CS70: Lecture 22.

Part I: Confidence Intervals Again

Part II: Linear Regression
1. Confidence?

2. Example

3. Review of Chebyshev

4. Confidence Interval with Chebyshev

5. More examples
Confidence?

You flip a coin once and get H. Do you think that \(\Pr[H] = 1 \)?

You flip a coin 10 times and get 5 Hs. Are you sure that \(\Pr[H] = 0.5 \)?

You flip a coin 106 times and get 35% of Hs. How much are you willing to bet that \(\Pr[H] \) is exactly 0.35? How much are you willing to bet that \(\Pr[H] \in [0.3, 0.4] \)?

Did different exam rooms perform differently? (6 afraid of 7?)

More generally, you estimate an unknown quantity \(\theta \). Your estimate is \(\hat{\theta} \). How much confidence do you have in your estimate?
Confidence?

- You flip a coin once and get H.
Confidence?

- You flip a coin once and get H. Do you think that $Pr[H] = 1$?
Confidence?

- You flip a coin once and get H.
 Do you think that $Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs.
Confidence?

- You flip a coin once and get H. Do you think that $Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs. Are you sure that $Pr[H] = 0.5$?
Confidence?

- You flip a coin once and get H. Do you think that $Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs. Are you sure that $Pr[H] = 0.5$?
- You flip a coin 10^6 times and get 35% of Hs.
Confidence?

- You flip a coin once and get H.
 Do you think that $Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs.
 Are you sure that $Pr[H] = 0.5$?
- You flip a coin 10^6 times and get 35% of Hs.
 How much are you willing to bet that $Pr[H]$ is exactly 0.35?
Confidence?

- You flip a coin once and get H.
 Do you think that $Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs.
 Are you sure that $Pr[H] = 0.5$?
- You flip a coin 10^6 times and get 35% of Hs.
 How much are you willing to bet that $Pr[H]$ is exactly 0.35?
 How much are you willing to bet that $Pr[H] \in [0.3, 0.4]$?
Confidence?

- You flip a coin once and get H.
 Do you think that $Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs.
 Are you sure that $Pr[H] = 0.5$?
- You flip a coin 10^6 times and get 35% of Hs.
 How much are you willing to bet that $Pr[H] = 0.35$?
 How much are you willing to bet that $Pr[H] \in [0.3, 0.4]$?

Did different exam rooms perform differently?
Confidence?

- You flip a coin once and get H.
 Do you think that $\Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs.
 Are you sure that $\Pr[H] = 0.5$?
- You flip a coin 10^6 times and get 35% of Hs.
 How much are you willing to bet that $\Pr[H]$ is exactly 0.35?
 How much are you willing to bet that $\Pr[H] \in [0.3, 0.4]$?
 Did different exam rooms perform differently? (6 afraid of 7?)
Confidence?

- You flip a coin once and get H. Do you think that $Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs. Are you sure that $Pr[H] = 0.5$?
- You flip a coin 10^6 times and get 35% of Hs. How much are you willing to bet that $Pr[H] = 0.35$? How much are you willing to bet that $Pr[H] \in [0.3, 0.4]$? Did different exam rooms perform differently? (6 afraid of 7?)

More generally, you estimate an unknown quantity θ.

Confidence?

- You flip a coin once and get H.
 Do you think that \(\Pr[H] = 1\)?
- You flip a coin 10 times and get 5 Hs.
 Are you sure that \(\Pr[H] = 0.5\)?
- You flip a coin \(10^6\) times and get 35% of Hs.
 How much are you willing to bet that \(\Pr[H] \) is exactly 0.35?
 How much are you willing to bet that \(\Pr[H] \in [0.3, 0.4]\)?
 Did different exam rooms perform differently? (6 afraid of 7?)

More generally, you estimate an unknown quantity \(\theta \).
Your estimate is \(\hat{\theta} \).
Confidence?

- You flip a coin once and get H. Do you think that $Pr[H] = 1$?
- You flip a coin 10 times and get 5 Hs. Are you sure that $Pr[H] = 0.5$?
- You flip a coin 10^6 times and get 35% of Hs. How much are you willing to bet that $Pr[H]$ is exactly 0.35? How much are you willing to bet that $Pr[H] \in [0.3, 0.4]$?
- Did different exam rooms perform differently? (6 afraid of 7?)

More generally, you estimate an unknown quantity θ. Your estimate is $\hat{\theta}$. How much confidence do you have in your estimate?
Confidence?

Confidence is essential in many applications:
▶ How effective is a medication?
▶ Are we sure of the mileage of a car?
▶ Can we guarantee the lifespan of a device?
▶ We simulated a system. Do we trust the simulation results?
▶ Is an algorithm guaranteed to be fast?
▶ Do we know that a program has no bug?

As scientists and engineers, be convinced of this fact:
An estimate without confidence level is useless!
Confidence?

Confidence is essential in many applications:

- How effective is a medication?
- Are we sure of the mileage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?
- Do we know that a program has no bug?

As scientists and engineers, be convinced of this fact: An estimate without confidence level is useless!
Confidence?

Confidence is essential in many applications:

- How effective is a medication?
Confidence?

Confidence is essential in many applications:

- How effective is a medication?
- Are we sure of the mileage of a car?
Confidence?

Confidence is essential in many applications:

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?
Confidence?

Confidence is essential is many applications:

- How effective is a medication?
- Are we sure of the milage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
Confidence?

Confidence is essential in many applications:

- How effective is a medication?
- Are we sure of the mileage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?

As scientists and engineers, be convinced of this fact:
An estimate without confidence level is useless!
Confidence?

Confidence is essential in many applications:

- How effective is a medication?
- Are we sure of the mileage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?
- Do we know that a program has no bug?
Confidence?

Confidence is essential in many applications:

- How effective is a medication?
- Are we sure of the mileage of a car?
- Can we guarantee the lifespan of a device?
- We simulated a system. Do we trust the simulation results?
- Is an algorithm guaranteed to be fast?
- Do we know that a program has no bug?

As scientists and engineers, be convinced of this fact:
Confidence?

Confidence is essential in many applications:

▶ How effective is a medication?
▶ Are we sure of the mileage of a car?
▶ Can we guarantee the lifespan of a device?
▶ We simulated a system. Do we trust the simulation results?
▶ Is an algorithm guaranteed to be fast?
▶ Do we know that a program has no bug?

As scientists and engineers, be convinced of this fact:

An estimate without confidence level is useless!
The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95\% confidence interval for an unknown quantity \(\theta\) if \(\Pr[\theta \in [a, b]] \geq 95\%\).

The interval \([a, b]\) is calculated on the basis of observations. Here is a typical framework.

Assume that \(X_1, X_2, \ldots, X_n\) are i.i.d. and have a distribution that depends on some parameter \(\theta\).

For instance, \(X_n = B(\theta)\).

Thus, more precisely, given \(\theta\), the random variables \(X_n\) are i.i.d. with a known distribution (that depends on \(\theta\)).

\[\text{We observe} X_1, \ldots, X_n\]
\[\text{We calculate} a = a(X_1, \ldots, X_n)\text{ and } b = b(X_1, \ldots, X_n)\]

\[\text{If we can guarantee that} \Pr[\theta \in [a, b]] \geq 95\%, \text{then} [a, b] \text{ is a 95\% CI for} \theta.\]
Confidence Interval

The following definition captures precisely the notion of confidence.
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95%-confidence interval for an unknown quantity \(\theta\) if

\[
\Pr[\theta \in [a, b]] \geq 95\%.
\]
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95\%-confidence interval for an unknown quantity \(\theta\) if

\[
Pr[\theta \in [a, b]] \geq 95%.
\]
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95%-confidence interval for an unknown quantity \(\theta\) if

\[
Pr[\theta \in [a, b]] \geq 95%.
\]

The interval \([a, b]\) is calculated on the basis of observations.
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval $[a, b]$ is a 95%-confidence interval for an unknown quantity θ if

$$Pr[\theta \in [a, b]] \geq 95\%.$$

The interval $[a, b]$ is calculated on the basis of observations.

