'_k$?
Not necessarily.

▶ if $p_n > p_k$ and $q_n > q_k$, then $p'_n > p'_k$?
Yes.

▶ if $q_n = 1$, then $p'_n > 0$?
Not necessarily.

▶ if $p_n = 1/N$ for all n, then MLE = MAP?
Yes.
Bayes’ Rule: Examples

Let $p'_n = Pr[A_n|B]$ be the posterior probabilities. Thus, $p'_n = p_nq_n/(p_1q_1 + \cdots + p_Nq_n)$.

Questions: Is it true that

- if $q_n > q_k$, then $p'_n > p'_k$?
- if $q_n = 1$, then $p'_n > 0$?
- if $p_n = 1/N$ for all n, then $\text{MLE} = \text{MAP}$?
Bayes’ Rule: Examples

Let $p_n' = Pr[A_n|B]$ be the posterior probabilities. Thus, $p_n' = p_n q_n / (p_1 q_1 + \cdots + p_N q_n)$.

Questions: Is it true that

\begin{itemize}
 \item if $q_n > q_k$, then $p_n' > p_k'$? Not necessarily.
\end{itemize}
Bayes’ Rule: Examples

Let $p'_n = Pr[A_n|B]$ be the posterior probabilities. Thus, $p'_n = p_n q_n / (p_1 q_1 + \cdots + p_N q_n)$.

Questions: Is it true that

- if $q_n > q_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$, then $p'_n > p'_k$?
Bayes’ Rule: Examples

Let $p'_n = Pr[A_n|B]$ be the posterior probabilities. Thus, $p'_n = p_n q_n/(p_1 q_1 + \cdots + p_N q_n)$.

Questions: Is it true that

- if $q_n > q_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$, then $p'_n > p'_k$? Not necessarily.
Bayes’ Rule: Examples

Let $p'_n = Pr[A_n|B]$ be the posterior probabilities. Thus, $p'_n = p_n q_n / (p_1 q_1 + \cdots + p_N q_n)$.

Questions: Is it true that

- if $q_n > q_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$ and $q_n > q_k$, then $p'_n > p'_k$?
Bayes’ Rule: Examples

Let $p'_n = Pr[A_n|B]$ be the posterior probabilities. Thus, $p'_n = p_n q_n/(p_1 q_1 + \cdots + p_N q_n)$.

Questions: Is it true that

- if $q_n > q_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$ and $q_n > q_k$, then $p'_n > p'_k$? Yes.
Bayes’ Rule: Examples

Let $p'_n = Pr[A_n|B]$ be the posterior probabilities. Thus, $p'_n = p_n q_n / (p_1 q_1 + \cdots + p_N q_n)$.

Questions: Is it true that

- if $q_n > q_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$ and $q_n > q_k$, then $p'_n > p'_k$? Yes.
- if $q_n = 1$, then $p'_n > 0$?
Bayes’ Rule: Examples

Let $p'_n = Pr[A_n|B]$ be the posterior probabilities. Thus, $p'_n = p_nq_n/(p_1q_1 + \cdots + p_Nq_n)$.

Questions: Is it true that

- if $q_n > q_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$ and $q_n > q_k$, then $p'_n > p'_k$? Yes.
- if $q_n = 1$, then $p'_n > 0$? Not necessarily.
Let $p'_n = Pr[A_n|B]$ be the posterior probabilities.
Thus, $p'_n = p_nq_n/(p_1q_1 + \cdots + p_Nq_N)$.

Questions: Is it true that

- if $q_n > q_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$, then $p'_n > p'_k$? Not necessarily.
- if $p_n > p_k$ and $q_n > q_k$, then $p'_n > p'_k$? Yes.
- if $q_n = 1$, then $p'_n > 0$? Not necessarily.
- if $p_n = 1/N$ for all n, then MLE = MAP?
Bayes’ Rule: Examples

Let $p_n' = Pr[A_n|B]$ be the posterior probabilities. Thus, $p_n' = p_n q_n/(p_1 q_1 + \cdots + p_N q_n)$.

Questions: Is it true that

- if $q_n > q_k$, then $p_n' > p_k'$? Not necessarily.
- if $p_n > p_k$, then $p_n' > p_k'$? Not necessarily.
- if $p_n > p_k$ and $q_n > q_k$, then $p_n' > p_k'$? Yes.
- if $q_n = 1$, then $p_n' > 0$? Not necessarily.
- if $p_n = 1/N$ for all n, then MLE = MAP? Yes.
Review: Independence

"First coin yields 1" and "Sum is 7" are pairwise, but not mutually independent.

If \(\{A_j, i \in J\} \) are mutually independent, then \(A_1 \cap \overline{A_2} \) and \(A_3 \setminus A_4 \) are independent.

Our intuitive meaning of "independent events" is mutual independence.
Review: Independence

“First coin yields 1” and ”Sum is 7” are independent
Review: Independence

"First coin yields 1" and "Sum is 7" are independent Pairwise, but not mutually

Our intuitive meaning of "independent events" is mutual independence.

\[\begin{align*} &\{A_j, i \in J\} \\
&\left[A_1 \cap \bar{A}_2 \right] \Delta A_3 \\
&\text{and } A_4 \setminus A_5 \end{align*} \]

\(\Omega = \{1, \ldots, 6\}^2 \)

\(A = \{(1, 6), \ldots, (6,1)\} \)

\(B = \{(1,1), \ldots, (1,6)\} \)

A = ‘sum is 7’
Review: Independence

“First coin yields 1” and ”Sum is 7” are independent

Pairwise, but not mutually

If \(\{A_j, i \in J\} \) are mutually independent, then \([A_1 \cap \bar{A}_2] \Delta A_3\) and \(A_4 \setminus A_5\) are independent.

Our intuitive meaning of “independent events” is mutual independence.
Review: Independence

A and B are independent if \(\Pr[A \cap B] = \Pr[A] \Pr[B] \).

\(\{A_j, j \in J\} \) are mutually independent if \(\Pr[\bigcap_{j \in K} A_j] = \prod_{j \in K} \Pr[A_j] \), for all finite \(K \subset J \).

Thus, \(A, B, C, D \) are mutually independent if there are independent 2 by 2:

\(\Pr[A \cap B] = \Pr[A] \Pr[B] \),...,

\(\Pr[C \cap D] = \Pr[C] \Pr[D] \)

by 3:

\(\Pr[A \cap B \cap C] = \Pr[A] \Pr[B] \Pr[C] \),...,

\(\Pr[B \cap C \cap D] = \Pr[B] \Pr[C] \Pr[D] \)

by 4:

\(\Pr[A \cap B \cap C \cap D] = \Pr[A] \Pr[B] \Pr[C] \Pr[D] \).
Review: Independence

Recall

A and B are independent if \(\Pr[A \cap B] = \Pr[A] \Pr[B] \).

\{A_j, j \in J\} are mutually independent if \(\Pr[\bigcap_{j \in K} A_j] = \prod_{j \in K} \Pr[A_j] \), \(\forall \) finite \(K \subset J \).

Thus, \(A, B, C, D \) are mutually independent if there are

independent 2 by 2:
\(\Pr[A \cap B] = \Pr[A] \Pr[B], \ldots, \Pr[C \cap D] = \Pr[C] \Pr[D] \),

by 3:
\(\Pr[A \cap B \cap C] = \Pr[A] \Pr[B] \Pr[C], \ldots, \Pr[B \cap C \cap D] = \Pr[B] \Pr[C] \Pr[D] \),

by 4:
\(\Pr[A \cap B \cap C \cap D] = \Pr[A] \Pr[B] \Pr[C] \Pr[D] \).
Review: Independence

Recall

- A and B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
Review: Independence

Recall

- A and B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- $\{A_j, j \in J\}$ are mutually independent if $Pr[\bigcap_{j \in K} A_j] = \prod_{j \in K} Pr[A_j], \forall$ finite $K \subset J$.
Review: Independence

Recall

- A and B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.

- $\{A_j, j \in J\}$ are mutually independent if
 $$Pr[\cap_{j \in K} A_j] = \prod_{j \in K} Pr[A_j], \forall \text{ finite } K \subset J.$$

Thus, A, B, C, D are mutually independent if there are

- independent 2 by 2:
 $$Pr[A \cap B] = Pr[A]Pr[B], \ldots, Pr[C \cap D] = Pr[C]Pr[D]$$
Review: Independence

Recall

- A and B are independent if $Pr[A \cap B] = Pr[A]Pr[B]$.
- $\{A_j, j \in J\}$ are mutually independent if
 $$Pr[\cap_{j \in K} A_j] = \prod_{j \in K} Pr[A_j], \forall \text{ finite } K \subset J.$$

Thus, A, B, C, D are mutually independent if there are

- independent 2 by 2:
 $$Pr[A \cap B] = Pr[A]Pr[B], \ldots, Pr[C \cap D] = Pr[C]Pr[D]$$

- by 3: $Pr[A \cap B \cap C] = Pr[A]Pr[B]Pr[C], \ldots, Pr[B \cap C \cap D] = Pr[B]Pr[C]Pr[D]$
Review: Independence

Recall

- A and B are independent if $\Pr \left[A \cap B \right] = \Pr \left[A \right] \Pr \left[B \right]$.

- $\{A_j, j \in J\}$ are mutually independent if $\Pr \left[\cap_{j \in K} A_j \right] = \prod_{j \in K} \Pr \left[A_j \right], \forall$ finite $K \subset J$.

Thus, A, B, C, D are mutually independent if there are

- independent 2 by 2: $\Pr \left[A \cap B \right] = \Pr \left[A \right] \Pr \left[B \right], \ldots, \Pr \left[C \cap D \right] = \Pr \left[C \right] \Pr \left[D \right]$.

- by 3: $\Pr \left[A \cap B \cap C \right] = \Pr \left[A \right] \Pr \left[B \right] \Pr \left[C \right], \ldots, \Pr \left[B \cap C \cap D \right] = \Pr \left[B \right] \Pr \left[C \right] \Pr \left[D \right]$.

- by 4: $\Pr \left[A \cap B \cap C \cap D \right] = \Pr \left[A \right] \Pr \left[B \right] \Pr \left[C \right] \Pr \left[D \right]$.
Consider the uniform probability space and the events A, B, C, D. Which maximal collections of events among A, B, C, D are pairwise independent?

\{
A, B, C\}, \{B, C, D\}

Can you find three events among A, B, C, D that are mutually independent? No: We would need an outcome with probability $1/8$.
Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?

- $\{A, B, C\}$,
- $\{B, C, D\}$

Can you find three events among A, B, C, D that are mutually independent?

No: We would need an outcome with probability $1/8$.
Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?

\{A, B, C\}, \{B, C, D\}

Can you find three events among A, B, C, D that are mutually independent?

No: We would need an outcome with probability $1/8$.
Independence: Question

Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?
Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?

$\{A, B, C\}$,
Independence: Question

Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?

$\{A, B, C\}, \text{ and } \{B, C, D\}$
Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?

- $\{A, B, C\}$, and $\{B, C, D\}$

Can you find three events among A, B, C, D that are mutually independent?
Consider the uniform probability space and the events A, B, C, D.

Which maximal collections of events among A, B, C, D are pairwise independent?

- $\{A, B, C\}$, and $\{B, C, D\}$

Can you find three events among A, B, C, D that are mutually independent?

No: We would need an outcome with probability $1/8$.
Review: Collisions & Collecting

Collisions:

\[Pr[\text{no collision}] \approx e^{-\frac{m^2}{2n}} \]
Review: Collisions & Collecting

Collisions:

\[Pr[\text{no collision}] \approx e^{-m^2/2n} \]

Collecting:

\[Pr[\text{miss Wilson}] \approx e^{-m/n} \]

\[Pr[\text{miss at least one}] \leq ne^{-m/n} \]
Approximations:

\[\ln(1 - \epsilon) \approx -\epsilon \]
\[\exp(-\epsilon) \approx 1 - \epsilon \]
Approximations:

\[\ln(1 - \varepsilon) \approx -\varepsilon \]
Approximations:

\[
\ln(1 - \varepsilon) \approx -\varepsilon \\
\exp\{-\varepsilon\} \approx 1 - \varepsilon
\]
Approximations:

\[\ln(1 - \varepsilon) \approx -\varepsilon \]
\[\exp\{-\varepsilon\} \approx 1 - \varepsilon \]

Sums:

\[(a + b)^n = \sum_{m=0}^{n} \binom{n}{m} a^m b^{n-m} \]
Approximations:

\[\ln(1 - \varepsilon) \approx -\varepsilon \]
\[\exp\{-\varepsilon\} \approx 1 - \varepsilon \]

Sums:

\[(a + b)^n = \sum_{m=0}^{n} \binom{n}{m} a^m b^{n-m} \]
\[1 + 2 + \cdots + n = \frac{n(n+1)}{2}; \]
Math Tricks, continued

Symmetry:

E.g., if we pick balls from a bag, with no replacement,
\[\Pr[\text{ball 5 is red}] = \Pr[\text{ball 1 is red}] \]
Order of balls = permutation. All permutations have same probability.

Union Bound:
\[\Pr[A \cup B \cup C] \leq \Pr[A] + \Pr[B] + \Pr[C] \]

Inclusion/Exclusion:
\[\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B] \]

Total Probability:
\[\Pr[B] = \Pr[A_1] \Pr[B|A_1] + \cdots + \Pr[A_n] \Pr[B|A_n] \]

An L_2-bounded martingale converges almost surely. Just kidding!
Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag,
Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

\[Pr[\text{ball 5 is red}] = Pr[\text{ball 1 is red}] \]
Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

\[Pr[\text{ball 5 is red}] = Pr[\text{ball 1 is red}] \]

Order of balls = permutation.
Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

\[\Pr[\text{ball 5 is red}] = \Pr[\text{ball 1 is red}] \]

Order of balls = permutation.
All permutations have same probability.
Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

\[Pr[\text{ball 5 is red}] = Pr[\text{ball 1 is red}] \]

Order of balls = permutation.

All permutations have same probability.

Union Bound:

\[Pr[A \cup B \cup C] \leq Pr[A] + Pr[B] + Pr[C] \]
Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

\[Pr[\text{ball 5 is red}] = Pr[\text{ball 1 is red}] \]

Order of balls = permutation.

All permutations have same probability.

Union Bound:

\[Pr[A \cup B \cup C] \leq Pr[A] + Pr[B] + Pr[C] \]

Inclusion/Exclusion:

\[Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B] \]
Symmetry: E.g., if we pick balls from a bag, with no replacement,

\[\Pr[\text{ball 5 is red}] = \Pr[\text{ball 1 is red}] \]

Order of balls = permutation.

All permutations have same probability.