Here is a typical framework.
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95\%-confidence interval for an unknown quantity \(\theta\) if

\[
Pr[\theta \in [a, b]] \geq 95%.
\]

The interval \([a, b]\) is calculated on the basis of observations.

Here is a typical framework. Assume that \(X_1, X_2, \ldots, X_n\) are i.i.d. and have a distribution that depends on some parameter \(\theta\).
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval $[a, b]$ is a 95%-confidence interval for an unknown quantity θ if

$$Pr[\theta \in [a, b]] \geq 95\%.$$

The interval $[a, b]$ is calculated on the basis of observations.

Here is a typical framework. Assume that X_1, X_2, \ldots, X_n are i.i.d. and have a distribution that depends on some parameter θ.

For instance, $X_n = B(\theta)$.
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95%-confidence interval for an unknown quantity \(\theta\) if

\[
Pr[\theta \in [a, b]] \geq 95%.
\]

The interval \([a, b]\) is calculated on the basis of observations.

Here is a typical framework. Assume that \(X_1, X_2, \ldots, X_n\) are i.i.d. and have a distribution that depends on some parameter \(\theta\).

For instance, \(X_n = B(\theta)\).

Thus, more precisely,
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95\%-confidence interval for an unknown quantity \(\theta\) if

\[
Pr[\theta \in [a, b]] \geq 95\%.
\]

The interval \([a, b]\) is calculated on the basis of observations.

Here is a typical framework. Assume that \(X_1, X_2, \ldots, X_n\) are i.i.d. and have a distribution that depends on some parameter \(\theta\).

For instance, \(X_n = B(\theta)\).

Thus, more precisely, given \(\theta\), the random variables \(X_n\) are i.i.d. with a known distribution (that depends on \(\theta\)).
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval $[a, b]$ is a 95%-confidence interval for an unknown quantity θ if

$$Pr[\theta \in [a, b]] \geq 95\%.$$

The interval $[a, b]$ is calculated on the basis of observations.

Here is a typical framework. Assume that X_1, X_2, \ldots, X_n are i.i.d. and have a distribution that depends on some parameter θ.

For instance, $X_n = B(\theta)$.

Thus, more precisely, given θ, the random variables X_n are i.i.d. with a known distribution (that depends on θ).

- We observe X_1, \ldots, X_n
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95\%-confidence interval for an unknown quantity \(\theta\) if

\[
Pr[\theta \in [a, b]] \geq 95\%.
\]

The interval \([a, b]\) is calculated on the basis of observations.

Here is a typical framework. Assume that \(X_1, X_2, \ldots, X_n\) are i.i.d. and have a distribution that depends on some parameter \(\theta\).

For instance, \(X_n = B(\theta)\).

Thus, more precisely, given \(\theta\), the random variables \(X_n\) are i.i.d. with a known distribution (that depends on \(\theta\)).

- We observe \(X_1, \ldots, X_n\)
- We calculate \(a = a(X_1, \ldots, X_n)\) and \(b = b(X_1, \ldots, X_n)\)
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95\%-confidence interval for an unknown quantity \(\theta\) if

\[
Pr[\theta \in [a, b]] \geq 95%.
\]

The interval \([a, b]\) is calculated on the basis of observations.

Here is a typical framework. Assume that \(X_1, X_2, \ldots, X_n\) are i.i.d. and have a distribution that depends on some parameter \(\theta\).

For instance, \(X_n = B(\theta)\).

Thus, more precisely, given \(\theta\), the random variables \(X_n\) are i.i.d. with a known distribution (that depends on \(\theta\)).

- We observe \(X_1, \ldots, X_n\)
- We calculate \(a = a(X_1, \ldots, X_n)\) and \(b = b(X_1, \ldots, X_n)\)
- If we can guarantee that \(Pr[\theta \in [a, b]] \geq 95%\),
Confidence Interval

The following definition captures precisely the notion of confidence.

Definition: Confidence Interval

An interval \([a, b]\) is a 95\%-confidence interval for an unknown quantity \(\theta\) if

\[
Pr[\theta \in [a, b]] \geq 95%.
\]

The interval \([a, b]\) is calculated on the basis of observations.

Here is a typical framework. Assume that \(X_1, X_2, \ldots, X_n\) are i.i.d. and have a distribution that depends on some parameter \(\theta\).

For instance, \(X_n = B(\theta)\).

Thus, more precisely, given \(\theta\), the random variables \(X_n\) are i.i.d. with a known distribution (that depends on \(\theta\)).

- We observe \(X_1, \ldots, X_n\)
- We calculate \(a = a(X_1, \ldots, X_n)\) and \(b = b(X_1, \ldots, X_n)\)
- If we can guarantee that \(Pr[\theta \in [a, b]] \geq 95\%\), then \([a, b]\) is a 95\%-CI for \(\theta\).
Confidence Interval: Applications

We poll 1000 people.

Among those, 48% declare they will vote for Trump.

We do some calculations ...

We conclude that $[0.43, 0.53]$ is a 95% CI for the fraction of all the voters who will vote for Trump.

We observe 1,000 heart valve replacements that were performed by Dr. Bill.

Among those, 35 patients died during surgery. (Sad example!)

We do some calculations ...

We conclude that $[1\%, 5\%]$ is a 95% CI for the probability of dying during that surgery by Dr. Bill.

We do a similar calculation for Dr. Fred.

We find that $[8\%, 12\%]$ is a 95% CI for Dr. Fred's surgery.

What surgeon do you choose?
Confidence Interval: Applications

- We poll 1000 people.
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that \([0.43, 0.53]\) is a 95% CI for the probability of dying during that surgery by Dr. Bill.

- We do a similar calculation for Dr. Fred.
 - We find that \([8\%, 12\%]\) is a 95% CI for Dr. Fred's surgery.

- What surgeon do you choose?
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that \([0.43, 0.53]\) is a 95\%-CI for

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that \([1\%, 5\%]\) is a 95\%-CI for the probability of dying during that surgery by Dr. Bill.

- We do a similar calculation for Dr. Fred.
 - We find that \([8\%, 12\%]\) is a 95\%-CI for Dr. Fred's surgery.

- What surgeon do you choose?
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that \([0.43, 0.53]\) is a 95\%-CI for the fraction of all the voters who will vote for Trump.

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that \([1\%, 5\%]\) is a 95\%-CI for the probability of dying during that surgery by Dr. Bill.

- We do a similar calculation for Dr. Fred.
 - We find that \([8\%, 12\%]\) is a 95\%-CI for Dr. Fred's surgery.

- What surgeon do you choose?
Confidence Interval: Applications

▶ We poll 1000 people.
 ▶ Among those, 48% declare they will vote for Trump.
 ▶ We do some calculations
 ▶ We conclude that $[0.43, 0.53]$ is a 95%-CI for the fraction of all the voters who will vote for Trump.

▶ We observe 1,000 heart valve replacements that were performed by Dr. Bill.
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations....
 - We conclude that $[0.43, 0.53]$ is a 95%-CI for the fraction of all the voters who will vote for Trump.

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery.
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that $[0.43, 0.53]$ is a 95\%-CI for the fraction of all the voters who will vote for Trump.

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that $[0.43, 0.53]$ is a 95%-CI for the fraction of all the voters who will vote for Trump.

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that $[0.43, 0.53]$ is a 95%-CI for the fraction of all the voters who will vote for Trump.

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that $[1\%, 5\%]$ is a 95%-CI for the probability of dying during that surgery by Dr. Bill.
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that [0.43, 0.53] is a 95%-CI for the fraction of all the voters who will vote for Trump.

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that [1%, 5%] is a 95%-CI for the probability of dying during that surgery by Dr. Bill.
 - We do a similar calculation for Dr. Fred.
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that $[0.43, 0.53]$ is a 95%-CI for the fraction of all the voters who will vote for Trump.

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that $[1\%, 5\%]$ is a 95%-CI for the probability of dying during that surgery by Dr. Bill.
 - We do a similar calculation for Dr. Fred.
 - We find that $[8\%, 12\%]$ is a 95%-CI for Dr. Fred’s surgery.
Confidence Interval: Applications

- We poll 1000 people.
 - Among those, 48% declare they will vote for Trump.
 - We do some calculations
 - We conclude that \([0.43, 0.53]\) is a 95\%-CI for the fraction of all the voters who will vote for Trump.

- We observe 1,000 heart valve replacements that were performed by Dr. Bill.
 - Among those, 35 patients died during surgery. (Sad example!)
 - We do some calculations ...
 - We conclude that \([1\%, 5\%]\) is a 95\%-CI for the probability of dying during that surgery by Dr. Bill.
 - We do a similar calculation for Dr. Fred.
 - We find that \([8\%, 12\%]\) is a 95\%-CI for Dr. Fred’s surgery.
 - What surgeon do you choose?
Coin Flips: Intuition

Say that you flip a coin \(n = 100 \) times and observe 20 Hs. If \(p := \Pr[H] = 0.5 \), this event is very unlikely. Intuitively, if is unlikely that the fraction of Hs, say \(A_n \), differs a lot from \(p := \Pr[H] \). Thus, it is unlikely that \(p \) differs a lot from \(A_n \). Hence, one should be able to build a confidence interval \([A_n - \varepsilon, A_n + \varepsilon]\) for \(p \).

The key idea is that \(|A_n - p| \leq \varepsilon \iff p \in [A_n - \varepsilon, A_n + \varepsilon]\). Thus, \(\Pr[|A_n - p| > \varepsilon] \leq 5\% \iff \Pr[p \in [A_n - \varepsilon, A_n + \varepsilon]] \geq 95\% \).

It remains to find \(\varepsilon \) such that \(\Pr[|A_n - p| > \varepsilon] \leq 5\% \).

One approach: Chebyshev.
Coin Flips: Intuition

Say that you flip a coin \(n = 100 \) times and observe 20 Hs. If \(p := \Pr[H] = 0.5 \), this event is very unlikely. Intuitively, it is unlikely that the fraction of Hs, say \(\frac{A_n}{n} \), differs a lot from \(p := \Pr[H] \). Thus, it is unlikely that \(p \) differs a lot from \(\frac{A_n}{n} \). Hence, one should be able to build a confidence interval \([\frac{A_n}{n} - \varepsilon, \frac{A_n}{n} + \varepsilon]\) for \(p \).

The key idea is that \(|\frac{A_n}{n} - p| \leq \varepsilon \iff p \in \left[\frac{A_n}{n} - \varepsilon, \frac{A_n}{n} + \varepsilon\right] \).

Thus, \(\Pr[|\frac{A_n}{n} - p| > \varepsilon] \leq 5\% \iff \Pr[p \in \left[\frac{A_n}{n} - \varepsilon, \frac{A_n}{n} + \varepsilon\right]] \geq 95\% \).

It remains to find \(\varepsilon \) such that \(\Pr[|\frac{A_n}{n} - p| > \varepsilon] \leq 5\% \).

One approach: Chebyshev.
Coin Flips: Intuition

Say that you flip a coin \(n = 100 \) times and observe 20 Hs.

![Histogram of binomial distributions for different probabilities]
Coin Flips: Intuition

Say that you flip a coin $n = 100$ times and observe 20 Hs.

If $p := Pr[H] = 0.5$, this event is very unlikely.
Say that you flip a coin $n = 100$ times and observe 20 Hs.

If $p := Pr[H] = 0.5$, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n,
Coin Flips: Intuition

Say that you flip a coin $n = 100$ times and observe 20 Hs.

If $p := Pr[H] = 0.5$, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n, differs a lot from $p := Pr[H]$.
Coin Flips: Intuition

Say that you flip a coin \(n = 100 \) times and observe 20 Hs.

If \(p := Pr[H] = 0.5 \), this event is very unlikely.

Intuitively, it is unlikely that the fraction of Hs, say \(A_n \), differs a lot from \(p := Pr[H] \).

Thus, it is unlikely that \(p \) differs a lot from \(A_n \).
Coin Flips: Intuition

Say that you flip a coin \(n = 100 \) times and observe 20 Hs.

If \(p := Pr[H] = 0.5 \), this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say \(A_n \), differs a lot from \(p := Pr[H] \).

Thus, it is unlikely that \(p \) differs a lot from \(A_n \). Hence, one should be able to build a confidence interval \([A_n - \varepsilon, A_n + \varepsilon]\) for \(p \).
Coin Flips: Intuition

Say that you flip a coin \(n = 100 \) times and observe 20 Hs.

If \(p := Pr[H] = 0.5 \), this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say \(A_n \), differs a lot from \(p := Pr[H] \).

Thus, it is unlikely that \(p \) differs a lot from \(A_n \). Hence, one should be able to build a confidence interval
\([A_n - \varepsilon, A_n + \varepsilon]\) for \(p \).

The key idea is that \(|A_n - p| \leq \varepsilon \iff p \in [A_n - \varepsilon, A_n + \varepsilon] \).
Coin Flips: Intuition

Say that you flip a coin $n = 100$ times and observe 20 Hs.

If $p := Pr[H] = 0.5$, this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say A_n, differs a lot from $p := Pr[H]$.

Thus, it is unlikely that p differs a lot from A_n. Hence, one should be able to build a confidence interval $[A_n - \varepsilon, A_n + \varepsilon]$ for p.

The key idea is that $|A_n - p| \leq \varepsilon \iff p \in [A_n - \varepsilon, A_n + \varepsilon]$.

Thus, $Pr[|A_n - p| > \varepsilon] \leq 5\% \iff Pr[p \in [A_n - \varepsilon, A_n + \varepsilon]] \geq 95\%$.
Coin Flips: Intuition

Say that you flip a coin \(n = 100 \) times and observe 20 Hs.

If \(p := Pr[H] = 0.5 \), this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say \(A_n \), differs a lot from \(p := Pr[H] \).

Thus, it is unlikely that \(p \) differs a lot from \(A_n \). Hence, one should be able to build a confidence interval \([A_n - \varepsilon, A_n + \varepsilon] \) for \(p \).

The key idea is that \(|A_n - p| \leq \varepsilon \iff p \in [A_n - \varepsilon, A_n + \varepsilon] \).

Thus, \(Pr[|A_n - p| > \varepsilon] \leq 5\% \iff Pr[p \in [A_n - \varepsilon, A_n + \varepsilon]] \geq 95\% \).

It remains to find \(\varepsilon \) such that \(Pr[|A_n - p| > \varepsilon] \leq 5\% \).
Coin Flips: Intuition

Say that you flip a coin \(n = 100 \) times and observe 20 Hs.

If \(p := Pr[H] = 0.5 \), this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say \(A_n \), differs a lot from \(p := Pr[H] \).

Thus, it is unlikely that \(p \) differs a lot from \(A_n \). Hence, one should be able to build a confidence interval \([A_n - \varepsilon, A_n + \varepsilon]\) for \(p \).

The key idea is that \(|A_n - p| \leq \varepsilon \iff p \in [A_n - \varepsilon, A_n + \varepsilon]\).

Thus, \(Pr[|A_n - p| > \varepsilon] \leq 5\% \iff Pr[p \in [A_n - \varepsilon, A_n + \varepsilon]] \geq 95\% \).