Union Bound:

\[\Pr[A \cup B \cup C] \leq \Pr[A] + \Pr[B] + \Pr[C] \]

Inclusion/Exclusion:

\[\Pr[A \cup B] = \Pr[A] + \Pr[B] - \Pr[A \cap B] \]

Total Probability:

\[\Pr[B] = \Pr[A_1] \Pr[B|A_1] + \cdots + \Pr[A_n] \Pr[B|A_n] \]
Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

\[Pr[\text{ball 5 is red}] = Pr[\text{ball 1 is red}] \]

Order of balls = permutation.
All permutations have same probability.
Union Bound:

\[Pr[A \cup B \cup C] \leq Pr[A] + Pr[B] + Pr[C] \]

Inclusion/Exclusion:

\[Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B] \]

Total Probability:

\[Pr[B] = Pr[A_1] Pr[B | A_1] + \cdots + Pr[A_n] Pr[B | A_n] \]

An \(L^2 \)-bounded martingale converges almost surely.
Math Tricks, continued

Symmetry: E.g., if we pick balls from a bag, with no replacement,

\[Pr[\text{ball 5 is red}] = Pr[\text{ball 1 is red}] \]

Order of balls = permutation.

All permutations have same probability.

Union Bound:

\[Pr[A \cup B \cup C] \leq Pr[A] + Pr[B] + Pr[C] \]

Inclusion/Exclusion:

\[Pr[A \cup B] = Pr[A] + Pr[B] - Pr[A \cap B] \]

Total Probability:

\[Pr[B] = Pr[A_1]Pr[B|A_1] + \cdots + Pr[A_n]Pr[B|A_n] \]

An \(L^2 \)-bounded martingale converges almost surely. Just kidding!
A mini-quizz

True or False:

- \(Pr[A \cup B] = Pr[A] + Pr[B] \).

False

True iff disjoint.

False

True iff independent.

False

\(A \cap B = \emptyset \Rightarrow A, B \) independent.

False

\(\Pr[A \cap B \cap C] = \Pr[A] \Pr[B | A] \Pr[C | B] \).

False
A mini-quizz

True or False:

- $Pr[A \cup B] = Pr[A] + Pr[B]$. False
A mini-quizz

True or False:

- $\Pr[A \cup B] = \Pr[A] + \Pr[B]$. False True iff disjoint.
A mini-quizz

True or False:

A mini-quizz

True or False:

- $Pr[A \cap B] = Pr[A]Pr[B]$. False
A mini-quizz

True or False:

A mini-quizz

True or False:

3. $A \cap B = \emptyset \Rightarrow A, B$ independent.
A mini-quizz

True or False:

- $A \cap B = \emptyset \Rightarrow A, B$ independent. False
A mini-quizz

True or False:

- $Pr[A \cap B] = Pr[A]Pr[B]$. **False** True iff independent.
- $A \cap B = \emptyset \Rightarrow A, B$ independent. **False**
- For all A, B, one has $Pr[A|B] \geq Pr[A]$. **False**
A mini-quizz

True or False:

3. $A \cap B = \emptyset \Rightarrow A, B$ independent. False
4. For all A, B, one has $Pr[A|B] \geq Pr[A]$. False
True or False:

- $\Pr[A \cup B] = \Pr[A] + \Pr[B]$. False True iff disjoint.
- $\Pr[A \cap B] = \Pr[A] \Pr[B]$. False True iff independent.
- $A \cap B = \emptyset \Rightarrow A, B$ independent. False
- For all A, B, one has $\Pr[A|B] \geq \Pr[A]$. False
- $\Pr[A \cap B \cap C] = \Pr[A] \Pr[B|A] \Pr[C|B]$.

A mini-quizz
True or False:

- $A \cap B = \emptyset \Rightarrow A, B$ independent. False
- For all A, B, one has $Pr[A|B] \geq Pr[A]$. False
- $Pr[A \cap B \cap C] = Pr[A]Pr[B|A]Pr[C|B]$. False
A mini-quizz

True or False:

- \(A \cap B = \emptyset \Rightarrow A, B \) independent. False
- For all \(A, B \), one has \(Pr[A|B] \geq Pr[A] \). False
- \(Pr[A \cap B \cap C] = Pr[A] Pr[B|A] Pr[C|B] \). False
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform.

- $A = \{1, 2\}$, $B = \{1, 3\}$, $C = \{1, 4\}$. A, B, C pairwise independent.

- Is it true that $(A \cap B)$ and C are independent? No.

- Assume $\Pr[C | A] > \Pr[C | B]$. Is it true that $\Pr[A | C] > \Pr[B | C]$? No.

- Deal two cards from a 52-card deck. What is the probability that the value of the first card is strictly larger than that of the second?

 - $\Pr[\text{same}] = \frac{3}{51}$.
 - $\Pr[\text{different}] = \frac{48}{51}$.
 - $\Pr[\text{first} > \text{second}] = \frac{24}{51}$.

- Find events A, B, C that are pairwise independent, not mutually.

- $\Omega = \{1, 2, 3, 4\}$, uniform.
A mini-quizz; part 2

- \(\Omega = \{1, 2, 3, 4\} \), uniform. Find events \(A, B, C \) that are pairwise independent, not mutually.

- \(A = \{1, 2\} \), \(B = \{1, 3\} \), \(C = \{1, 4\} \).

- \(A \), \(B \), \(C \) pairwise independent.

- Is it true that \((A \cap B) \cap C \) are independent? No.

- In the example above, \(\Pr[A \cap B \cap C] \neq \Pr[A \cap B] \Pr[C] \).

- Assume \(\Pr[C | A] > \Pr[C | B] \).

- Is it true that \(\Pr[A | C] > \Pr[B | C] \)? No.

- Deal two cards from a 52-card deck. What is the probability that the value of the first card is strictly larger than that of the second?

- \(\Pr[\text{same}] = \frac{3}{51} \).

- \(\Pr[\text{different}] = \frac{48}{51} \).

- \(\Pr[\text{first} > \text{second}] = \frac{24}{51} \).
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

$$A = \{1, 2\}, B = \{1, 3\}, C = \{1, 4\}.$$
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

 $$A = \{1, 2\}, \quad B = \{1, 3\}, \quad C = \{1, 4\}.$$

- A, B, C pairwise independent.
A mini-quizz; part 2

- \(\Omega = \{1, 2, 3, 4\} \), uniform. Find events \(A, B, C \) that are pairwise independent, not mutually.

 \[A = \{1, 2\}, B = \{1, 3\}, C = \{1, 4\}. \]

- \(A, B, C \) pairwise independent. Is it true that \((A \cap B) \) and \(C \) are independent?

- Deal two cards from a 52-card deck. What is the probability that the value of the first card is strictly larger than that of the second?

 \[\Pr[\text{same}] = \frac{3}{51}, \quad \Pr[\text{different}] = \frac{48}{51}, \quad \Pr[\text{first} > \text{second}] = \frac{24}{51}. \]
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

 $A = \{1, 2\}, B = \{1, 3\}, C = \{1, 4\}$.

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

 No.
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

 $$A = \{1, 2\}, B = \{1, 3\}, C = \{1, 4\}.$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

 No. In example above, $Pr[A \cap B \cap C] \neq Pr[A \cap B]Pr[C]$.
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

 $$A = \{1, 2\}, \quad B = \{1, 3\}, \quad C = \{1, 4\}.$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

 No. In example above, $Pr[A \cap B \cap C] \neq Pr[A \cap B]Pr[C]$.

- Assume $Pr[C|A] > Pr[C|B]$.

- Deal two cards from a 52-card deck. What is the probability that the value of the first card is strictly larger than that of the second?

 $Pr[same] = \frac{3}{51}$.

 $Pr[different] = \frac{48}{51}$.

 $Pr[first > second] = \frac{24}{51}$.
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

 $$A = \{1, 2\}, B = \{1, 3\}, C = \{1, 4\}.$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

 No. In example above, $Pr[A \cap B \cap C] \neq Pr[A \cap B]Pr[C]$.

- Assume $Pr[C|A] > Pr[C|B]$.

 Is it true that $Pr[A|C] > Pr[B|C]$?
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

 $$A = \{1, 2\}, \; B = \{1, 3\}, \; C = \{1, 4\}.$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

 No. In example above, $Pr[A \cap B \cap C] \neq Pr[A \cap B]Pr[C]$.

- Assume $Pr[C|A] > Pr[C|B]$.

 Is it true that $Pr[A|C] > Pr[B|C]$?

 No.

- Deal two cards from a 52-card deck.
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

 $A = \{1, 2\}, B = \{1, 3\}, C = \{1, 4\}$.

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

 No. In example above, $Pr[A \cap B \cap C] \neq Pr[A \cap B]Pr[C]$.

- Assume $Pr[C|A] > Pr[C|B]$.

 Is it true that $Pr[A|C] > Pr[B|C]$?

 No.

- Deal two cards from a 52-card deck. What is the probability that the value of the first card is strictly larger than that of the second?

 $Pr[\text{same}] = \frac{3}{51}$.
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

 $A = \{1, 2\}, B = \{1, 3\}, C = \{1, 4\}$.

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

 No. In example above, $Pr[A \cap B \cap C] \neq Pr[A \cap B]Pr[C]$.

- Assume $Pr[C|A] > Pr[C|B]$.

 Is it true that $Pr[A|C] > Pr[B|C]$?

 No.

- Deal two cards from a 52-card deck. What is the probability that the value of the first card is strictly larger than that of the second?

 $Pr[\text{same}] = \frac{3}{51}$. $Pr[\text{different}] = \frac{48}{51}$.
A mini-quizz; part 2

- $\Omega = \{1, 2, 3, 4\}$, uniform. Find events A, B, C that are pairwise independent, not mutually.

 $$A = \{1, 2\}, \; B = \{1, 3\}, \; C = \{1, 4\}.\$$

- A, B, C pairwise independent. Is it true that $(A \cap B)$ and C are independent?

 No. In example above, $Pr[A \cap B \cap C] \neq Pr[A \cap B]Pr[C]$.

- Assume $Pr[C|A] > Pr[C|B]$.

 Is it true that $Pr[A|C] > Pr[B|C]$?

 No.

- Deal two cards from a 52-card deck. What is the probability that the value of the first card is strictly larger than that of the second?

 $$Pr[\text{same}] = \frac{3}{51}. \quad Pr[\text{different}] = \frac{48}{51}. \quad Pr[\text{first} > \text{second}] = \frac{24}{51}.$$
Discrete Math: Review
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $\text{gcd}(x, m) = 1$.
Modular Arithmetic Inverses and GCD

\(x\) has inverse modulo \(m\) if and only if \(gcd(x, m) = 1\).

Group structures more generally.
Modular Arithmetic Inverses and GCD

\[x \text{ has inverse modulo } m \text{ if and only if } \gcd(x, m) = 1. \]

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo \(m \) if and only if \(\gcd(x, m) = 1. \)
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m - 1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$. Finding gcd.
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y)$
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $\gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $\gcd(x, m) = 1$.

Finding gcd.

$\gcd(x, y) = \gcd(y, x - y) = \gcd(y, x \pmod{y})$.

Idea: egcd.

\gcd produces 1 by adding and subtracting multiples of x and y.

Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \ (mod \ y)).\]

Give recursive Algorithm!
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[
gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod y)
\]

Give recursive Algorithm! Base Case?
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m-1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y) \]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m - 1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \ (mod \ y))$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y)
Modular Arithmetic Inverses and GCD

\(x \) has inverse modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Group structures more generally.

Proof Idea:
\(\{0x, \ldots, (m-1)x\} \) are distinct modulo \(m \) if and only if \(\gcd(x, m) = 1 \).

Finding gcd.
\[\gcd(x, y) = \gcd(y, x - y) = \gcd(y, x \pmod{y}) \]

Give recursive Algorithm! Base Case? \(\gcd(x, 0) = x \).

Extended-gcd\((x, y)\) returns \((d, a, b)\)
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $\text{gcd}(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $\text{gcd}(x, m) = 1$.

Finding gcd.
$\text{gcd}(x, y) = \text{gcd}(y, x - y) = \text{gcd}(y, x \mod y))$.

Give recursive Algorithm! Base Case? $\text{gcd}(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[
d = \text{gcd}(x, y)
\]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m-1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y) \]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by \]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:

$\{0x, \ldots, (m-1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)

$d = gcd(x, y)$ and $d = ax + by$

Multiplicative inverse of (x, m).

egcd$(x, m) = (1, a, b)$

a is inverse!

$1 = ax + bm \equiv ax \pmod{m}$.

Idea: egcd. gcd produces 1 by adding and subtracting multiples of x and y.

Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
$\{0x, \ldots, (m-1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
$d = gcd(x, y)$ and $d = ax + by$

Multiplicative inverse of (x, m).
$egcd(x, m) = (1, a, b)$
x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
$d = gcd(x, y)$ and $d = ax + by$

Multiplicative inverse of (x, m).
$egcd(x, m) = (1, a, b)$
a is inverse!
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{$0x, \ldots, (m-1)x$} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x-y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
$d = gcd(x, y)$ and $d = ax + by$

Multiplicative inverse of (x, m).
$egcd(x, m) = (1, a, b)$
a is inverse! $1 = ax + bm$
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
$\{0x, \ldots, (m-1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \mod y) \]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by \]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b) \]
\[a \text{ is inverse! } 1 = ax + bm = ax \mod m. \]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
$\{0x, \ldots, (m-1)x\}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
$gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y})$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
$\quad d = gcd(x, y)$ and $d = ax + by$

Multiplicative inverse of (x, m).
$\quad egcd(x, m) = (1, a, b)$
$\quad a$ is inverse! $1 = ax + bm = ax \pmod{m}$.

Idea: egcd.
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
\{0x, \ldots, (m - 1)x\} are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.
\[gcd(x, y) = gcd(y, x - y) = gcd(y, x \pmod{y}).\]

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)
\[d = gcd(x, y) \text{ and } d = ax + by\]

Multiplicative inverse of (x, m).
\[egcd(x, m) = (1, a, b)\]
\[a \text{ is inverse! } 1 = ax + bm = ax \pmod{m}.\]

Idea: egcd.
\[gcd \text{ produces } 1\]
Modular Arithmetic Inverses and GCD

x has inverse modulo m if and only if $gcd(x, m) = 1$.

Group structures more generally.

Proof Idea:
{0x, \ldots, (m−1)x}$ are distinct modulo m if and only if $gcd(x, m) = 1$.

Finding gcd.

$gcd(x, y) = gcd(y, x − y) = gcd(y, x \ (mod\ y))$.

Give recursive Algorithm! Base Case? $gcd(x, 0) = x$.

Extended-gcd(x, y) returns (d, a, b)

$d = gcd(x, y)$ and $d = ax + by$

Multiplicative inverse of (x, m).

$egcd(x, m) = (1, a, b)$

a is inverse! $1 = ax + bm = ax \ (mod\ m)$.

Idea: egcd.

gcd produces 1

by adding and subtracting multiples of x and y
Example: $p = 7, q = 11$.
Example: $p = 7, q = 11$.

$N = 77$.
Example: $p = 7, q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$
Example: $p = 7, q = 11.$

$N = 77.$

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1.$
Example: \(p = 7, \ q = 11. \)

\[N = 77. \]

\[(p - 1)(q - 1) = 60 \]

Choose \(e = 7, \) since \(\gcd(7,60) = 1. \)

\[\text{egcd}(7,60). \]
Example: \(p = 7, q = 11 \).

\[N = 77. \]

\[(p - 1)(q - 1) = 60 \]

Choose \(e = 7 \), since \(\gcd(7, 60) = 1 \).

\[\text{egcd}(7, 60). \]

\[
7(0) + 60(1) = 60
\]
Example: $p = 7, \, q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7, 60)$.

\[
7(0) + 60(1) = 60
\]

\[
7(1) + 60(0) = 7
\]
Example: $p = 7, q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

$\text{egcd}(7,60)$.