It remains to find \(\varepsilon \) such that \(Pr[|A_n - p| > \varepsilon] \leq 5\% \).

One approach:
Say that you flip a coin \(n = 100 \) times and observe 20 Hs.

If \(p := Pr[H] = 0.5 \), this event is very unlikely.

Intuitively, if is unlikely that the fraction of Hs, say \(A_n \), differs a lot from \(p := Pr[H] \).

Thus, it is unlikely that \(p \) differs a lot from \(A_n \). Hence, one should be able to build a confidence interval \([A_n - \varepsilon, A_n + \varepsilon]\) for \(p \).

The key idea is that \(|A_n - p| \leq \varepsilon \iff p \in [A_n - \varepsilon, A_n + \varepsilon]\).

Thus, \(Pr[|A_n - p| > \varepsilon] \leq 5\% \iff Pr[p \in [A_n - \varepsilon, A_n + \varepsilon]] \geq 95\% \).

It remains to find \(\varepsilon \) such that \(Pr[|A_n - p| > \varepsilon] \leq 5\% \).

One approach: Chebyshev.
Confidence Interval with Chebyshev

Flip a coin \(n \) times. Let \(A_n \) be the fraction of \(H \)s.

Can we find \(\epsilon \) such that
\[
\Pr \left[|A_n - p| > \epsilon \right] \leq 5\%.
\]

Using Chebyshev, we will see that \(\epsilon = \frac{2}{\sqrt{n}} \) works.

Thus
\[
\left[A_n - \frac{2}{\sqrt{n}}, A_n + \frac{2}{\sqrt{n}} \right]
\]
is a 95%-CI for \(p \).

Example: If \(n = 1500 \), then
\[
\Pr \left[p \in \left[A_n - 0.05, A_n + 0.05 \right] \right] \geq 95\%.
\]

In fact, \(\alpha = \frac{1}{\sqrt{n}} \) works, so that with \(n = 1500 \), one has
\[
\Pr \left[p \in \left[A_n - 0.02, A_n + 0.02 \right] \right] \geq 95\%.
\]
Confidence Interval with Chebyshev

- Flip a coin n times.
Confidence Interval with Chebyshev

- Flip a coin \(n \) times. Let \(A_n \) be the fraction of \(Hs \).
Confidence Interval with Chebyshev

- Flip a coin n times. Let A_n be the fraction of Hs.
- Can we find ε such that $Pr[|A_n - \rho| > \varepsilon] \leq 5\%$?
Confidence Interval with Chebyshev

- Flip a coin \(n \) times. Let \(A_n \) be the fraction of \(Hs \).
- Can we find \(\varepsilon \) such that \(Pr[|A_n - p| > \varepsilon] \leq 5\% \)?

Using Chebyshev, we will see that \(\varepsilon = 2.25 \frac{1}{\sqrt{n}} \) works.
Confidence Interval with Chebyshev

- Flip a coin \(n \) times. Let \(A_n \) be the fraction of \(H \)s.
- Can we find \(\varepsilon \) such that \(Pr[|A_n - p| > \varepsilon] \leq 5\% \)?

Using Chebyshev, we will see that \(\varepsilon = 2.25 \frac{1}{\sqrt{n}} \) works. Thus

\[
[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]
\]

is a 95\%-CI for \(p \).
Confidence Interval with Chebyshev

- Flip a coin n times. Let A_n be the fraction of Hs.
- Can we find ε such that $Pr[|A_n - p| > \varepsilon] \leq 5\%$?

Using Chebyshev, we will see that $\varepsilon = 2.25 \frac{1}{\sqrt{n}}$ works. Thus

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$

is a 95%-CI for p.

Example: If $n = 1500$, then $Pr[p \in [A_n - 0.05, A_n + 0.05]] \geq 95\%$.
Confidence Interval with Chebyshev

- Flip a coin \(n \) times. Let \(A_n \) be the fraction of \(Hs \).
- Can we find \(\varepsilon \) such that \(Pr[|A_n - p| > \varepsilon] \leq 5\% \)?

Using Chebyshev, we will see that \(\varepsilon = 2.25 \frac{1}{\sqrt{n}} \) works. Thus

\[
[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]
\]

is a 95\%-CI for \(p \).

Example: If \(n = 1500 \), then \(Pr[p \in [A_n - 0.05, A_n + 0.05]] \geq 95\% \).

In fact, \(a = \frac{1}{\sqrt{n}} \) works,
Confidence Interval with Chebyshev

- Flip a coin \(n \) times. Let \(A_n \) be the fraction of \(Hs \).
- Can we find \(\varepsilon \) such that \(Pr[|A_n - p| > \varepsilon] \leq 5\% \)?

Using Chebyshev, we will see that \(\varepsilon = 2.25 \frac{1}{\sqrt{n}} \) works. Thus

\[
[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]
\]

is a 95%-CI for \(p \).

Example: If \(n = 1500 \), then \(Pr[p \in [A_n - 0.05, A_n + 0.05]] \geq 95\% \).

In fact, \(a = \frac{1}{\sqrt{n}} \) works, so that with \(n = 1,500 \) one has

\(Pr[p \in [A_n - 0.02, A_n + 0.02]] \geq 95\% \).
Theorem:

Let \(X_n \) be i.i.d. with mean \(\mu \) and variance \(\sigma^2 \).

Define \(A_n = X_1 + \cdots + X_n \).

Then, \(\Pr\left[\mu \in \left[A_n - 4 \cdot \frac{\sigma}{\sqrt{n}}, A_n + 4 \cdot \frac{\sigma}{\sqrt{n}} \right] \right] \geq 95\% \).

Thus, \(\left[A_n - 4 \cdot \frac{\sigma}{\sqrt{n}}, A_n + 4 \cdot \frac{\sigma}{\sqrt{n}} \right] \) is a 95\% CI for \(\mu \).

Example:

Let \(X_n = 1 \{ \text{coin yields H} \} \).

Then \(\mu = \mathbb{E}[X_n] = p : = \Pr[H] \).

Also, \(\sigma^2 = \text{var}(X_n) = p(1-p) \leq \frac{1}{4} \).

Hence, \(\left[A_n - 4 \cdot \frac{1}{\sqrt{2n}}, A_n + 4 \cdot \frac{1}{\sqrt{2n}} \right] \) is a 95\% CI for \(p \).
Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2.
Confidence Intervals: Result

Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2.
Define $A_n = \frac{X_1 + \cdots + X_n}{n}$.

Thus, $\left[A_n - 4.5\sigma\sqrt{\frac{1}{n}}, A_n + 4.5\sigma\sqrt{\frac{1}{n}} \right]$ is a 95% CI for μ.

Example:
Let $X_n = 1\{\text{coin } n \text{ yields } H\}$.
Then $\mu = \mathbb{E}[X_n] = p = \Pr[H]$.
Also, $\sigma^2 = \text{var}(X_n) = p(1-p) \leq \frac{1}{4}$.
Hence, $\left[A_n - 4.5\sqrt{\frac{1}{2n}}, A_n + 4.5\sqrt{\frac{1}{2n}} \right]$ is a 95% CI for p.

Confidence Intervals: Result

Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2. Define $A_n = \frac{X_1 + \cdots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$
Confidence Intervals: Result

Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2.
Define $A_n = \frac{X_1 + \cdots + X_n}{n}$. Then,

$$\Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95%-CI for μ.

Example:
Let $X_n = 1\{\text{coin } n \text{ yields } H\}$.
Then $\mu = \mathbb{E}[X_n] = p := \Pr[H]$.
Also, $\sigma^2 = \text{var}(X_n) = p(1 - p) \leq \frac{1}{4}$.

Hence, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95%-CI for p.
Confidence Intervals: Result

Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2. Define $A_n = \frac{X_1 + \cdots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95%-CI for μ.