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4
\end{align*}
\]
Example: \(p = 7, \ q = 11. \)

\(N = 77. \)

\((p - 1)(q - 1) = 60\)

Choose \(e = 7, \) since \(\gcd(7, 60) = 1. \)

\(\text{egcd}(7, 60). \)

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3
\end{align*}
\]
Example: \(p = 7, \ q = 11. \)

\(N = 77. \)
\((p - 1)(q - 1) = 60\)
Choose \(e = 7, \) since \(\gcd(7, 60) = 1. \)
\(\text{egcd}(7, 60). \)

\[
\begin{align*}
7(0) + 60(1) & = 60 \\
7(1) + 60(0) & = 7 \\
7(-8) + 60(1) & = 4 \\
7(9) + 60(-1) & = 3 \\
7(-17) + 60(2) & = 1 \\
\end{align*}
\]
Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

egcd(7,60).

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]
Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

\[\text{egcd}(7, 60). \]

\[
7(0) + 60(1) = 60 \\
7(1) + 60(0) = 7 \\
7(-8) + 60(1) = 4 \\
7(9) + 60(-1) = 3 \\
7(-17) + 60(2) = 1
\]

Confirm:
Example: $p = 7$, $q = 11$.

$N = 77$.

$(p - 1)(q - 1) = 60$

Choose $e = 7$, since $\gcd(7, 60) = 1$.

\[
\text{egcd}(7, 60).
\]

\[
\begin{align*}
7(0) + 60(1) & = 60 \\
7(1) + 60(0) & = 7 \\
7(-8) + 60(1) & = 4 \\
7(9) + 60(-1) & = 3 \\
7(-17) + 60(2) & = 1
\end{align*}
\]

Confirm: $-119 + 120 = 1$
Example: \(p = 7, \ q = 11. \)

\(N = 77. \)

\((p - 1)(q - 1) = 60\)

Choose \(e = 7, \) since \(\gcd(7, 60) = 1. \)

\(\text{egcd}(7, 60). \)

\[
\begin{align*}
7(0) + 60(1) &= 60 \\
7(1) + 60(0) &= 7 \\
7(-8) + 60(1) &= 4 \\
7(9) + 60(-1) &= 3 \\
7(-17) + 60(2) &= 1
\end{align*}
\]

Confirm: \(-119 + 120 = 1 \)

\(d = e^{-1} = -17 = 43 = \ (\text{mod} \ 60) \)
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
Fermat from Bijection.

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[a^{p-1} \equiv 1 \pmod{p}. \]
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p - 1) \pmod{p}\}$.

Since multiplication is commutative, the product of elements in T is the same as the product of elements in $\{1, \ldots, p-1\}$ modulo p. Each of $2, \ldots, (p-1)$ has an inverse modulo p, multiply by inverses to get $a^{p-1} \equiv 1 \pmod{p}$.

Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Since multiplication is commutative,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Each of $2, ..., (p-1)$ has an inverse modulo p, multiply by inverses to get...
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \mod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function:
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p-1\}$.
Invertible function: one-to-one.
$T \subseteq S$ since $0 \not\in T$.
p is prime.
$\implies T = S.$
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

- $T \subseteq S$ since $0 \not\in T$.
- p is prime.

$$\implies T = S.$$

Product of elts of $T = \text{Product of elts of } S$.

Fermat from Bijection.

Fermat’s Little Theorem: For prime \(p \), and \(a \not\equiv 0 \pmod{p} \),
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Consider \(T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\} \).

\(T \) is range of function \(f(x) = ax \pmod{p} \) for set \(S = \{1, \ldots, p-1\} \).

Invertible function: one-to-one.

- \(T \subseteq S \) since \(0 \not\in T \).
- \(p \) is prime.

\[\implies T = S. \]

Product of elts of \(T = \) Product of elts of \(S \).

\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},
\]
Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.

$\implies T = S$.

Product of elts of $T = \text{Product of elts of } S$.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},$$

Since multiplication is commutative.
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p - 1) \pmod{p}\}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p - 1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.

$\implies T = S$.

Product of elts of $T = \text{Product of elts of } S$.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p - 1)) \equiv 1 \cdot 2 \cdots (p - 1) \pmod{p},$$

Since multiplication is commutative.

$$a^{(p-1)}(1 \cdots (p - 1)) \equiv (1 \cdots (p - 1)) \pmod{p}.$$
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p-1\}$.

Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.

$\implies T = S$.

Product of elts of $T = \text{Product of elts of } S$.

\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},
\]

Since multiplication is commutative.

\[
a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.
\]

Each of $2, \ldots (p-1)$ has an inverse modulo p,
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,

$$a^{p-1} \equiv 1 \pmod{p}.$$

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p-1\}$. Invertible function: one-to-one.

$T \subseteq S$ since $0 \not\in T$.

p is prime.

$\implies T = S$.

Product of elts of $T = \text{Product of elts of } S$.

$$(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},$$

Since multiplication is commutative.

$$a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.$$

Each of $2, \ldots (p-1)$ has an inverse modulo p,

mutliply by inverses to get...
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[a^{p-1} \equiv 1 \pmod{p}. \]

Proof: Consider $T = \{ a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p} \}$.

T is range of function $f(x) = ax \mod (p)$ for set $S = \{1, \ldots, p-1\}$.
Invertible function: one-to-one.
$T \subseteq S$ since $0 \not\in T$.
p is prime.
$\implies T = S$.

Product of elts of $T = \text{Product of elts of } S$.
\[(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}, \]
Since multiplication is commutative.
\[a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}. \]

Each of $2, \ldots (p-1)$ has an inverse modulo p,
multiply by inverses to get...
\[a^{(p-1)} \equiv 1 \pmod{p}. \]
Fermat from Bijection.

Fermat’s Little Theorem: For prime p, and $a \not\equiv 0 \pmod{p}$,
\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Proof: Consider $T = \{a \cdot 1 \pmod{p}, \ldots, a \cdot (p-1) \pmod{p}\}$.

T is range of function $f(x) = ax \pmod{p}$ for set $S = \{1, \ldots, p-1\}$.
Invertible function: one-to-one.
$T \subseteq S$ since $0 \not\in T$.
p is prime.
\[\implies T = S.\]

Product of elts of $T = $ Product of elts of S.
\[
(a \cdot 1) \cdot (a \cdot 2) \cdots (a \cdot (p-1)) \equiv 1 \cdot 2 \cdots (p-1) \pmod{p},
\]
Since multiplication is commutative.
\[
a^{(p-1)}(1 \cdots (p-1)) \equiv (1 \cdots (p-1)) \pmod{p}.
\]
Each of $2, \ldots, (p-1)$ has an inverse modulo p,
multiply by inverses to get...
\[
a^{(p-1)} \equiv 1 \pmod{p}.\]
RSA

RSA:

\[N = p, q \]
with \(\gcd(e, (p-1)(q-1)) = 1 \).

\[d = e^{-1} \pmod{(p-1)(q-1)} \].

Theorem:

\[x^{ed} = x \pmod{N} \]

Proof:

\[x^{ed} - x \] is divisible by \(p \) and \(q \) \(\Rightarrow \) theorem!

\[x^{ed} - x = x^k(p-1)(q-1) + 1 - x = x^{((x^k(q-1))(p-1))} - 1 \]

If \(x \) is divisible by \(p \), the product is.
Otherwise \((x^k(q-1))^{p-1} = 1 \pmod{p} \) by Fermat.

\[\Rightarrow (x^k(q-1))^{p-1} - 1 \] divisible by \(p \).

Similarly for \(q \).
RSA:

\[N = p, q \]
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]
RSA

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)
RSA

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
RSA:

$N = p, q$

e with $\gcd(e, (p - 1)(q - 1)) = 1.$

$d = e^{-1} \pmod{(p - 1)(q - 1)}.$

Theorem: $x^{ed} = x \pmod{N}$

Proof:

$x^{ed} - x$ is divisible by p and $q \implies$ theorem!
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \implies \text{ theorem!}
\[x^{ed} - x \]
RSA:

$N = p, q$

e with $\gcd(e, (p - 1)(q - 1)) = 1$.

$d = e^{-1} \pmod{(p - 1)(q - 1)}$.

Theorem: $x^{ed} = x \pmod{N}$

Proof:

$x^{ed} - x$ is divisible by p and q \implies theorem!

$x^{ed} - x = x^{k(p-1)(q-1)+1} - x$
RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!
\[x^{ed} - x = x^{k(p - 1)(q - 1) + 1} - x = x((x^{k(q - 1)})^{p - 1} - 1) \]
RSA

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!
\[x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1) \]

If \(x \) is divisible by \(p \), the product is.
RSA

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) = 1. \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!

\[
x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1)
\]

If \(x \) is divisible by \(p \), the product is.
Otherwise \((x^{k(q-1)})^{p-1} = 1 \pmod{p} \) by Fermat.
RSA:

$N = p, q$

e with $\gcd(e, (p - 1)(q - 1)) = 1$.

$d = e^{-1} \pmod{(p - 1)(q - 1)}$.

Theorem: $x^{ed} = x \pmod{N}$

Proof:

$x^{ed} - x$ is divisible by p and q \implies theorem!

$x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1)$

If x is divisible by p, the product is.

Otherwise $(x^{k(q-1)})^{p-1} = 1 \pmod{p}$ by Fermat.

$\implies (x^{k(q-1)})^{p-1} - 1$ divisible by p.

RSA:

$N = p, q$

e with $\gcd(e, (p - 1)(q - 1)) = 1$.

d = $e^{-1} \pmod{(p - 1)(q - 1)}$.

Theorem: $x^{ed} = x \pmod{N}$

Proof:

$x^{ed} - x$ is divisible by p and q \implies theorem!

$$x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1)$$

If x is divisible by p, the product is.

Otherwise $(x^{k(q-1)})^{p-1} = 1 \pmod{p}$ by Fermat.

$\implies (x^{k(q-1)})^{p-1} - 1$ divisible by p.

Similarly for q.

RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p-1)(q-1)) = 1. \]
\[d = e^{-1} \pmod{(p-1)(q-1)}. \]

Theorem: \(x^{ed} = x \pmod{N} \)

Proof:
\(x^{ed} - x \) is divisible by \(p \) and \(q \) \(\implies \) theorem!
\[x^{ed} - x = x^{k(p-1)(q-1)+1} - x = x((x^{k(q-1)})^{p-1} - 1) \]

If \(x \) is divisible by \(p \), the product is.
Otherwise \((x^{k(q-1)})^{p-1} = 1 \pmod{p} \) by Fermat.
\(\implies (x^{k(q-1)})^{p-1} - 1 \) divisible by \(p \).

Similarly for \(q \).
RSA, Public Key, and Signatures.

RSA:

\[N = p \cdot q \] with \(\gcd(e, (p-1)(q-1)) = 1 \).

\[d = e^{-1} \pmod{(p-1)(q-1)} \].

Public Key Cryptography:

\[D(E(m, K), k) = m^e \mod N = m \].

Signature scheme:

\[S(C) = D(C) \].

Announce \((C, S(C))\):

Verify: Check \(C = E(C) \).
RSA, Public Key, and Signatures.

RSA:

\[N = p \cdot q \]

with \(\gcd(e, (p-1)(q-1)) = 1 \).

\[d = e^{-1} \pmod{(p-1)(q-1)} \]

Public Key Cryptography:

\[D(E(m, k), k) = m^e \pmod{N} = m \]

Signature scheme:

\[S(C) = D(C) \]

Announce \((C, S(C)) \)

Verify: Check \(C = E(C) \).

\[E(D(C, k), K) = C^d \pmod{N} = C \]
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]

Public Key Cryptography:

\[D(E(m, K), k) = (m^e)^d \mod N = m \]

Signature scheme:

\[S(C) = D(C) \]

Announce: \(C, S(C) \)

Verify: Check \(C = E(C) \).

\[E(D(C, K), K) = (C^d)^e \mod N = C \]
RSA, Public Key, and Signatures.

RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
RSA, Public Key, and Signatures.

RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)) \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)} \]
RSA, Public Key, and Signatures.

RSA:

\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \mod (p - 1)(q - 1). \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \mod N = m. \]

Signature scheme:
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m,K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)
Verify: Check \(C = E(C).\)
RSA, Public Key, and Signatures.

RSA:
\[N = p, q \]
\[e \text{ with } \gcd(e, (p - 1)(q - 1)). \]
\[d = e^{-1} \pmod{(p - 1)(q - 1)}. \]

Public Key Cryptography:
\[D(E(m, K), k) = (m^e)^d \pmod{N} = m. \]

Signature scheme:
\[S(C) = D(C). \]
Announce \((C, S(C))\)

Verify: Check \(C = E(C).\)
\[E(D(C, k), K) = (C^d)^e = C \pmod{N} \]
Property 1: Any degree d polynomial over a field has at most d roots.
Polynomials

Property 1: Any degree \(d\) polynomial over a field has at most \(d\) roots.

Proof Idea:
Property 1: Any degree d polynomial over a field has at most d roots.
Proof Idea:
Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
Any polynomial with roots r_1, \ldots, r_k.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d+1$:
\[(x_1, y_1), \ldots, (x_{d+1}, y_{d+1}) \text{ with } x_i \text{ distinct.}

Proof Ideas:
Lagrange Interpolation gives existence.
Property 1 gives uniqueness.
Polynomials

Property 1: Any degree \(d \) polynomial over a field has at most \(d \) roots.

Proof Idea:
Any polynomial with roots \(r_1, \ldots, r_k \).
written as \((x - r_1) \cdots (x - r_k)Q(x)\).
Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
- Any polynomial with roots r_1, \ldots, r_k.
 - written as $(x - r_1) \cdots (x - r_k)Q(x)$.
 - using polynomial division.
- Degree at least the number of roots.
Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
- Any polynomial with roots r_1, \ldots, r_k.
- Written as $(x - r_1) \cdots (x - r_k)Q(x)$.
- Using polynomial division.
- Degree at least the number of roots.
Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
- Any polynomial with roots r_1, \ldots, r_k.
 - written as $(x - r_1) \cdots (x - r_k)Q(x)$.
 - using polynomial division.
- Degree at least the number of roots.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$:
$(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.
Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
- Any polynomial with roots r_1, \ldots, r_k.
 - written as $(x - r_1) \cdots (x - r_k)Q(x)$.
 - using polynomial division.
- Degree at least the number of roots.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Proof Ideas:
Polynomials

Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
- Any polynomial with roots r_1, \ldots, r_k.
- written as $(x - r_1) \cdots (x - r_k)Q(x)$.
- using polynomial division.
- Degree at least the number of roots.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Proof Ideas:
Property 1: Any degree \(d \) polynomial over a field has at most \(d \) roots.