Example:
Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2. Define $A_n = \frac{X_1 + \cdots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95%-CI for μ.

Example: Let $X_n = 1\{\text{coin } n \text{ yields } H\}$.
Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2. Define $A_n = \frac{X_1 + \cdots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95%-CI for μ.

Example: Let $X_n = 1\{\text{coin } n \text{ yields } H\}$. Then

$$\mu = E[X_n] = p := Pr[H].$$
Confidence Intervals: Result

Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2.
Define $A_n = \frac{X_1 + \ldots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95%-CI for μ.

Example: Let $X_n = 1 \{\text{coin } n \text{ yields } H\}$. Then

$$\mu = E[X_n] = p := Pr[H].\text{ Also, } \sigma^2 = \text{var}(X_n) =$$
Confidence Intervals: Result

Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2. Define $A_n = \frac{X_1 + \cdots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95%-CI for μ.

Example: Let $X_n = 1\{\text{coin } n \text{ yields } H\}$. Then

$$\mu = E[X_n] = p := Pr[H]. \text{ Also, } \sigma^2 = var(X_n) = p(1 - p)$$
Confidence Intervals: Result

Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2. Define $A_n = \frac{X_1 + \cdots + X_n}{n}$. Then,

$$Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95\%-CI for μ.

Example: Let $X_n = 1\{\text{coin } n \text{ yields } H\}$. Then

$$\mu = E[X_n] = p := Pr[H].$$

Also, $\sigma^2 = \text{var}(X_n) = p(1-p) \leq \frac{1}{4}$.
Theorem:
Let X_n be i.i.d. with mean μ and variance σ^2. Define $A_n = \frac{X_1 + \cdots + X_n}{n}$. Then,

$$\Pr[\mu \in [A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]] \geq 95\%.$$

Thus, $[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}}]$ is a 95\%-CI for μ.

Example: Let $X_n = 1\{\text{coin n yields } H\}$. Then

$$\mu = E[X_n] = p := Pr[H].$$
Also, $\sigma^2 = \text{var}(X_n) = p(1 - p) \leq \frac{1}{4}$.

Hence, $[A_n - 4.5 \frac{1/2}{\sqrt{n}}, A_n + 4.5 \frac{1/2}{\sqrt{n}}]$ is a 95\%-CI for p.
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5 \frac{\sigma}{\sqrt{n}}$ is a 95\% CI for μ.

From Chebyshev:

$$\Pr \left[|A_n - \mu| \geq 4.5 \frac{\sigma}{\sqrt{n}} \right] \leq \frac{\text{var}(A_n)}{4.5^2 \frac{\sigma^2}{n}} = \frac{\sigma^2}{n} \cdot \frac{1}{4.5^2} \cdot \frac{n}{\sigma^2} = \frac{1}{20} = 5\%.$$

Thus,

$$\Pr \left[|A_n - \mu| \leq 4.5 \frac{\sigma}{\sqrt{n}} \right] \geq 95\%.$$

Hence,

$$\Pr \left[\mu \in \left[A_n - 4.5 \frac{\sigma}{\sqrt{n}}, A_n + 4.5 \frac{\sigma}{\sqrt{n}} \right] \right] \geq 95\%.$$
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-CI for μ.
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-CI for μ.

From Chebyshev:

$$Pr[|A_n - \mu| \geq 4.5\sigma/\sqrt{n}] \leq \frac{\text{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2}$$
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5 \sigma / \sqrt{n}$ is a 95%-CI for μ.

From Chebyshev:

$$Pr[|A_n - \mu| \geq 4.5 \sigma / \sqrt{n}] \leq \frac{\text{var}(A_n)}{[4.5 \sigma / \sqrt{n}]^2} = \frac{n}{20 \sigma^2 \text{var}(A_n)}.$$
Confidence Interval: Analysis

We prove the theorem, i.e., that \(A_n \pm 4.5\sigma / \sqrt{n} \) is a 95%-CI for \(\mu \).

From Chebyshev:

\[
Pr[|A_n - \mu| \geq 4.5\sigma / \sqrt{n}] \leq \frac{\text{var}(A_n)}{[4.5\sigma / \sqrt{n}]^2} = \frac{n}{20\sigma^2} \text{var}(A_n).
\]

Now,

\[
\text{var}(A_n) = \text{var}(\frac{X_1 + \cdots + X_n}{n}) =
\]
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-CI for μ.

From Chebyshev:

$$Pr[|A_n - \mu| \geq 4.5\sigma/\sqrt{n}] \leq \frac{\text{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2} \text{var}(A_n).$$

Now,

$$\text{var}(A_n) = \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \frac{1}{n^2} \text{var}(X_1 + \cdots + X_n)$$
Confidence Interval: Analysis

We prove the theorem, i.e., that \(A_n \pm 4.5\sigma/\sqrt{n} \) is a 95\%-CI for \(\mu \).

From Chebyshev:

\[
Pr[|A_n - \mu| \geq 4.5\sigma/\sqrt{n}] \leq \frac{\text{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2} \text{var}(A_n).
\]

Now,

\[
\text{var}(A_n) = \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \frac{1}{n^2} \text{var}(X_1 + \cdots + X_n)
\]

\[
= \frac{1}{n^2} \times n \cdot \text{var}(X_1) = \frac{\sigma^2}{n}
\]
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5\sigma / \sqrt{n}$ is a 95%-CI for μ.

From Chebyshev:

$$Pr[|A_n - \mu| \geq 4.5\sigma / \sqrt{n}] \leq \frac{\text{var}(A_n)}{(4.5\sigma / \sqrt{n})^2} = \frac{n}{20\sigma^2} \text{var}(A_n).$$

Now,

$$\text{var}(A_n) = \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \frac{1}{n^2} \text{var}(X_1 + \cdots + X_n) = \frac{1}{n^2} \times n \text{var}(X_1) = \frac{1}{n} \sigma^2.$$
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5\sigma/\sqrt{n}$ is a 95%-CI for μ.

From Chebyshev:

$$Pr[|A_n - \mu| \geq 4.5\sigma/\sqrt{n}] \leq \frac{\text{var}(A_n)}{[4.5\sigma/\sqrt{n}]^2} = \frac{n}{20\sigma^2} \text{var}(A_n).$$

Now,

$$\text{var}(A_n) = \text{var}\left(\frac{X_1 + \cdots + X_n}{n}\right) = \frac{1}{n^2} \text{var}(X_1 + \cdots + X_n)$$

$$= \frac{1}{n^2} \times n \cdot \text{var}(X_1) = \frac{1}{n} \sigma^2.$$

Hence,

$$Pr[|A_n - \mu| \geq 4.5\sigma/\sqrt{n}] \leq \frac{n}{20\sigma^2} \times \frac{1}{n} \sigma^2$$
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5\sigma / \sqrt{n}$ is a 95\%-CI for μ.

From Chebyshev:

$$Pr[|A_n - \mu| \geq 4.5\sigma / \sqrt{n}] \leq \frac{\operatorname{var}(A_n)}{[4.5\sigma / \sqrt{n}]^2} = \frac{n}{20\sigma^2} \operatorname{var}(A_n).$$

Now,

$$\operatorname{var}(A_n) = \operatorname{var}\left(\frac{X_1 + \cdots + X_n}{n}\right) = \frac{1}{n^2} \operatorname{var}(X_1 + \cdots + X_n)$$

$$= \frac{1}{n^2} \times n \cdot \operatorname{var}(X_1) = \frac{1}{n} \sigma^2.$$

Hence,

$$Pr[|A_n - \mu| \geq 4.5\sigma / \sqrt{n}] \leq \frac{n}{20\sigma^2} \times \frac{1}{n} \sigma^2 = 5\%.$$
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5\sigma / \sqrt{n}$ is a 95%-CI for μ.

From Chebyshev:

$$Pr[|A_n - \mu| \geq 4.5\sigma / \sqrt{n}] \leq \frac{\text{var}(A_n)}{(4.5\sigma / \sqrt{n})^2} = \frac{n}{20\sigma^2} \text{var}(A_n).$$

Now,

$$\text{var}(A_n) = \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \frac{1}{n^2} \text{var}(X_1 + \cdots + X_n) = \frac{1}{n^2} \times n \cdot \text{var}(X_1) = \frac{1}{n} \sigma^2.$$

Hence,

$$Pr[|A_n - \mu| \geq 4.5\sigma / \sqrt{n}] \leq \frac{n}{20\sigma^2} \times \frac{1}{n} \sigma^2 = 5\%.$$

Thus,

$$Pr[|A_n - \mu| \leq 4.5\sigma / \sqrt{n}] \geq 95\%.$$
Confidence Interval: Analysis

We prove the theorem, i.e., that $A_n \pm 4.5\sigma / \sqrt{n}$ is a 95%-CI for μ.

From Chebyshev:

$$Pr[|A_n - \mu| \geq 4.5\sigma / \sqrt{n}] \leq \frac{\text{var}(A_n)}{[4.5\sigma / \sqrt{n}]^2} = \frac{n}{20\sigma^2} \text{var}(A_n).$$

Now,

$$\text{var}(A_n) = \text{var}(\frac{X_1 + \cdots + X_n}{n}) = \frac{1}{n^2} \text{var}(X_1 + \cdots + X_n) = \frac{1}{n^2} \times n \cdot \text{var}(X_1) = \frac{1}{n} \sigma^2.$$

Hence,

$$Pr[|A_n - \mu| \geq 4.5\sigma / \sqrt{n}] \leq \frac{n}{20\sigma^2} \times \frac{1}{n} \sigma^2 = 5\%.$$

Thus,

$$Pr[|A_n - \mu| \leq 4.5\sigma / \sqrt{n}] \geq 95\%.$$

Hence,

$$Pr[\mu \in [A_n - 4.5\sigma / \sqrt{n}, A_n + 4.5\sigma / \sqrt{n}]] \geq 95\%.$$
Confidence interval for p in $B(p)$
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$.
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$ is a 95%-CI for p.
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$

is a 95%-CI for p.

Proof:
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$ is a 95%-CI for p.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95\%.$$
Confidence interval for \(p \) in \(B(p) \)

Let \(X_n \) be i.i.d. \(B(p) \). Define \(A_n = (X_1 + \cdots + X_n)/n \).

Theorem:

\[
[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]
\]

is a 95%-CI for \(p \).

Proof:

We have just seen that

\[
Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95%.
\]

Here, \(\mu = p \)
Confidence interval for \(p \) in \(B(p) \)

Let \(X_n \) be i.i.d. \(B(p) \). Define \(A_n = (X_1 + \cdots + X_n)/n \).

Theorem:

\[
[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]
\]

is a 95\%-CI for \(p \).

Proof:

We have just seen that

\[
Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95%.
\]

Here, \(\mu = p \) and \(\sigma^2 = p(1-p) \).
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$ is a 95%-CI for p.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95%.$$

Here, $\mu = p$ and $\sigma^2 = p(1-p)$. Thus, $\sigma^2 \leq \frac{1}{4}$
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$ is a 95%-CI for p.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95%.$$

Here, $\mu = p$ and $\sigma^2 = p(1-p)$. Thus, $\sigma^2 \leq \frac{1}{4}$ and $\sigma \leq \frac{1}{2}$.
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$ is a 95%-CI for p.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95\%.$$

Here, $\mu = p$ and $\sigma^2 = p(1-p)$. Thus, $\sigma^2 \leq \frac{1}{4}$ and $\sigma \leq \frac{1}{2}$.

Thus,

$$Pr[\mu \in [A_n - 4.5 \times 0.5/\sqrt{n}, A_n + 4.5 \times 0.5/\sqrt{n}]] \geq 95\%.$$
Confidence interval for p in $B(p)$

Let X_n be i.i.d. $B(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[A_n - \frac{2.25}{\sqrt{n}}, A_n + \frac{2.25}{\sqrt{n}}]$$

is a 95%-CI for p.

Proof:

We have just seen that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}] \geq 95\%.$$

Here, $\mu = p$ and $\sigma^2 = p(1 - p)$. Thus, $\sigma^2 \leq \frac{1}{4}$ and $\sigma \leq \frac{1}{2}$.

Thus,

$$Pr[\mu \in [A_n - 4.5 \times 0.5/\sqrt{n}, A_n + 4.5 \times 0.5/\sqrt{n}] \geq 95\%.$$
Confidence interval for p in $B(p)$
Confidence interval for p in $B(p)$

An illustration:
Confidence interval for p in $B(p)$

An illustration:

\[95\% - \text{CI for } p = \left[A_n - 2.25 \frac{1}{\sqrt{n}}, A_n + 2.25 \frac{1}{\sqrt{n}} \right] \]
Confidence interval for p in $B(p)$

An illustration:

Good practice: You run your simulation, or experiment.
Confidence interval for p in $B(p)$

An illustration:

$95\% - \text{CI for } p$

$= [A_n - 2.25 \frac{1}{\sqrt{n}}, A_n + 2.25 \frac{1}{\sqrt{n}}]$

Good practice: You run your simulation, or experiment. You get an estimate.
Confidence interval for p in $B(p)$

An illustration:

$95\% - CI$ for p

$= [A_n - 2.25 \frac{1}{\sqrt{n}}, A_n + 2.25 \frac{1}{\sqrt{n}}]$}

Good practice: You run your simulation, or experiment. You get an estimate. You indicate your confidence interval.
Confidence interval for p in $B(p)$
Confidence interval for p in $B(p)$

Improved CI:
Confidence interval for p in $B(p)$

Improved CI: In fact, one can replace 2.25 by 1.
Confidence interval for p in $B(p)$

Improved CI: In fact, one can replace 2.25 by 1.

Quite a bit of work to get there:
Confidence interval for p in $B(p)$

Improved CI: In fact, one can replace 2.25 by 1.

Quite a bit of work to get there: continuous random variables;
Confidence interval for p in $B(p)$

Improved CI: In fact, one can replace 2.25 by 1.

Quite a bit of work to get there: continuous random variables; Gaussian;
Confidence interval for p in $B(p)$

Improved CI: In fact, one can replace 2.25 by 1.

Quite a bit of work to get there: continuous random variables; Gaussian; Central Limit Theorem.
Confidence Interval for $1/p$ in $G(p)$

Let X_i be i.i.d. $G(p)$. Define $A_n = \frac{X_1 + \cdots + X_n}{n}$.

Theorem: $[A_n - 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}}, A_n + 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}}]$ is a 95%-CI for $1/p$.

Proof: We know that $\Pr[\mu \in [A_n - 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}}, A_n + 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}}]] \geq 95\%$. Here, $\mu = \frac{1}{p}$ and $\sigma = \sqrt{\frac{1}{p} \cdot \frac{1}{1-p}} \leq \frac{1}{p}$. Hence, $\Pr\left[\frac{1}{p} \in \left[A_n - 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}}, A_n + 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}}\right]\right] \geq 95\%$.

Now, $A_n - 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}} \leq \frac{1}{p} \leq A_n + 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}}$ is equivalent to $A_n + 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}} \leq \frac{1}{p} \leq A_n + 4 \cdot \frac{1}{p} \sqrt{\frac{1}{n}}$.

Examples: $[0.7, 1.0]_{100}$ and $[0.96, 1.05]_{10000}$.
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$.

Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

\[
A_n - 4.5 \frac{1}{\sqrt{n}}, \quad A_n + 4.5 \frac{1}{\sqrt{n}}
\]

is a 95%-CI for $1/p$.