Proof Idea:
Any polynomial with roots \(r_1, \ldots, r_k \).
written as \((x - r_1) \cdots (x - r_k)Q(x)\).
using polynomial division.
Degree at least the number of roots.

Property 2: There is exactly 1 polynomial of degree \(\leq d \) with
arithmetic modulo prime \(p \) that contains any \(d + 1 \):
\((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\) with \(x_i \) distinct.

Proof Ideas:
Lagrange Interpolation gives existence.
Property 1: Any degree \(d \) polynomial over a field has at most \(d \) roots.

Proof Idea:
- Any polynomial with roots \(r_1, \ldots, r_k \).
- Written as \((x - r_1) \cdots (x - r_k)Q(x)\).
- Using polynomial division.
- Degree at least the number of roots.

Property 2: There is exactly 1 polynomial of degree \(\leq d \) with arithmetic modulo prime \(p \) that contains any \(d + 1 \): \((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\) with \(x_i \) distinct.

Proof Ideas:
- Lagrange Interpolation gives existence.
- Property 1 gives uniqueness.
Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
- Any polynomial with roots r_1, \ldots, r_k.
- Written as $(x - r_1) \cdots (x - r_k)Q(x)$.
- Using polynomial division.
- Degree at least the number of roots.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Proof Ideas:
- Lagrange Interpolation gives existence.
- Property 1 gives uniqueness.
Property 1: Any degree d polynomial over a field has at most d roots.

Proof Idea:
 Any polynomial with roots r_1, \ldots, r_k.
 written as $(x - r_1) \cdots (x - r_k)Q(x)$.
 using polynomial division.
 Degree at least the number of roots.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$:
$(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Proof Ideas:
 Lagrange Interpolation gives existence.
 Property 1 gives uniqueness.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
 Scheme: degree $n - 1$ polynomial, $P(x)$.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
 Scheme: degree $n - 1$ polynomial, $P(x)$.
 Secret: $P(0)$ **Shares:** $(1, P(1)), \ldots (n, P(n))$.
Applications.

Property 2: There is exactly 1 polynomial of degree \(\leq d \) with arithmetic modulo prime \(p \) that contains any \(d + 1 \) points: \((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\) with \(x_i \) distinct.

Secret Sharing: \(k \) out of \(n \) people know secret.
- Scheme: degree \(n - 1 \) polynomial, \(P(x) \).
- **Secret:** \(P(0) \)
- **Shares:** \((1, P(1)), \ldots, (n, P(n))\).
- **Recover Secret:** Reconstruct \(P(x) \) with **any** \(k \) points.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
- Scheme: degree $n - 1$ polynomial, $P(x)$.
- **Secret:** $P(0)$
- **Shares:** $(1, P(1)), \ldots (n, P(n))$.
- **Recover Secret:** Reconstruct $P(x)$ with any k points.

Erasure Coding: n packets, k losses.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
 Scheme: degree $n - 1$ polynomial, $P(x)$.
 Secret: $P(0)$ **Shares:** $(1, P(1)), \ldots (n, P(n))$.
 Recover Secret: Reconstruct $P(x)$ with any k points.

Erasure Coding: n packets, k losses.
 Scheme: degree $n - 1$ polynomial, $P(x)$. Reed-Solomon.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
- Scheme: degree $n - 1$ polynomial, $P(x)$.
- **Secret:** $P(0)$
- **Shares:** $(1, P(1)), \ldots, (n, P(n))$.
- **Recover Secret:** Reconstruct $P(x)$ with any k points.

Erasure Coding: n packets, k losses.
- Scheme: degree $n - 1$ polynomial, $P(x)$. Reed-Solomon.
- Message: $P(0) = m_0, P(1) = m_1, \ldots P(n - 1) = m_{n-1}$
Applications.

Property 2: There is exactly 1 polynomial of degree \(\leq d \) with arithmetic modulo prime \(p \) that contains any \(d + 1 \) points: \((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\) with \(x_i \) distinct.

Secret Sharing: \(k \) out of \(n \) people know secret.
- Scheme: degree \(n - 1 \) polynomial, \(P(x) \).
- **Secret:** \(P(0) \)
- **Shares:** \((1, P(1)), \ldots, (n, P(n))\).
- **Recover Secret:** Reconstruct \(P(x) \) with any \(k \) points.

Erasure Coding: \(n \) packets, \(k \) losses.
- Scheme: degree \(n - 1 \) polynomial, \(P(x) \). Reed-Solomon.
- **Message:** \(P(0) = m_0, P(1) = m_1, \ldots, P(n-1) = m_{n-1} \)
- **Send:** \((0, P(0)), \ldots, (n+k-1, P(n+k-1))\).
Applications.

Property 2: There is exactly 1 polynomial of degree \(\leq d \) with arithmetic modulo prime \(p \) that contains any \(d + 1 \) points: \((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\) with \(x_i \) distinct.

Secret Sharing: \(k \) out of \(n \) people know secret.
Scheme: degree \(n - 1 \) polynomial, \(P(x) \).
Secret: \(P(0) \) **Shares:** \((1, P(1)), \ldots, (n, P(n))\).
Recover Secret: Reconstruct \(P(x) \) with any \(k \) points.

Erasure Coding: \(n \) packets, \(k \) losses.
Scheme: degree \(n - 1 \) polynomial, \(P(x) \). Reed-Solomon.
Message: \(P(0) = m_0, P(1) = m_1, \ldots P(n - 1) = m_{n-1} \)
Send: \((0, P(0)), \ldots, (n + k - 1, P(n + k - 1))\).
Recover Message: Any \(n \) packets are cool by property 2.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
 - Scheme: degree $n - 1$ polynomial, $P(x)$.
 - **Secret:** $P(0)$
 - **Shares:** $(1, P(1)), \ldots, (n, P(n))$.
 - **Recover Secret:** Reconstruct $P(x)$ with any k points.

Erasure Coding: n packets, k losses.
 - Scheme: degree $n - 1$ polynomial, $P(x)$. Reed-Solomon.
 - **Message:** $P(0) = m_0, P(1) = m_1, \ldots, P(n-1) = m_{n-1}$
 - **Send:** $(0, P(0)), \ldots, (n + k - 1, P(n + k - 1))$.
 - **Recover Message:** Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d + 1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
 Scheme: degree $n - 1$ polynomial, $P(x)$.
 Secret: $P(0)$ Shares: $(1, P(1)), \ldots (n, P(n))$.
 Recover Secret: Reconstruct $P(x)$ with any k points.

Erasure Coding: n packets, k losses.
 Scheme: degree $n - 1$ polynomial, $P(x)$. Reed-Solomon.
 Message: $P(0) = m_0, P(1) = m_1, \ldots P(n - 1) = m_{n-1}$
 Send: $(0, P(0)), \ldots (n + k - 1, P(n + k - 1))$.
 Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
 Scheme: degree $n - 1$ polynomial, $P(x)$. Reed-Solomon.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d+1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
- Scheme: degree $n-1$ polynomial, $P(x)$.
- **Secret:** $P(0)$ **Shares:** $(1, P(1)), \ldots (n, P(n))$.
- **Recover Secret:** Reconstruct $P(x)$ with any k points.

Erasure Coding: n packets, k losses.
- Scheme: degree $n-1$ polynomial, $P(x)$. Reed-Solomon.
- Message: $P(0) = m_0, P(1) = m_1, \ldots P(n-1) = m_{n-1}$
- Send: $(0, P(0)), \ldots (n+k-1, P(n+k-1))$.
- **Recover Message:** Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
- Scheme: degree $n-1$ polynomial, $P(x)$. Reed-Solomon.
- Message: $P(0) = m_0, P(1) = m_1, \ldots P(n-1) = m_{n-1}$
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d+1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
- Scheme: degree $n-1$ polynomial, $P(x)$.
- Secret: $P(0)$ Shares: $(1, P(1)), \ldots (n, P(n))$.
- Recover Secret: Reconstruct $P(x)$ with any k points.

Erasure Coding: n packets, k losses.
- Scheme: degree $n-1$ polynomial, $P(x)$. Reed-Solomon.
- Message: $P(0) = m_0, P(1) = m_1, \ldots P(n-1) = m_{n-1}$
- Send: $(0, P(0)), \ldots (n+k-1, P(n+k-1))$.
- Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
- Scheme: degree $n-1$ polynomial, $P(x)$. Reed-Solomon.
- Message: $P(0) = m_0, P(1) = m_1, \ldots P(n-1) = m_{n-1}$
- Send: $(0, P(0)), \ldots (n+2k-1, P(n+2k-1))$.
Applications.

Property 2: There is exactly 1 polynomial of degree \(\leq d \) with arithmetic modulo prime \(p \) that contains any \(d + 1 \) points: \((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\) with \(x_i \) distinct.

Secret Sharing: \(k \) out of \(n \) people know secret.

Scheme: degree \(n - 1 \) polynomial, \(P(x) \).

Secret: \(P(0) \)

Shares: \((1, P(1)), \ldots (n, P(n))\).

Recover Secret: Reconstruct \(P(x) \) with any \(k \) points.

Erasure Coding: \(n \) packets, \(k \) losses.

Scheme: degree \(n - 1 \) polynomial, \(P(x) \). Reed-Solomon.

Message: \(P(0) = m_0, P(1) = m_1, \ldots P(n - 1) = m_{n-1} \)

Send: \((0, P(0)), \ldots (n + k - 1, P(n + k - 1))\).

Recover Message: Any \(n \) packets are cool by property 2.

Corruptions Coding: \(n \) packets, \(k \) corruptions.

Scheme: degree \(n - 1 \) polynomial, \(P(x) \). Reed-Solomon.

Message: \(P(0) = m_0, P(1) = m_1, \ldots P(n - 1) = m_{n-1} \)

Send: \((0, P(0)), \ldots (n + 2k - 1, P(n + 2k - 1))\).

Recovery:
Applications.

Property 2: There is exactly 1 polynomial of degree \(\leq d \) with arithmetic modulo prime \(p \) that contains any \(d + 1 \) points: \((x_1, y_1), \ldots, (x_{d+1}, y_{d+1})\) with \(x_i \) distinct.

Secret Sharing: \(k \) out of \(n \) people know secret.
- Scheme: degree \(n - 1 \) polynomial, \(P(x) \).
- **Secret:** \(P(0) \)
- **Shares:** \((1, P(1)), \ldots (n, P(n))\).
- **Recover Secret:** Reconstruct \(P(x) \) with any \(k \) points.

Erasure Coding: \(n \) packets, \(k \) losses.
- Scheme: degree \(n - 1 \) polynomial, \(P(x) \). **Reed-Solomon.**
- **Message:** \(P(0) = m_0, P(1) = m_1, \ldots P(n-1) = m_{n-1} \)
- **Send:** \((0, P(0)), \ldots (n+k-1, P(n+k-1))\).
- **Recover Message:** Any \(n \) packets are cool by property 2.

Corruptions Coding: \(n \) packets, \(k \) corruptions.
- Scheme: degree \(n - 1 \) polynomial, \(P(x) \). **Reed-Solomon.**
- **Message:** \(P(0) = m_0, P(1) = m_1, \ldots P(n-1) = m_{n-1} \)
- **Send:** \((0, P(0)), \ldots (n+2k-1, P(n+2k-1))\).
- **Recovery:** \(P(x) \) is only consistent polynomial with \(n + k \) points.
Applications.

Property 2: There is exactly 1 polynomial of degree $\leq d$ with arithmetic modulo prime p that contains any $d+1$ points: $(x_1, y_1), \ldots, (x_{d+1}, y_{d+1})$ with x_i distinct.

Secret Sharing: k out of n people know secret.
- Scheme: degree $n-1$ polynomial, $P(x)$.
- Secret: $P(0)$ Shares: $(1, P(1)), \ldots (n, P(n))$.
- Recover Secret: Reconstruct $P(x)$ with any k points.

Erasure Coding: n packets, k losses.
- Scheme: degree $n-1$ polynomial, $P(x)$. Reed-Solomon.
- Message: $P(0) = m_0, P(1) = m_1, \ldots P(n-1) = m_{n-1}$
- Send: $(0, P(0)), \ldots (n+k-1, P(n+k-1))$.
- Recover Message: Any n packets are cool by property 2.

Corruptions Coding: n packets, k corruptions.
- Scheme: degree $n-1$ polynomial, $P(x)$. Reed-Solomon.
- Message: $P(0) = m_0, P(1) = m_1, \ldots P(n-1) = m_{n-1}$
- Send: $(0, P(0)), \ldots (n+2k-1, P(n+2k-1))$.
- Recovery: $P(x)$ is only consistent polynomial with $n+k$ points.
 Property 2 and pigeonhole principle.
Idea: Error locator polynomial of degree k with zeros at errors.
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.
For all points $i = 1, \ldots, i, n + 2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n + 2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$

since $E(i) = 0$ at points where there are errors.
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n + 2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$

since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n+2k$, $P(i)E(i) = R(i)E(i)$ (mod p)
 since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

$$Q(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0.$$
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n+2k$, $P(i)E(i) = R(i)E(i)$ (mod p)
since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

$Q(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0.$

$E(x) = x^k + b_{k-1}x^{k-1} + \cdots b_0.$
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n + 2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$ since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

\[Q(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0. \]
\[E(x) = x^k + b_{k-1}x^{k-1} + \cdots b_0. \]
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n+2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$

since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

\[Q(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0. \]

\[E(x) = x^k + b_{k-1}x^{k-1} + \cdots b_0. \]

Gives system of $n + 2k$ linear equations.
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n+2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$ since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

$$Q(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.$$
$$E(x) = x^k + b_{k-1}x^{k-1} + \cdots + b_0.$$

Gives system of $n + 2k$ linear equations.

$$a_{n+k-1} + \cdots + a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n+2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$

since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

$$Q(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.$$
$$E(x) = x^k + b_{k-1}x^{k-1} + \cdots + b_0.$$

Gives system of $n+2k$ linear equations.

$$a_{n+k-1} + \cdots + a_0 \equiv R(1)(1+b_{k-1} \cdots + b_0) \pmod{p}$$
$$a_{n+k-1}(2)^{n+k-1} + \cdots + a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots + b_0) \pmod{p}$$
$$\vdots$$
Welsh-Berlekamp

Idea: Error locator polynomial of degree \(k \) with zeros at errors.

For all points \(i = 1, \ldots, i, n+2k \), \(P(i)E(i) = R(i)E(i) \) \((\text{mod } p)\)

since \(E(i) = 0 \) at points where there are errors.

Let \(Q(x) = P(x)E(x) \).

\[
Q(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0. \\
E(x) = x^k + b_{k-1}x^{k-1} + \cdots b_0.
\]

Gives system of \(n+2k \) linear equations.

\[
a_{n+k-1} + \cdots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p} \\
a_{n+k-1}(2)^{n+k-1} + \cdots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p} \\
\vdots \\
a_{n+k-1}(m)^{n+k-1} + \cdots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}
\]
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n+2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$

since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

$Q(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0$.

$E(x) = x^k + b_{k-1}x^{k-1} + \cdots b_0$.