Proof:

We know that

\[
\Pr[A_n - 4.5 \frac{1}{\sqrt{n}} \leq \frac{1}{p} \leq A_n + 4.5 \frac{1}{\sqrt{n}}] \geq 95\%.
\]

Here, $\mu = 1/p$ and $\sigma = \sqrt{1/p - p}$ $\leq 1/p$.

Hence,

\[
\Pr\left[\frac{1}{p} \in \left(A_n - 4.5 \frac{1}{\sqrt{n}}, A_n + 4.5 \frac{1}{\sqrt{n}}\right)\right] \geq 95\%.
\]

Now,

\[
A_n - 4.5 \frac{1}{\sqrt{n}} \leq \frac{1}{p} \leq A_n + 4.5 \frac{1}{\sqrt{n}}
\]

is equivalent to

\[
A_n - 4.5 \frac{1}{\sqrt{n}} \leq 1/p \leq A_n + 4.5 \frac{1}{\sqrt{n}}.
\]

Examples:

\[
[0.7 A_{100}, 1.8 A_{100}], \quad [0.96 A_{10000}, 1.05 A_{10000}].
\]
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1 + 4.5/\sqrt{n}}, \frac{A_n}{1 - 4.5/\sqrt{n}} \right]$$

is a 95%-CI for $1/p$.

Examples:

\[\left[0.7 A_{100}, 1.8 A_{100} \right] \text{ and } \left[0.96 A_{10000}, 1.05 A_{10000} \right]. \]
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

\[\left[\frac{A_n}{1 + 4.5/\sqrt{n}}, \frac{A_n}{1 - 4.5/\sqrt{n}} \right] \] is a 95%-CI for $1/p$.

Proof:
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1 + 4.5/\sqrt{n}}, \frac{A_n}{1 - 4.5/\sqrt{n}} \right]$$

is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95\%.$$
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$[\frac{A_n}{1 + 4.5/\sqrt{n}}, \frac{A_n}{1 - 4.5/\sqrt{n}}]$$ is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \leq \frac{1}{p}$.
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1 + 4.5/\sqrt{n}}, \frac{A_n}{1 - 4.5/\sqrt{n}} \right]$$

is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}] \geq 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \leq \frac{1}{p}$. Hence,

$$Pr[\frac{1}{p} \in [A_n - 4.5 \frac{1}{p\sqrt{n}}, A_n + 4.5 \frac{1}{p\sqrt{n}}] \geq 95\%.$$

Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1 + 4.5/\sqrt{n}}, \frac{A_n}{1 - 4.5/\sqrt{n}} \right]$$

is a 95%-CI for $1/p$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \leq \frac{1}{p}$. Hence,

$$Pr[\frac{1}{p} \in [A_n - 4.5 \frac{1}{p\sqrt{n}}, A_n + 4.5 \frac{1}{p\sqrt{n}}]] \geq 95\%.$$

Now, $A_n - 4.5 \frac{1}{p\sqrt{n}} \leq \frac{1}{p} \leq \frac{1}{p} \leq A_n + 4.5 \frac{1}{p\sqrt{n}}$ is equivalent to
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1 + 4.5/\sqrt{n}}, \frac{A_n}{1 - 4.5/\sqrt{n}} \right]$$

is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \leq \frac{1}{p}$. Hence,

$$Pr\left[\frac{1}{p} \in [A_n - 4.5 \frac{1}{p\sqrt{n}}, A_n + 4.5 \frac{1}{p\sqrt{n}}] \right] \geq 95\%.$$

Now, $A_n - 4.5 \frac{1}{p\sqrt{n}} \leq \frac{1}{p} \leq A_n + 4.5 \frac{1}{p\sqrt{n}}$ is equivalent to

$$\frac{A_n}{1 + 4.5/\sqrt{n}} \leq \frac{1}{p} \leq \frac{A_n}{1 - 4.5/\sqrt{n}}.$$
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

\[
\left[\frac{A_n}{1 + 4.5/\sqrt{n}}, \frac{A_n}{1 - 4.5/\sqrt{n}} \right]
\]

is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

\[
Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95%.
\]

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \leq \frac{1}{p}$. Hence,

\[
Pr[\frac{1}{p} \in [A_n - 4.5 \frac{1}{p\sqrt{n}}, A_n + 4.5 \frac{1}{p\sqrt{n}}]] \geq 95%.
\]

Now, $A_n - 4.5 \frac{1}{p\sqrt{n}} \leq \frac{1}{p} \leq A_n + 4.5 \frac{1}{p\sqrt{n}}$ is equivalent to

\[
\frac{A_n}{1 + 4.5/\sqrt{n}} \leq \frac{1}{p} \leq \frac{A_n}{1 - 4.5/\sqrt{n}}.
\]

Examples:

\[
\left[0.7 A_{100}, 1.8 A_{100} \right] \text{ and } \left[0.96 A_{10000}, 1.05 A_{10000} \right].
\]
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

$$\left[\frac{A_n}{1 + 4.5/\sqrt{n}}, \frac{A_n}{1 - 4.5/\sqrt{n}} \right]$$ is a 95%-CI for $\frac{1}{p}$.

Proof: We know that

$$Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95\%.$$

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \leq \frac{1}{p}$. Hence,

$$Pr\left[\frac{1}{p} \in [A_n - 4.5 \frac{1}{p\sqrt{n}}, A_n + 4.5 \frac{1}{p\sqrt{n}}]\right] \geq 95\%.$$

Now, $A_n - 4.5 \frac{1}{p\sqrt{n}} \leq \frac{1}{p} \leq A_n + 4.5 \frac{1}{p\sqrt{n}}$ is equivalent to

$$\frac{A_n}{1 + 4.5/\sqrt{n}} \leq \frac{1}{p} \leq \frac{A_n}{1 - 4.5/\sqrt{n}}.$$

Examples: $[0.7A_{100}, 1.8A_{100}]$
Confidence Interval for $1/p$ in $G(p)$

Let X_n be i.i.d. $G(p)$. Define $A_n = (X_1 + \cdots + X_n)/n$.

Theorem:

\[
\left[\frac{A_n}{1+4.5/\sqrt{n}}, \frac{A_n}{1-4.5/\sqrt{n}} \right] \text{ is a 95%-CI for } \frac{1}{p}.
\]

Proof: We know that

\[
Pr[\mu \in [A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]] \geq 95%.
\]

Here, $\mu = \frac{1}{p}$ and $\sigma = \frac{\sqrt{1-p}}{p} \leq \frac{1}{p}$. Hence,

\[
Pr\left[\frac{1}{p} \in [A_n - 4.5 \frac{1}{p\sqrt{n}}, A_n + 4.5 \frac{1}{p\sqrt{n}}] \right] \geq 95%.
\]

Now, $A_n - 4.5 \frac{1}{p\sqrt{n}} \leq \frac{1}{p} \leq A_n + 4.5 \frac{1}{p\sqrt{n}}$ is equivalent to

\[
\frac{A_n}{1+4.5/\sqrt{n}} \leq \frac{1}{p} \leq \frac{A_n}{1-4.5/\sqrt{n}}.
\]

Examples: $[0.7A_{100}, 1.8A_{100}]$ and $[0.96A_{10000}, 1.05A_{10000}]$.
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $\Pr[H]$. Let p_A and p_B be the values of $\Pr[H]$ for the two coins.

Approach:

▶ Flip each coin n times.
▶ Let A_n be the fraction of Hs for coin A and B_n for coin B.
▶ Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis:

Note that $E[A_n - B_n] = p_A - p_B$ and $\text{var}(A_n - B_n) = \frac{1}{n}(p_A(1-p_A) + p_B(1-p_B)) \leq \frac{1}{2n}$.