Gives system of $n + 2k$ linear equations.

\[
\begin{align*}
 a_{n+k-1} + \cdots a_0 &\equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p} \\
 a_{n+k-1}(2)^{n+k-1} + \cdots a_0 &\equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p} \\
 & \vdots \\
 a_{n+k-1}(m)^{n+k-1} + \cdots a_0 &\equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}
\end{align*}
\]

..and $n + 2k$ unknown coefficients of $Q(x)$ and $E(x)$!
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n+2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$

since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

$$Q(x) = a_{n+k-1}x^{n+k-1} + \cdots a_0.$$
$$E(x) = x^k + b_{k-1}x^{k-1} + \cdots b_0.$$

Gives system of $n + 2k$ linear equations.

$$a_{n+k-1} + \cdots a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}.$$
$$a_{n+k-1}(2)^{n+k-1} + \cdots a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}.$$
$$\vdots$$
$$a_{n+k-1}(m)^{n+k-1} + \cdots a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}.$$

..and $n + 2k$ unknown coefficients of $Q(x)$ and $E(x)$!

Solve for coefficients of $Q(x)$ and $E(x)$.
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n + 2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$

since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

$$Q(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.$$
$$E(x) = x^k + b_{k-1}x^{k-1} + \cdots + b_0.$$

Gives system of $n + 2k$ linear equations.

$$a_{n+k-1} + \cdots + a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}$$
$$a_{n+k-1}(2)^{n+k-1} + \cdots + a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}$$
$$\vdots$$
$$a_{n+k-1}(m)^{n+k-1} + \cdots + a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}$$

..and $n + 2k$ unknown coefficients of $Q(x)$ and $E(x)$!

Solve for coefficients of $Q(x)$ and $E(x)$.

Find $P(x) = Q(x)/E(x)$.
Welsh-Berlekamp

Idea: Error locator polynomial of degree \(k \) with zeros at errors.

For all points \(i = 1, \ldots, i, n+2k \), \(P(i)E(i) = R(i)E(i) \pmod{p} \)

since \(E(i) = 0 \) at points where there are errors.

Let \(Q(x) = P(x)E(x) \).

\[
Q(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.
\]

\[
E(x) = x^k + b_{k-1}x^{k-1} + \cdots + b_0.
\]

Gives system of \(n+2k \) linear equations.

\[
a_{n+k-1} + \cdots + a_0 \equiv R(1)(1 + b_{k-1}\cdots b_0) \pmod{p}
\]

\[
a_{n+k-1}(2)^{n+k-1} + \cdots + a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1}\cdots b_0) \pmod{p}
\]

\[\vdots\]

\[
a_{n+k-1}(m)^{n+k-1} + \cdots + a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1}\cdots b_0) \pmod{p}
\]

..and \(n+2k \) unknown coefficients of \(Q(x) \) and \(E(x) \)!

Solve for coefficients of \(Q(x) \) and \(E(x) \).

Find \(P(x) = Q(x)/E(x) \).
Welsh-Berlekamp

Idea: Error locator polynomial of degree \(k \) with zeros at errors.

For all points \(i = 1, \ldots, i, n + 2k \), \(P(i)E(i) = R(i)E(i) \) (mod \(p \))

since \(E(i) = 0 \) at points where there are errors.

Let \(Q(x) = P(x)E(x) \).

\[
Q(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0.
\]
\[
E(x) = x^k + b_{k-1}x^{k-1} + \cdots + b_0.
\]

Gives system of \(n + 2k \) linear equations.

\[
a_{n+k-1} + \cdots + a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p}
\]
\[
a_{n+k-1}(2)^{n+k-1} + \cdots + a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p}
\]
\[
\vdots
\]
\[
a_{n+k-1}(m)^{n+k-1} + \cdots + a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p}
\]

..and \(n + 2k \) unknown coefficients of \(Q(x) \) and \(E(x) \)!

Solve for coefficients of \(Q(x) \) and \(E(x) \).

Find \(P(x) = Q(x)/E(x) \).
Welsh-Berlekamp

Idea: Error locator polynomial of degree k with zeros at errors.

For all points $i = 1, \ldots, i, n+2k$, $P(i)E(i) = R(i)E(i) \pmod{p}$ since $E(i) = 0$ at points where there are errors.

Let $Q(x) = P(x)E(x)$.

\[Q(x) = a_{n+k-1}x^{n+k-1} + \cdots + a_0. \]
\[E(x) = x^k + b_{k-1}x^{k-1} + \cdots + b_0. \]

Gives system of $n+2k$ linear equations.

\[a_{n+k-1} + \cdots + a_0 \equiv R(1)(1 + b_{k-1} \cdots b_0) \pmod{p} \]
\[a_{n+k-1}(2)^{n+k-1} + \cdots + a_0 \equiv R(2)((2)^k + b_{k-1}(2)^{k-1} \cdots b_0) \pmod{p} \]
\[\vdots \]
\[a_{n+k-1}(m)^{n+k-1} + \cdots + a_0 \equiv R(m)((m)^k + b_{k-1}(m)^{k-1} \cdots b_0) \pmod{p} \]

..and $n+2k$ unknown coefficients of $Q(x)$ and $E(x)$!

Solve for coefficients of $Q(x)$ and $E(x)$.

\[\text{Find } P(x) = Q(x)/E(x). \]
Counting

First Rule
Counting

First Rule
Second Rule
Counting

First Rule
Second Rule
Stars/Bars
Counting

First Rule
Second Rule
Stars/Bars
Common Scenarios: Sampling, Balls in Bins.
Counting

First Rule
Second Rule
Stars/Bars
Common Scenarios: Sampling, Balls in Bins.
Sum Rule. Inclusion/Exclusion.
First Rule
Second Rule
Stars/Bars
Common Scenarios: Sampling, Balls in Bins.
Sum Rule. Inclusion/Exclusion.
Combinatorial Proofs.
Counting

First Rule
Second Rule
Stars/Bars
Common Scenarios: Sampling, Balls in Bins.
Sum Rule. Inclusion/Exclusion.
Combinatorial Proofs.
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide...when possible.
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: 52
Example: visualize.

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: 52×51
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide...when possible.

3 card Poker deals: \(52 \times 51 \times 50 \)
Example: visualize.

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide when possible.

3 card Poker deals: $52 \times 51 \times 50 = \frac{52!}{49!}$.
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). **Product Rule.**
Second rule: when order doesn’t matter divide.. when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.
Poker hands: \(\Delta \)?
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.
Poker hands: \(\Delta? \)
Hand: \(Q, K, A. \)
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). **Product Rule.**
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.
Poker hands: \(\Delta ? \)
 Hand: \(Q, K, A \).
 Deals: \(Q, K, A \),
Example: visualize.

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50 = \frac{52!}{49!}$. First rule.
Poker hands: Δ?
 Hand: Q, K, A.
 Deals: Q, K, A, Q, A, K,
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

\[\Delta \]

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.
Poker hands: \(\Delta \)?
Hand: Q, K, A.
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

\[\Delta \]

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.

Poker hands: \(\Delta \)?

Hand: \(Q, K, A \).
\(\Delta = 3 \times 2 \times 1 \)
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide when possible.

\[
\begin{array}{c}
\cdots \quad \Delta \\
\cdots \\
\cdots
\end{array}
\]

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.
Poker hands: \(\Delta \)?
 Hand: Q, K, A.
\(\Delta = 3 \times 2 \times 1 \) First rule again.
Example: visualize.

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide...when possible.

\[
\Delta
\]

3 card Poker deals: $52 \times 51 \times 50 = \frac{52!}{49!}$. First rule.
Poker hands: Δ?
 Hand: Q, K, A.

$\Delta = 3 \times 2 \times 1$ First rule again.
Total:
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.

Second rule: when order doesn’t matter divide...when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.

Poker hands: \(\Delta \)?

Hand: Q, K, A.

Deals: Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K.

\(\Delta = 3 \times 2 \times 1 \) First rule again.

Total: \(\frac{52!}{49!3!} \)
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). **Product Rule.**

Second rule: when order doesn’t matter divide...when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.

Poker hands: \(\Delta \)?

- **Hand:** Q, K, A.
- **Deals:** Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K.

\(\Delta = 3 \times 2 \times 1 \) First rule again.

Total: \(\frac{52!}{49!3!} \) Second Rule!
Example: visualize.

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50 = \frac{52!}{49!}$. First rule.

Poker hands: Δ?

Hand: Q, K, A.

$\Delta = 3 \times 2 \times 1$ First rule again.

Total: $\frac{52!}{49!3!}$ Second Rule!

Choose k out of n.
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). **Product Rule.**

Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.

Poker hands: \(\Delta \)?
- **Hand**: Q, K, A.
- **Deals**: Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K.

\(\Delta = 3 \times 2 \times 1 \) First rule again.

Total: \(\frac{52!}{49!3!} \) Second Rule!

Choose \(k \) out of \(n \).
- Ordered set: \(\frac{n!}{(n-k)!} \)
Example: visualize.

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50 = \frac{52!}{49!}$. First rule.

Poker hands: Δ?
 Hand: Q, K, A.

$\Delta = 3 \times 2 \times 1$ First rule again.
Total: $\frac{52!}{49!3!}$ Second Rule!

Choose k out of n.
Ordered set: $\frac{n!}{(n-k)!}$

What is Δ?
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.
Poker hands: \(\Delta \)?

Hand: Q, K, A.
\(\Delta = 3 \times 2 \times 1 \) First rule again.
Total: \(\frac{52!}{49!3!} \) Second Rule!

Choose \(k \) out of \(n \).
Ordered set: \(\frac{n!}{(n-k)!} \)
What is \(\Delta \)? \(k! \)
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). **Product Rule.**

Second rule: when order doesn’t matter divide...when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.

Poker hands: \(\Delta \)?

- **Hand:** Q, K, A.
- **Deals:** Q, K, A, Q, A, K, K, A, Q, K, A, Q, A, K, Q, A, Q, K.

\(\Delta = 3 \times 2 \times 1 \) First rule again.

Total: \(\frac{52!}{49!3!} \) **Second Rule!**

Choose \(k \) out of \(n \).

- **Ordered set:** \(\frac{n!}{(n-k)!} \)

What is \(\Delta \)? \(k! \) First rule again.
Example: visualize.

First rule: $n_1 \times n_2 \cdots \times n_3$. **Product Rule.**
Second rule: when order doesn’t matter divide..when possible.

3 card Poker deals: $52 \times 51 \times 50 = \frac{52!}{49!}$. First rule.

Poker hands: Δ?

Hand: Q, K, A.

$\Delta = 3 \times 2 \times 1$ First rule again.

Total: $\frac{52!}{49!3!}$ Second Rule!

Choose k out of n.

Ordered set: $\frac{n!}{(n-k)!}$

What is Δ? $k!$ First rule again.

\implies Total: $\frac{n!}{(n-k)!k!}$
Example: visualize.

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide...when possible.

3 card Poker deals: \(52 \times 51 \times 50 = \frac{52!}{49!} \). First rule.
Poker hands: \(\Delta \)?

Hand: Q, K, A.
\(\Delta = 3 \times 2 \times 1 \) First rule again.
Total: \(\frac{52!}{49!3!} \) Second Rule!

Choose \(k \) out of \(n \).
Ordered set: \(\frac{n!}{(n-k)!} \)
What is \(\Delta \)? \(k! \) First rule again.
\(\Rightarrow \) Total: \(\frac{n!}{(n-k)!k!} \) Second rule.
Example: visualize

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide when possible.
Example: visualize

First rule: \(n_1 \times n_2 \cdots \times n_3 \). **Product Rule.**
Second rule: when order doesn’t matter divide..when possible.

... Of course if the order matters

Orderings of ANAGRAM?
Example: visualize

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7!
Example: visualize

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

...

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
Example: visualize

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
Example: visualize

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide.. when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is Δ?
Example: visualize

First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is Δ?
ANAGRAM
Example: visualize

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is \(\Delta \)?
ANAGRAM
\(A_1 NA_2 GRA_3 M \),
First rule: $n_1 \times n_2 \cdots \times n_3$. **Product Rule.**
Second rule: when order doesn’t matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is Δ?
ANAGRAM
$A_1NA_2GRA_3M, A_2NA_1GRA_3M, \ldots$
Example: visualize

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is \(\Delta \)?

\(\text{ANAGRAM} \)
\(A_1NA_2GRA_3M, A_2NA_1GRA_3M, \ldots \)
Example: visualize

First rule: \(n_1 \times n_2 \cdots \times n_3 \). Product Rule.
Second rule: when order doesn’t matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is \(\Delta \)?
ANAGRAM
\(A_1NA_2GRA_3M, A_2NA_1GRA_3M, \ldots \)
\(\Delta = 3 \times 2 \times 1 \)
Example: visualize

First rule: \(n_1 \times n_2 \cdots \times n_3 \). **Product Rule.**
Second rule: when order doesn’t matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is \(\Delta \)?
ANAGRAM
\(A_1NA_2GRA_3M \), \(A_2NA_1GRA_3M \), ...
\(\Delta = 3 \times 2 \times 1 = 3! \)
First rule: \(n_1 \times n_2 \cdots \times n_3 \). **Product Rule.**
Second rule: when order doesn’t matter divide..when possible.

Orderings of **ANAGRAM**?
Ordered Set: 7! First rule.
A’s are the same!
What is \(\Delta \)?
ANAGRAM
\(A_1 \text{NA}_2 \text{GRA}_3 \text{M} , A_2 \text{NA}_1 \text{GRA}_3 \text{M} , ... \)
\(\Delta = 3 \times 2 \times 1 = 3! \) First rule!
Example: visualize

First rule: $n_1 \times n_2 \cdots \times n_3$. **Product Rule.**
Second rule: when order doesn’t matter divide...when possible.

Orderings of ANAGRAM?
Ordered Set: $7!$ First rule.
A’s are the same!
What is Δ?

ANAGRAM
$A_1NA_2GRA_3M , A_2NA_1GRA_3M , ...$
$\Delta = 3 \times 2 \times 1 = 3!$ First rule!

$\Rightarrow \frac{7!}{3!}$
First rule: $n_1 \times n_2 \cdots \times n_3$. Product Rule.
Second rule: when order doesn’t matter divide..when possible.

Orderings of ANAGRAM?
Ordered Set: 7! First rule.
A’s are the same!
What is Δ?

ANAGRAM
$A_1NA_2GRA_3M, A_2NA_1GRA_3M, \ldots$
$\Delta = 3 \times 2 \times 1 = 3!$ First rule!
$\Rightarrow \frac{7!}{3!}$ Second rule!
Summary.

k Samples with replacement from n items: n^k.
k Samples with replacement from n items: n^k.
Sample without replacement: $\binom{n}{k} = \frac{n!}{(n-k)!}$.
k Samples with replacement from n items: n^k.
Sample without replacement: $\frac{n!}{(n-k)!}$.
Summary.

\[k \text{ Samples with replacement from } n \text{ items: } n^k. \]
Sample without replacement: \[\frac{n!}{(n-k)!} \]
Summary.

k Samples with replacement from n items: n^k.
Sample without replacement: $\frac{n!}{(n-k)!}$

Sample without replacement and order doesn’t matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.
“n choose k”
Summary.

k Samples with replacement from n items: n^k.
Sample without replacement: $\frac{n!}{(n-k)!}$

Sample without replacement and order doesn’t matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.
“n choose k”
(Count using first rule and second rule.)
Summary.

k Samples with replacement from n items: n^k.
Sample without replacement: $\frac{n!}{(n-k)!}$

Sample without replacement and order doesn’t matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.
“n choose k”
(Count using first rule and second rule.)
Summary.

k Samples with replacement from n items: n^k.
Sample without replacement: $\frac{n!}{(n-k)!}$

Sample without replacement and order doesn’t matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.
“n choose k”
(Count using first rule and second rule.)

Sample with replacement and order doesn’t matter: $\binom{k+n-1}{n-1}$.
Summary.

k Samples with replacement from n items: n^k.
Sample without replacement: $\frac{n!}{(n-k)!}$

Sample without replacement and order doesn’t matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.
“n choose k”
(Count using first rule and second rule.)

Sample with replacement and order doesn’t matter: $\binom{k+n-1}{k+n-1}$.
Count with stars and bars:
Summary.

k Samples with replacement from n items: n^k.
Sample without replacement: $\frac{n!}{(n-k)!}$

Sample without replacement and order doesn’t matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.
“n choose k”
(Count using first rule and second rule.)

Sample with replacement and order doesn’t matter: $\binom{k+n-1}{n-1}$.
Count with stars and bars:
how many ways to add up n numbers to get k.
Summary.

k Samples with replacement from n items: n^k.
Sample without replacement: $\frac{n!}{(n-k)!}$

Sample without replacement and order doesn’t matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.
“n choose k”
(Count using first rule and second rule.)

Sample with replacement and order doesn’t matter: $\binom{k+n-1}{n-1}$.

Count with stars and bars:
 how many ways to add up n numbers to get k.
 Each number is number of samples of type i
Summary.

k Samples with replacement from n items: n^k.
Sample without replacement: $\frac{n!}{(n-k)!}$

Sample without replacement and order doesn’t matter: $\binom{n}{k} = \frac{n!}{(n-k)!k!}$.
“n choose k”
(Count using first rule and second rule.)

Sample with replacement and order doesn’t matter: $\binom{k+n-1}{n-1}$.

Count with stars and bars:
how many ways to add up n numbers to get k.
Each number is number of samples of type i which adds to total, k.
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$.

Example: How many permutations of n items start with 1 or 2?
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets \(S \) and \(T \), \(|S \cup T| = |S| + |T|\)

Example: How many permutations of \(n \) items start with 1 or 2? \(1 \times (n - 1)! \)
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Example: How many permutations of n items start with 1 or 2?
$1 \times (n - 1)! + 1 \times (n - 1)!$
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Example: How many permutations of n items start with 1 or 2? $1 \times (n-1)! + 1 \times (n-1)!$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Example: How many permutations of n items start with 1 or 2?
$1 \times (n - 1)! + 1 \times (n - 1)!$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|.$

Example: How many 10-digit phone numbers have 7 as their first or second digit?
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Example: How many permutations of n items start with 1 or 2? $1 \times (n - 1)! + 1 \times (n - 1)!$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S =$ phone numbers with 7 as first digit.
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Example: How many permutations of n items start with 1 or 2? $1 \times (n - 1)! + 1 \times (n - 1)!$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S = \text{phone numbers with 7 as first digit.} |S| = 10^9$
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets \(S \) and \(T \), \(|S \cup T| = |S| + |T| \)

Example: How many permutations of \(n \) items start with 1 or 2?
\[1 \times (n - 1)! + 1 \times (n - 1)! \]

Inclusion/Exclusion Rule: For any \(S \) and \(T \),
\[|S \cup T| = |S| + |T| - |S \cap T| \]

Example: How many 10-digit phone numbers have 7 as their first or second digit?

\(S = \) phone numbers with 7 as first digit. \(|S| = 10^9 \)
\(T = \) phone numbers with 7 as second digit.
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Example: How many permutations of n items start with 1 or 2?
$1 \times (n-1)! + 1 \times (n-1)!$

Inclusion/Exclusion Rule: For any S and T,
$|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?
$S =$ phone numbers with 7 as first digit. $|S| = 10^9$
$T =$ phone numbers with 7 as second digit. $|T| = 10^9$.
Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Example: How many permutations of n items start with 1 or 2?
$1 \times (n - 1)! + 1 \times (n - 1)!$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S =$ phone numbers with 7 as first digit. $|S| = 10^9$

$T =$ phone numbers with 7 as second digit. $|T| = 10^9$.

$S \cap T =$ phone numbers with 7 as first and second digit.
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Example: How many permutations of n items start with 1 or 2? $1 \times (n-1)! + 1 \times (n-1)!$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S = $ phone numbers with 7 as first digit. $|S| = 10^9$

$T = $ phone numbers with 7 as second digit. $|T| = 10^9$.

$S \cap T = $ phone numbers with 7 as first and second digit. $|S \cap T| = 10^8$.
Simple Inclusion/Exclusion

Sum Rule: For disjoint sets S and T, $|S \cup T| = |S| + |T|$

Example: How many permutations of n items start with 1 or 2?
$1 \times (n - 1)! + 1 \times (n - 1)!$

Inclusion/Exclusion Rule: For any S and T, $|S \cup T| = |S| + |T| - |S \cap T|$.

Example: How many 10-digit phone numbers have 7 as their first or second digit?

$S = $ phone numbers with 7 as first digit. $|S| = 10^9$
$T = $ phone numbers with 7 as second digit. $|T| = 10^9$.

$S \cap T = $ phone numbers with 7 as first and second digit. $|S \cap T| = 10^8$.

Answer: $|S| + |T| - |S \cap T| = 10^9 + 10^9 - 10^8$.
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).
Proof: How many size \(k \) subsets of \(n+1 \)?
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1? \) \(\binom{n+1}{k} \).
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
Chose first element,
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n + 1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n + 1 \)?

How many contain the first element? Chose first element, need to choose \(k - 1 \) more from remaining \(n \) elements.
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?

How many contain the first element?

Chose first element, need to choose \(k-1 \) more from remaining \(n \) elements.

\[\Rightarrow \binom{n}{k-1} \]
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
Chose first element, need to choose \(k-1 \) more from remaining \(n \) elements.
\(\Rightarrow \binom{n}{k-1} \)
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1? \) \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1? \)
How many contain the first element?
 Chose first element, need to choose \(k-1 \) more from remaining \(n \) elements.
 \[\Rightarrow \binom{n}{k-1} \]

How many don’t contain the first element?
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?

How many contain the first element?
- Chose first element, need to choose \(k - 1 \) more from remaining \(n \) elements.
- \(\implies \binom{n}{k-1} \)

How many don’t contain the first element?
- Need to choose \(k \) elements from remaining \(n \) elts.
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?

How many contain the first element?

Chose first element, need to choose \(k-1 \) more from remaining \(n \) elements.

\[\Rightarrow \binom{n}{k-1} \]

How many don’t contain the first element?

Need to choose \(k \) elements from remaining \(n \) elts.

\[\Rightarrow \binom{n}{k} \]
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?
How many contain the first element?
 Chose first element, need to choose \(k - 1 \) more from remaining \(n \) elements.
 \(\Rightarrow \binom{n}{k-1} \)

How many don’t contain the first element?
Need to choose \(k \) elements from remaining \(n \) elts.
 \(\Rightarrow \binom{n}{k} \)
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)? How many contain the first element?

Chose first element, need to choose \(k - 1 \) more from remaining \(n \) elements.
\[\Rightarrow \binom{n}{k-1} \]

How many don’t contain the first element?
Need to choose \(k \) elements from remaining \(n \) elts.
\[\Rightarrow \binom{n}{k} \]

So, \(\binom{n}{k-1} + \binom{n}{k} \).
Combinatorial Proofs.

Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?

How many contain the first element?

Chose first element, need to choose \(k-1 \) more from remaining \(n \) elements.

\[\Rightarrow \binom{n}{k-1} \]

How many don’t contain the first element?

Need to choose \(k \) elements from remaining \(n \) elts.

\[\Rightarrow \binom{n}{k} \]

So, \(\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k} \).
Theorem: \(\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \).

Proof: How many size \(k \) subsets of \(n+1 \)? \(\binom{n+1}{k} \).

How many size \(k \) subsets of \(n+1 \)?

How many contain the first element?

Chose first element, need to choose \(k - 1 \) more from remaining \(n \) elements.

\[\implies \binom{n}{k-1} \]

How many don’t contain the first element?

Need to choose \(k \) elements from remaining \(n \) elts.

\[\implies \binom{n}{k} \]

So, \(\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k} \).
Countability

Isomorphism principle.
Countability

Isomorphism principle.
Example.
Isomorphism principle.
Example.
Countability.
Isomorphism principle.
Example.
Countability.
Diagonalization.
Isomorphism principle.

Given a function, $f : D \rightarrow R$.

$|D| = |R|$.
Isomorphism principle.

Given a function, $f : D \rightarrow R$.

One to One:
Isomorphism principle.

Given a function, $f : D \rightarrow R$.

One to One:
For all $\forall x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

Onto:
For all $y \in R$, $\exists x \in D$, $y = f(x)$.

$f(\cdot)$ is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection $f : D \rightarrow R$ then $|D| = |R|$.
Isomorphism principle.

Given a function, \(f : D \rightarrow R \).

One to One:
For all \(\forall x, y \in D, x \neq y \implies f(x) \neq f(y) \).

or

\(\exists x \in D, y = f(x) \).

\(f(\cdot) \) is a bijection if it is one to one and onto.

Isomorphism principle:
If there is a bijection \(f : D \rightarrow R \) then \(|D| = |R| \).
Isomorphism principle.

Given a function, \(f : D \to R \).

One to One:
For all \(\forall x, y \in D, x \neq y \implies f(x) \neq f(y) \).

or
\(\forall x, y \in D, f(x) = f(y) \implies x = y \).
Isomorphism principle.

Given a function, \(f : D \rightarrow R \).

One to One:
For all \(\forall x, y \in D, x \neq y \implies f(x) \neq f(y) \).

or
\(\forall x, y \in D, f(x) = f(y) \implies x = y \).
Given a function, $f : D \rightarrow R$.

One to One:
For all $\forall x, y \in D$, $x \neq y \implies f(x) \neq f(y)$.

or

$\forall x, y \in D$, $f(x) = f(y) \implies x = y$.

Onto: For all $y \in R$, $\exists x \in D$, $y = f(x)$.

Isomorphism principle: If there is a bijection $f : D \rightarrow R$ then $|D| = |R|$.

$f(\cdot)$ is a bijection if it is one to one and onto.
Isomorphism principle.

Given a function, \(f : D \to R \).

One to One:
For all \(\forall x, y \in D, x \neq y \implies f(x) \neq f(y) \).

or

\(\forall x, y \in D, f(x) = f(y) \implies x = y \).

Onto: For all \(y \in R \), \(\exists x \in D, y = f(x) \).

\(f(\cdot) \) is a **bijection** if it is one to one and onto.
Given a function, \(f : D \rightarrow R \).

One to One:
For all \(\forall x, y \in D, x \neq y \implies f(x) \neq f(y) \).

or

\(\forall x, y \in D, f(x) = f(y) \implies x = y \).

Onto: For all \(y \in R, \exists x \in D, y = f(x) \).

\(f(\cdot) \) is a **bijection** if it is one to one and onto.

Isomorphism principle:
Isomorphism principle.

Given a function, \(f : D \rightarrow R \).

One to One:
For all \(\forall x, y \in D, x \neq y \implies f(x) \neq f(y) \).

or

\(\forall x, y \in D, f(x) = f(y) \implies x = y \).

Onto: For all \(y \in R, \exists x \in D, y = f(x) \).

\(f(\cdot) \) is a **bijection** if it is one to one and onto.

Isomorphism principle:
If there is a bijection \(f : D \rightarrow R \) then \(|D| = |R| \).
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?
Cardinalities of uncountable sets?

Cardinality of \([0, 1]\) smaller than all the reals?

\(f : \mathbb{R}^+ \rightarrow [0, 1].\)
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : \mathbb{R}^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq \frac{1}{2} \\
 \frac{1}{4x} & x > \frac{1}{2}
\end{cases}$$
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : \mathbb{R}^+ \rightarrow [0, 1]$.

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one.
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

Let $f : \mathbb{R}^+ \to [0, 1]$. Then

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : \mathbb{R}^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
\frac{1}{2}x & 0 \leq x \leq 1/2 \\
\frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$,

Cardinalities of uncountable sets?

Cardinality of \([0, 1]\) smaller than all the reals?

\(f : \mathbb{R}^+ \rightarrow [0, 1].\)

\[
f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one. \(x \neq y\)

If both in \([0, 1/2]\), a shift
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : \mathbb{R}^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq \frac{1}{2} \\
 \frac{1}{4x} & x > \frac{1}{2}
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

\[
f(x) = \begin{cases}
x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
\frac{1}{4x} & x > 1/2
\end{cases}
\]

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : \mathbb{R}^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ different mult inverses
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ different mult inverses $\implies f(x) \neq f(y)$.
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \to [0, 1].$

$$f(x) = \begin{cases} x + \frac{1}{2} & 0 \leq x \leq 1/2 \\ \frac{1}{4x} & x > 1/2 \end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ different mult inverses $\implies f(x) \neq f(y)$.

If one is in $[0, 1/2]$ and one isn’t,
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : \mathbb{R}^+ \to [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ different mult inverses $\implies f(x) \neq f(y)$.

If one is in $[0, 1/2]$ and one isn’t, different ranges
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1].$

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ different mult inverses $\implies f(x) \neq f(y)$.

If one is in $[0, 1/2]$ and one isn’t, different ranges $\implies f(x) \neq f(y)$.
Cardinalities of uncountable sets?

Cardinality of $[0, 1]$ smaller than all the reals?

$f : R^+ \rightarrow [0, 1]$.

$$f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases}$$

One to one. $x \neq y$

If both in $[0, 1/2]$, a shift $\implies f(x) \neq f(y)$.

If neither in $[0, 1/2]$ different mult inverses $\implies f(x) \neq f(y)$.

If one is in $[0, 1/2]$ and one isn’t, different ranges $\implies f(x) \neq f(y)$.

Bijection!
Cardinality of [0, 1] smaller than all the reals?

\[f : R^+ \rightarrow [0, 1]. \]

\[f(x) = \begin{cases}
 x + \frac{1}{2} & 0 \leq x \leq 1/2 \\
 \frac{1}{4x} & x > 1/2
\end{cases} \]

One to one. \(x \neq y \)

If both in [0, 1/2], a shift \(\implies f(x) \neq f(y). \)

If neither in [0, 1/2] different mult inverses \(\implies f(x) \neq f(y). \)

If one is in [0, 1/2] and one isn’t, different ranges \(\implies f(x) \neq f(y). \)

Bijection!

[0, 1] is same cardinality as nonnegative reals!
Countable.

Definition: S is countable if there is a bijection between S and some subset of \mathbb{N}. If the subset of \mathbb{N} is finite, S has finite cardinality. If the subset of \mathbb{N} is infinite, S is countably infinite. A bijection to or from the natural numbers implies countably infinite. Enumerable means countable. A subset of a countable set is countable. All countably infinite sets are the same cardinality as each other.
Countable.

Definition: S is **countable** if there is a bijection between S and some subset of N.
Definition: *S* is **countable** if there is a bijection between *S* and some subset of *N*.

If the subset of *N* is finite, *S* has finite **cardinality**.
Definition: S is **countable** if there is a bijection between S and some subset of N.

If the subset of N is finite, S has finite **cardinality**.

If the subset of N is infinite, S is **countably infinite**.
Definition: S is **countable** if there is a bijection between S and some subset of N.

If the subset of N is finite, S has finite **cardinality**.

If the subset of N is infinite, S is **countably infinite**.

Bijection to or from natural numbers implies countably infinite.
Definition: S is **countable** if there is a bijection between S and some subset of N.

If the subset of N is finite, S has finite **cardinality**.

If the subset of N is infinite, S is **countably infinite**.

Bijection to or from natural numbers implies countably infinite.

Enumerable means countable.
Definition: S is **countable** if there is a bijection between S and some subset of N.

If the subset of N is finite, S has finite **cardinality**.

If the subset of N is infinite, S is **countably infinite**.

Bijection to or from natural numbers implies countably infinite.

Enumerable means countable.

Subset of countable set is countable.
Definition: S is **countable** if there is a bijection between S and some subset of N.

If the subset of N is finite, S has finite **cardinality**.

If the subset of N is infinite, S is **countably infinite**.

Bijection to or from natural numbers implies countably infinite.

Enumerable means countable.

Subset of countable set is countable.

All countably infinite sets are the same cardinality as each other.
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
Examples

Countably infinite (same cardinality as naturals)

- \(Z^+ \) - positive integers
 Where’s 0?
 Bijection: \(f(z) = z - 1 \).
Examples

Countably infinite (same cardinality as naturals)

- Z^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0?)
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where's 0?
 Bijection: $f(z) = z - 1$.
 (Where's 0? 1

- \mathbb{Z} - all integers.
 Twice as big?
 Bijection: $f(z) = 2|z| - \text{sign}(z)$.
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1?...)
Examples

Countably infinite (same cardinality as naturals)

- \(Z^+ \) - positive integers

 Where’s 0?

 Bijection: \(f(z) = z - 1 \).

 (Where’s 0? 1 Where’s 1? 2)
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)
Examples

Countably infinite (same cardinality as naturals)

- \(Z^+\) - positive integers
 - Where's 0?
 - Bijection: \(f(z) = z - 1\).
 - (Where’s 0? 1 Where’s 1? 2 ...)

- \(E\) even numbers.
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)

- E even numbers.
 Where are the odds?
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)

- E even numbers.
 Where are the odds? Half as big?
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)

- E even numbers.
 Where are the odds? Half as big?
 Bijection: $f(e) = e/2$.
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)

- E even numbers.
 Where are the odds? Half as big?
 Bijection: $f(e) = e/2$.

- \mathbb{Z} - all integers.
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)

- E even numbers.
 Where are the odds? Half as big?
 Bijection: $f(e) = e/2$.

- \mathbb{Z} - all integers.
 Twice as big?
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)

- E even numbers.
 Where are the odds? Half as big?
 Bijection: $f(e) = e/2$.

- \mathbb{Z} - all integers.
 Twice as big?
 Bijection: $f(z) = 2|z| - \text{sign}(z)$.
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)

- E even numbers.
 Where are the odds? Half as big?
 Bijection: $f(e) = e/2$.

- \mathbb{Z} - all integers.
 Twice as big?
 Bijection: $f(z) = 2|z| - \text{sign}(z)$.
 Enumerate: 0,
Examples

Countably infinite (same cardinality as naturals)

- $\mathbb{Z}^+ - $ positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)

- E even numbers.
 Where are the odds? Half as big?
 Bijection: $f(e) = e/2$.

- $\mathbb{Z} - $ all integers.
 Twice as big?
 Bijection: $f(z) = 2|z| - \text{sign}(z)$.
 Enumerate: 0, −1,
Examples

Countably infinite (same cardinality as naturals)

- \(\mathbb{Z}^+ \) - positive integers
 Where’s 0?
 Bijection: \(f(z) = z - 1 \).
 (Where’s 0? 1 Where’s 1? 2 ...)

- \(E \) even numbers.
 Where are the odds? Half as big?
 Bijection: \(f(e) = e/2 \).

- \(\mathbb{Z} \) - all integers.
 Twice as big?
 Bijection: \(f(z) = 2|z| - \text{sign}(z) \).
 Enumerate: 0, -1, 1,
Examples

Countably infinite (same cardinality as naturals)

- \(Z^+ \) - positive integers
 Where’s 0?
 Bijection: \(f(z) = z - 1 \).
 (Where’s 0? 1 Where’s 1? 2 ...)

- \(E \) even numbers.
 Where are the odds? Half as big?
 Bijection: \(f(e) = e/2 \).

- \(Z \) - all integers.
 Twice as big?
 Bijection: \(f(z) = 2|z| - \text{sign}(z) \).
 Enumerate: 0, -1, 1, -2,
Examples

Countably infinite (same cardinality as naturals)

- \mathbb{Z}^+ - positive integers
 Where’s 0?
 Bijection: $f(z) = z - 1$.
 (Where’s 0? 1 Where’s 1? 2 ...)

- E even numbers.
 Where are the odds? Half as big?
 Bijection: $f(e) = e/2$.

- \mathbb{Z} - all integers.
 Twice as big?
 Bijection: $f(z) = 2|z| - \text{sign}(z)$.
 Enumerate: 0, $-1, 1, -2, 2...$
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
Examples: Countable by enumeration

- \(N \times N \) - Pairs of integers.
 Square of countably infinite?
 Enumerate: \((0, 0), (0, 1), (0, 2), \ldots \)
Examples: Countable by enumeration

- $\mathbb{N} \times \mathbb{N}$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0, 0), (0, 1), (0, 2), \ldots$???
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0, 0), (0, 1), (0, 2), \ldots$???
 Never get to $(1, 1)$!
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0,0),(0,1),(0,2),\ldots$???
 Never get to $(1,1)!$
 Enumerate: $(0,0)$,
Examples: Countable by enumeration

- $\mathbb{N} \times \mathbb{N}$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0, 0), (0, 1), (0, 2), \ldots$???
 Never get to $(1, 1)$!
 Enumerate: $(0, 0), (1, 0), \ldots$
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0,0), (0,1), (0,2), \ldots$???
 Never get to $(1,1)$!
 Enumerate: $(0,0), (1,0), (0,1), \ldots$
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0, 0), (0, 1), (0, 2), \ldots$???
 Never get to $(1, 1)$!
 Enumerate: $(0, 0), (1, 0), (0, 1), (2, 0), \ldots$
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0, 0), (0, 1), (0, 2), \ldots$???
 Never get to $(1, 1)$!
 Enumerate: $(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), \ldots$
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0, 0), (0, 1), (0, 2), \ldots$???
 Never get to $(1, 1)$!
 Enumerate: $(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)\ldots$
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0, 0), (0, 1), (0, 2), \ldots$???
 Never get to $(1, 1)$!
 Enumerate: $(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)\ldots$
 (a, b) at position $(a + b - 1)(a + b)/2 + b$ in this order.
Examples: Countable by enumeration

- \(N \times N \) - Pairs of integers.
 Square of countably infinite?
 Enumerate: \((0, 0), (0, 1), (0, 2), \ldots \) ???
 Never get to \((1, 1)\)!
 Enumerate: \((0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), \ldots\)
 \((a, b)\) at position \((a + b − 1)(a + b)/2 + b\) in this order.

- Positive Rational numbers.
Examples: Countable by enumeration

- $\mathbb{N} \times \mathbb{N}$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0,0), (0,1), (0,2), \ldots$???
 Never get to $(1,1)$!
 Enumerate: $(0,0), (1,0), (0,1), (2,0), (1,1), (0,2)\ldots$
 (a, b) at position $(a+b-1)(a+b)/2 + b$ in this order.

- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
Examples: Countable by enumeration

- \(N \times N \) - Pairs of integers.
 Square of countably infinite?
 Enumerate: \((0, 0), (0, 1), (0, 2), \ldots \) ???
 Never get to \((1, 1)\)!
 Enumerate: \((0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), \ldots \)
 \((a, b)\) at position \((a + b - 1)(a + b)/2 + b\) in this order.

- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
 Countably infinite.

- All rational numbers.
Examples: Countable by enumeration

- \(N \times N \) - Pairs of integers.
 Square of countably infinite?
 Enumerate: \((0,0),(0,1),(0,2),\ldots ???
 Never get to \((1,1)\)!
 Enumerate: \((0,0),(1,0),(0,1),(2,0),(1,1),(0,2),\ldots
 \((a,b)\) at position \((a+b-1)(a+b)/2 + b\) in this order.

- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
 Countably infinite.

- All rational numbers.
 Enumerate: list 0, positive and negative.
Examples: Countable by enumeration

- \(\mathbb{N} \times \mathbb{N} \) - Pairs of integers.
 Square of countably infinite?
 Enumerate: \((0, 0), (0, 1), (0, 2), \ldots ???
 Never get to \((1, 1)\)!
 Enumerate: \((0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2) \ldots
 \((a, b)\) at position \((a + b - 1)(a + b)/2 + b\) in this order.

- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
 Countably infinite.

- All rational numbers.
 Enumerate: list 0, positive and negative. How?
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0,0),(0,1),(0,2),\ldots$???
 Never get to $(1,1)$!
 Enumerate: $(0,0),(1,0),(0,1),(2,0),(1,1),(0,2)\ldots$
 (a,b) at position $(a+b-1)(a+b)/2 + b$ in this order.

- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
 Countably infinite.

- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0,
Examples: Countable by enumeration

- \(N \times N\) - Pairs of integers.
 Square of countably infinite?
 Enumerate: \((0, 0), (0, 1), (0, 2), \ldots \) ???
 Never get to \((1, 1)\)!
 Enumerate: \((0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)\ldots\)
 \((a, b)\) at position \((a + b - 1)(a + b)/2 + b\) in this order.

- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
 Countably infinite.

- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0, first positive,
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0, 0), (0, 1), (0, 2), \ldots$???
 Never get to $(1, 1)$!
 Enumerate: $(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)\ldots$
 (a, b) at position $(a + b - 1)(a + b)/2 + b$ in this order.

- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
 Countably infinite.

- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0, first positive, first negative,
Examples: Countable by enumeration

- $\mathbb{N} \times \mathbb{N}$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0,0), (0,1), (0,2), \ldots$???
 Never get to $(1,1)$!
 Enumerate: $(0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots$
 (a,b) at position $(a+b-1)(a+b)/2 + b$ in this order.

- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
 Countably infinite.

- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0, first positive, first negative, second positive..
Examples: Countable by enumeration

- $N \times N$ - Pairs of integers.
 Square of countably infinite?
 Enumerate: $(0, 0), (0, 1), (0, 2), \ldots$???
 Never get to $(1, 1)$!
 Enumerate: $(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2)\ldots$
 (a, b) at position $(a + b - 1)(a + b)/2 + b$ in this order.

- Positive Rational numbers.
 Infinite Subset of pairs of natural numbers.
 Countably infinite.

- All rational numbers.
 Enumerate: list 0, positive and negative. How?
 Enumerate: 0, first positive, first negative, second positive..
 Will eventually get to any rational.
Diagonalization: power set of Integers.

The set of all subsets of N.

\[\text{Assume is countable.} \]
\[\text{There is a listing, } L, \text{ that contains all subsets of } N. \]
\[\text{Define a diagonal set, } D: \]
\[\text{If } i \text{th set in } L \text{ does not contain } i, i \in D. \]
\[\text{otherwise } i \notin D. \]
\[D \text{ is different from } i \text{th set in } L \text{ for every } i. \]
\[\Rightarrow D \text{ is not in the listing.} \]
\[D \text{ is a subset of } N. \]
\[L \text{ does not contain all subsets of } N. \]
\[\text{Contradiction.} \]

Theorem: The set of all subsets of N is not countable.

(The set of all subsets of S, is the powerset of N.)
Diagonalization: power set of Integers.

The set of all subsets of N.
Assume is countable.
Diagonalization: power set of Integers.

The set of all subsets of \(N \).
Assume is countable.

There is a listing, \(L \), that contains all subsets of \(N \).
Diagonalization: power set of Integers.

The set of all subsets of \(N \).
Assume is countable.
There is a listing, \(L \), that contains all subsets of \(N \).
Define a diagonal set, \(D \):

\[D = \{ i \in L : i \neq i \} \]

\(D \) is different from the \(i \)th set in \(L \) for every \(i \).
\(D \) is not in the listing.
\(D \) is a subset of \(N \).
\(L \) does not contain all subsets of \(N \).
Contradiction.

Theorem: The set of all subsets of \(N \) is not countable.

(The set of all subsets of \(S \), is the powerset of \(N \).)
Diagonalization: power set of Integers.

The set of all subsets of N.

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:

If ith set in L does not contain i, $i \in D$.

D is different from ith set in L for every i.

D is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable.

(The set of all subsets of S, is the powerset of N.)
Diagonalization: power set of Integers.

The set of all subsets of N.

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.
Diagonalization: power set of Integers.

The set of all subsets of \(N \).
Assume is countable.
There is a listing, \(L \), that contains all subsets of \(N \).
Define a diagonal set, \(D \):
If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).
otherwise \(i \notin D \).
Diagonalization: power set of Integers.

The set of all subsets of N.
Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.

(L is the powerset of N.)
Diagonalization: power set of Integers.

The set of all subsets of N.

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.
$\implies D$ is not in the listing.

Contradiction.

Theorem: The set of all subsets of N is not countable.
(The set of all subsets of S, is the powerset of N.)
Diagonalization: power set of Integers.

The set of all subsets of N.
Assume is countable.
There is a listing, L, that contains all subsets of N.
Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
 otherwise $i \notin D$.
D is different from ith set in L for every i.
 $\implies D$ is not in the listing.
D is a subset of N.
Diagonalization: power set of Integers.

The set of all subsets of \(N \).

Assume is countable.

There is a listing, \(L \), that contains all subsets of \(N \).

Define a diagonal set, \(D \):

If \(i \)th set in \(L \) does not contain \(i \), \(i \in D \).

otherwise \(i \notin D \).

\(D \) is different from \(i \)th set in \(L \) for every \(i \).

\(\implies D \) is not in the listing.

\(D \) is a subset of \(N \).

\(L \) does not contain all subsets of \(N \).
Diagonalization: power set of Integers.

The set of all subsets of N.

Assume is countable.

There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.
$\implies D$ is not in the listing.

D is a subset of N.

L does not contain all subsets of N.
Contradiction.
Diagonalization: power set of Integers.

The set of all subsets of N.
Assume is countable.
There is a listing, L, that contains all subsets of N.

Define a diagonal set, D:
If ith set in L does not contain i, $i \in D$.
otherwise $i \notin D$.

D is different from ith set in L for every i.
$\implies D$ is not in the listing.

D is a subset of N.
L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable.
Diagonalization: power set of Integers.

The set of all subsets of N. Assume is countable.

There is a listing, L, that contains all subsets of N. Define a diagonal set, D:

If ith set in L does not contain i, $i \in D$.

otherwise $i \notin D$.

D is different from ith set in L for every i.

$\implies D$ is not in the listing.

D is a subset of N.

L does not contain all subsets of N.

Contradiction.

Theorem: The set of all subsets of N is not countable. (The set of all subsets of S, is the powerset of N.)
Halting problem is undecidable.
Uncomputability.

Halting problem is undecidable.
Diagonalization.
Uncomputability.

Halting problem is undecidable.
Diagonalization.
Halt does not exist.
Halt does not exist.

\[
\text{HALT}(P, I)
\]
Halt does not exist.

$HALT(P, I)$

P - program
Halt does not exist.

$$HALT(P,I)$$
- P - program
- I - input.
Halt does not exist.

\[\text{HALT}(P, I) \]

\[P \] - program

\[I \] - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.
Halt does not exist.

\[HALT(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes!
Halt does not exist.

\[\text{HALT}(P, I) \]
\[P \text{ - program} \]
\[I \text{ - input.} \]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No!
Halt does not exist.

\[\text{HALT}(P, I) \]
- \(P\) - program
- \(I\) - input.

Determines if \(P(I)\) (\(P\) run on \(I\)) halts or loops forever.

Theorem: There is no program \(\text{HALT}\).

Proof: Yes! No! Yes!
Halt does not exist.

$HALT(P, I)$

- P - program
- I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No!
Halt does not exist.

\[
HALT(P, I)
\]

\[
P \text{ - program}
\]

\[
I \text{ - input.}
\]

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No!
Halt does not exist.

$HALT(P, I)$
- P - program
- I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Theorem: There is no program $HALT$.

Proof: Yes! No! Yes! No! No! Yes!
Halt does not exist.

\[HALT(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No!
Halt does not exist.

\(\text{HALT}(P, I) \)

- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes!
Halt does not exist.

$HALT(P, I)$

P - program

I - input.

Determines if $P(I)$ (P run on I) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
Halt does not exist.

\[\text{HALT}(P, I) \]
- \(P \) - program
- \(I \) - input.

Determines if \(P(I) \) (\(P \) run on \(I \)) halts or loops forever.

Theorem: There is no program HALT.

Proof: Yes! No! Yes! No! No! Yes! No! Yes! ..
Proof:

Assume there is a program $\text{HALT}(\cdot, \cdot)$. Turing(P)
1. If $\text{HALT}(P, P) = \text{halts}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.

There is text that "is" the program HALT.

There is text that is the program Turing.

Can run Turing on Turing!

Does $\text{Turing}(\text{Turing})$ halt?

$\text{Turing}(\text{Turing})$ halts
\implies $\text{HALTS}(\text{Turing}, \text{Turing}) = \text{halts} = \implies$ $\text{Turing}(\text{Turing})$ loops forever.

$\text{Turing}(\text{Turing})$ loops forever
\implies $\text{HALTS}(\text{Turing}, \text{Turing}) \neq \text{halts} = \implies$ $\text{Turing}(\text{Turing})$ halts.

Either way is contradiction. Program HALT does not exist!
Halt and Turing.

Proof: Assume there is a program \(HALT(\cdot,\cdot) \).
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
Halt and Turing.

Proof: Assume there is a program $HALT(·,·)$.

Turing(P)

1. If $HALT(P,P) =$"halts", then go into an infinite loop.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) =$"halts", then go into an infinite loop.
2. Otherwise, halt immediately.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) =$"halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) = "halts"$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

Turing(P)
1. If $HALT(P, P) =$ ”halts”, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program Turing.
Halt and Turing.

Proof: Assume there is a program $HALT(P,P)$.

Turing(P)
1. If $HALT(P,P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program $Turing$.
Can run Turing on Turing!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P)$ = "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does $Turing(Turing)$ halt?
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) =$"halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does $Turing(Turing)$ halt?

$Turing(Turing)$ halts
\implies then $HALTS(Turing, Turing) = halts$
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

$Turing(P)$
1. If $HALT(P,P) =$"halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program $Turing$.
Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?

$Turing(Turing)$ halts
\implies then $HALTS(Turing, Turing) = halts$
\implies $Turing(Turing)$ loops forever.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

$Turing(P)$

1. If $HALT(P, P) =$ "halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program $Turing$.
Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?

$Turing(Turing)$ halts

\implies then $HALTS(Turing, Turing) =$ halts

\implies $Turing(Turing)$ loops forever.
Proof: Assume there is a program $HALT(\cdot, \cdot)$.

1. If $HALT(P, P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.

There is text that “is” the program $HALT$.

There is text that is the program $Turing$.

Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?

$Turing(Turing)$ halts

\implies then $HALTS(Turing, Turing) = \text{halts}$

\implies $Turing(Turing)$ loops forever.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) =$"halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
\implies then $HALTS(Turing, Turing) = halts$
\implies Turing(Turing) loops forever.

Turing(Turing) loops forever.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) =$"halts" , then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
\implies then HALTS(Turing, Turing) = halts
\implies Turing(Turing) loops forever.

Turing(Turing) loops forever.
\implies then HALTS(Turing, Turing) \neq halts
Halt and Turing.

Proof: Assume there is a program \(\text{HALT}(\cdot, \cdot) \).

\[
\text{Turing}(P)
\]

1. If \(\text{HALT}(P, P) = \text{"halts"} \), then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program \(\text{HALT} \).

There is text that “is” the program \(\text{HALT} \).

There is text that is the program \(\text{Turing} \).

Can run \(\text{Turing} \) on \(\text{Turing} \)!

Does \(\text{Turing}(\text{Turing}) \) halt?

\[
\text{Turing}(\text{Turing}) \text{ halts}
\]

\[
\implies \text{then } \text{HALTS}(\text{Turing}, \text{Turing}) = \text{halts}
\]

\[
\implies \text{Turing}(\text{Turing}) \text{ loops forever.}
\]

\[
\text{Turing}(\text{Turing}) \text{ loops forever.}
\]

\[
\implies \text{then } \text{HALTS}(\text{Turing}, \text{Turing}) \neq \text{halts}
\]

\[
\implies \text{Turing}(\text{Turing}) \text{ halts.}
\]

Either way is contradiction. Program \(\text{HALT} \) does not exist!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) =$"halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program Turing.
Can run Turing on Turing!

Does $Turing(Turing)$ halt?

$Turing(Turing)$ halts
\implies then $HALTS(Turing, Turing) =$ halts
\implies $Turing(Turing)$ loops forever.

$Turing(Turing)$ loops forever.
\implies then $HALTS(Turing, Turing) \neq$ halts
\implies $Turing(Turing)$ halts.
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot, \cdot)$.

$Turing(P)$
1. If $HALT(P, P) = \text{"halts"}$, then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program $HALT$.
There is text that “is” the program $HALT$.
There is text that is the program $Turing$.
Can run $Turing$ on $Turing$!

Does $Turing(Turing)$ halt?

$Turing(Turing)$ halts

\implies then $HALTS(Turing, Turing) = \text{halts}$
\implies $Turing(Turing)$ loops forever.

$Turing(Turing)$ loops forever.

\implies then $HALTS(Turing, Turing) \neq \text{halts}$
\implies $Turing(Turing)$ halts.

Either way is contradiction. Program $HALT$ does not exist!
Halt and Turing.

Proof: Assume there is a program $HALT(\cdot,\cdot)$.

Turing(P)
1. If $HALT(P,P) =$"halts", then go into an infinite loop.
2. Otherwise, halt immediately.

Assumption: there is a program HALT.
There is text that “is” the program HALT.
There is text that is the program Turing.
Can run Turing on Turing!

Does Turing(Turing) halt?

Turing(Turing) halts
\implies then HALTS(Turing, Turing) = halts
\implies Turing(Turing) loops forever.

Turing(Turing) loops forever.
\implies then HALTS(Turing, Turing) \neq halts
\implies Turing(Turing) halts.

Either way is contradiction. Program HALT does not exist!
Another view: diagonalization.

Any program is a fixed length string.
Another view: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable.
Another view: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.
Another view: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Another view: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal.
Another view: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
</tbody>
</table>

Halt - diagonal.
Turing - is **not** Halt.
Another view: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal.
Turing - is not Halt.
and is different from every P_i on the diagonal.
Another view: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>(P_2)</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>(P_3)</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal.
Turing - is **not** Halt.
and is different from every \(P_i \) on the diagonal.
Turing is not on list.
Another view: diagonalization.

Any program is a fixed length string.
Fixed length strings are enumerable.
Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(\ldots)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(P_2)</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(P_3)</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>(\ldots)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Halt - diagonal.

Turing - is not Halt.

and is different from every \(P_i \) on the diagonal.

Turing is not on list. Turing is not a program.
Another view: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>...</td>
</tr>
</tbody>
</table>

Halt - diagonal. Turing - is not Halt.

and is different from every P_i on the diagonal. Turing is not on list. Turing is not a program. Turing can be constructed from Halt.
Another view: diagonalization.

Any program is a fixed length string. Fixed length strings are enumerable. Program halts or not any input, which is a string.

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>H</td>
<td>H</td>
<td>L</td>
<td>...</td>
</tr>
<tr>
<td>P_2</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>P_3</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Halt - diagonal.
Turing - is not Halt.
and is different from every P_i on the diagonal.
Turing is not on list. Turing is not a program.
Turing can be constructed from Halt.
Halt does not exist!
Undecidable problems.

Does a program print “Hello World”?

Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: Ask program if $x^n + y^n = 1$? has integer solutions. Problem is undecidable.

Be careful!

Is there a solution to $x^n + y^n = 1$? (Diophantine equation.) The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations \Rightarrow no program can take any set of integer equations and always output correct answer.
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane?
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?

Example: Ask program if $x^n + y^n = 1$ has integer solutions. Problem is undecidable.

Be careful! Is there a solution to $x^n + y^n = 1$? (Diophantine equation.) The answer is yes or no. This "problem" is not undecidable.

Undecidability for Diophantine set of equations $= \Rightarrow$ no program can take any set of integer equations and always output correct answer.
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: Ask program if “$x^n + y^n = 1$?” has integer solutions.
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: Ask program if “$x^n + y^n = 1$?” has integer solutions. Problem is undecidable.
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
 Example: Ask program if “ $x^n + y^n = 1$?” has integer solutions. Problem is undecidable.

Be careful!
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: Ask program if “ $x^n + y^n = 1$?” has integer solutions. Problem is undecidable.

Be careful!
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: Ask program if “$x^n + y^n = 1$?” has integer solutions. Problem is undecidable.

Be careful!

Is there a solution to $x^n + y^n = 1$? (Diophantine equation.)
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: Print “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: Ask program if “$x^n + y^n = 1$?” has integer solutions. Problem is undecidable.

Be careful!

Is there a solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.
Does a program print “Hello World”?
Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane?
Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution?
 Example: Ask program if “ $x^n + y^n = 1$?” has integer solutions.
Problem is undecidable.

Be careful!

Is there a solution to $x^n + y^n = 1$?
(Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: Ask program if “ $x^n + y^n = 1$?” has integer solutions. Problem is undecidable.

Be careful!

Is there a solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations \Rightarrow no program can take any set of integer equations.
Undecidable problems.

Does a program print “Hello World”? Find exit points and add statement: **Print** “Hello World.”

Can a set of notched tiles tile the infinite plane? Proof: simulate a computer. Halts if finite.

Does a set of integer equations have a solution? Example: Ask program if “ $x^n + y^n = 1$?” has integer solutions. Problem is undecidable.

Be careful!

Is there a solution to $x^n + y^n = 1$? (Diophantine equation.)

The answer is yes or no. This “problem” is not undecidable.

Undecidability for Diophantine set of equations

\implies no program can take any set of integer equations and always output correct answer.
Midterm format

Time: approximately 120 minutes.
Time: approximately 120 minutes.
Many short answers.
Midterm format

Time: approximately 120 minutes.
Many short answers.
Get at ideas that we study.
Midterm format

Time: approximately 120 minutes.
Many short answers.
 Get at ideas that we study.
 Know material well:
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast,
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.

Know material medium: slower, less correct.

Know material not so well: Uh oh.

Some longer questions.

Priming: sequence of questions...

but don't overdo this as test strategy!!!

Ideas, conceptual, more calculation.
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium:
Midterm format

Time: approximately 120 minutes.

Many short answers.
Get at ideas that we study.

Know material well: fast, correct.
Know material medium: slower,
Midterm format

Time: approximately 120 minutes.

Many short answers.
Get at ideas that we study.

Know material well: fast, correct.
Know material medium: slower, less correct.
Midterm format

Time: approximately 120 minutes.

Many short answers.
Get at ideas that we study.

Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well:
Midterm format

Time: approximately 120 minutes.

Many short answers.
Get at ideas that we study.

Know material well: fast, correct.
Know material medium: slower, less correct.
Know material not so well: Uh oh.
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.

Priming: sequence of questions...
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.

Priming: sequence of questions...
 but don't overdo this as test strategy!!!
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.

Priming: sequence of questions...
 but don’t overdo this as test strategy!!!

Ideas,
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.

Priming: sequence of questions...
 but don’t overdo this as test strategy!!!

Ideas, conceptual,
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.

Priming: sequence of questions...
 but don’t overdo this as test strategy!!!

Ideas, conceptual,
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.

Priming: sequence of questions...
 but don’t overdo this as test strategy!!

Ideas, conceptual,
 more calculation.
Midterm format

Time: approximately 120 minutes.

Many short answers.
 Get at ideas that we study.
 Know material well: fast, correct.
 Know material medium: slower, less correct.
 Know material not so well: Uh oh.

Some longer questions.

Priming: sequence of questions...
 but don’t overdo this as test strategy!!!
Wrapup.
Wrapup.

Watch Piazza for Logistics!

satishr@cs.berkeley.edu, admin@cs70.org

Good Studying!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Wrapup.

Watch Piazza for Logistics!

Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email today from me.

Other issues....
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
 satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
 Other arrangements.
 Should have recieved an email today from me.

Other issues....
 satishr@cs.berkeley.edu, admin@cs70.org
 Private message on piazza.

Good Studying!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
 Other arrangements.
 Should have received an email today from me.

Other issues....
 satishr@cs.berkeley.edu, admin@cs70.org
 Private message on piazza.

Good Studying!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
 satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have recieved an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!
Wrapup.

Watch Piazza for Logistics!
Watch Piazza for Advice!

If you sent me email about Midterm conflicts
Other arrangements.
Should have received an email today from me.

Other issues....
satishr@cs.berkeley.edu, admin@cs70.org
Private message on piazza.

Good Studying!!!!!!!!!!!!!!!!