Thus, $\Pr[|A_n - B_n - (p_A - p_B)| > \varepsilon] \leq \frac{1}{2n \varepsilon^2}$, so $\Pr[p_A - p_B \in [A_n - B_n - \varepsilon, A_n - B_n + \varepsilon]] \geq 1 - \frac{1}{2n \varepsilon^2}$.

Example:

With $n = 100$ and $A_n - B_n = 0.2$, $\Pr[p_A > p_B] \geq 1 - \frac{1}{8} = 0.875$.
Which Coin is Better?

You are given coin A and coin B.

Let p_A and p_B be the values of $P[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.

It is tempting to think that $p_A > p_B$.

Confidence?

Analysis:

Note that $E[A_n - B_n] = p_A - p_B$ and $\text{var}(A_n - B_n) = \frac{1}{n}(p_A(1-p_A) + p_B(1-p_B)) \leq \frac{1}{2n}$.

Thus, $\Pr[|A_n - B_n - (p_A - p_B)| > \epsilon] \leq \frac{1}{2} \epsilon^2$, so $\Pr[p_A - p_B \in [A_n - B_n - \epsilon, A_n - B_n + \epsilon]] \geq 1 - \frac{1}{2n} \epsilon^2$, and $\Pr[p_A - p_B \geq 0] \geq 1 - \frac{1}{2n} (A_n - B_n)^2$.

Example:

With $n = 100$ and $A_n - B_n = 0.2$, $\Pr[p_A > p_B] \geq 1 - \frac{1}{8} = 0.875$.
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$.

Approach:

▶ Flip each coin n times.
▶ Let A_n be the fraction of Hs for coin A and B_n for coin B.
▶ Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis:

Note that $E[A_n - B_n] = p_A - p_B$ and $\text{var}(A_n - B_n) = \frac{1}{n}(p_A(1-p_A) + p_B(1-p_B)) \leq \frac{1}{2n}$.

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \epsilon] \leq \frac{1}{2n\epsilon^2}$, so $Pr[p_A - p_B \in [A_n - B_n - \epsilon, A_n - B_n + \epsilon]] \geq 1 - \frac{1}{2n\epsilon^2}$, and $Pr[p_A - p_B \geq 0] \geq 1 - \frac{1}{2n(A_n - B_n)^2}$.
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Example: With $n = 100$ and $A_n - B_n = 0.2$, $Pr[p_A > p_B] \geq 1 - \frac{1}{8} = 0.875$.
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis:
Which Coin is Better?
You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis: Note that

$$E[A_n - B_n] =$$
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis: Note that

$$E[A_n - B_n] = p_A - p_B$$

and

$$\text{var}(A_n - B_n) =$$
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis: Note that

$$E[A_n - B_n] = p_A - p_B$$

and

$$\text{var}(A_n - B_n) = \frac{1}{n}(p_A(1-p_A) + p_B(1-p_B)) \leq \frac{1}{2n}.$$
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger Pr[H]. Let p_A and p_B be the values of Pr[H] for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis: Note that

\[E[A_n - B_n] = p_A - p_B \text{ and } var(A_n - B_n) = \frac{1}{n}(p_A(1 - p_A) + p_B(1 - p_B)) \leq \frac{1}{2n}. \]

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \varepsilon] \leq \frac{1}{2n\varepsilon^2}$,
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Analysis: Note that

$$E[A_n - B_n] = p_A - p_B$$
$$\text{var}(A_n - B_n) = \frac{1}{n}(p_A(1 - p_A) + p_B(1 - p_B)) \leq \frac{1}{2n}.$$

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \varepsilon] \leq \frac{1}{2n\varepsilon^2}$, so

$$Pr[p_A - p_B \in [A_n - B_n - \varepsilon, A_n - B_n + \varepsilon]] \geq 1 - \frac{1}{2n\varepsilon^2},$$
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis: Note that

$E[A_n - B_n] = p_A - p_B$ and $\text{var}(A_n - B_n) = \frac{1}{n}(p_A(1 - p_A) + p_B(1 - p_B)) \leq \frac{1}{2n}$.

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \varepsilon] \leq \frac{1}{2n\varepsilon^2}$, so

$Pr[p_A - p_B \in [A_n - B_n - \varepsilon, A_n - B_n + \varepsilon]] \geq 1 - \frac{1}{2n\varepsilon^2}$, and

$Pr[p_A - p_B \geq 0] \geq 1 - \frac{1}{2n(A_n - B_n)^2}$.

Example:

With $n = 100$ and $A_n - B_n = 0.2$, $Pr[p_A > p_B] \geq 1 - \frac{1}{8} = 0.875$.

Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis: Note that

$$E[A_n - B_n] = p_A - p_B \text{ and } \text{var}(A_n - B_n) = \frac{1}{n}(p_A(1-p_A) + p_B(1-p_B)) \leq \frac{1}{2n}. $$

Thus, $Pr[|A_n - B_n - (p_A - p_B)| > \varepsilon] \leq \frac{1}{2n\varepsilon^2}$, so

$$Pr[p_A - p_B \in [A_n - B_n - \varepsilon, A_n - B_n + \varepsilon]] \geq 1 - \frac{1}{2n\varepsilon^2}, \text{ and}$$

$$Pr[p_A - p_B \geq 0] \geq 1 - \frac{1}{2n(A_n - B_n)^2}. $$

Example: With $n = 100$ and $A_n - B_n = 0.2$,

$$Pr[p_A - p_B \geq 0] \geq 1 - \frac{1}{2n(0.2)^2}. $$
Which Coin is Better?

You are given coin A and coin B. You want to find out which one has a larger $Pr[H]$. Let p_A and p_B be the values of $Pr[H]$ for the two coins.

Approach:

- Flip each coin n times.
- Let A_n be the fraction of Hs for coin A and B_n for coin B.
- Assume $A_n > B_n$. It is tempting to think that $p_A > p_B$.

Confidence?

Analysis: Note that

$$E[A_n - B_n] = p_A - p_B$$

and

$$\text{var}(A_n - B_n) = \frac{1}{n} (p_A(1 - p_A) + p_B(1 - p_B)) \leq \frac{1}{2n}.$$

Thus,

$$Pr[|A_n - B_n - (p_A - p_B)| > \varepsilon] \leq \frac{1}{2n\varepsilon^2},$$

so

$$Pr[p_A - p_B \in [A_n - B_n - \varepsilon, A_n - B_n + \varepsilon]] \geq 1 - \frac{1}{2n\varepsilon^2},$$

and

$$Pr[p_A - p_B \geq 0] \geq 1 - \frac{1}{2n(A_n - B_n)^2}.$$

Example: With $n = 100$ and $A_n - B_n = 0.2$, $Pr[p_A > p_B] \geq 1 - \frac{1}{8} = 0.875$.
For $B(p)$, we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: $1/2$. In some applications, it may be OK to replace σ^2 by the following sample variance: $s^2_n := \frac{1}{n} \sum_{m=1}^{n} (X_m - A_n)^2$. However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian). This is used regularly in practice. However, be aware of the risk.
Unknown σ

For $B(p)$, we wanted to estimate p.

The CI requires $\sigma = \sqrt{p(1-p)}$.

We replaced σ by an upper bound: $1/2$.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s^2_n := \frac{1}{n} \sum_{m=1}^{n} (X_m - \bar{X}_n)^2.$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian).

This is used regularly in practice. However, be aware of the risk.
Unknown σ

For $B(p)$, we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$.

We replaced σ by an upper bound: $\frac{1}{2}$.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s^2_n := \frac{1}{n} \sum_{m=1}^{n} (X_m - \bar{X}_n)^2.$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian). This is used regularly in practice. However, be aware of the risk.
For $B(p)$, we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: 1/2.
Unknown σ

For $B(p)$, we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: $1/2$.

In some applications, it may be OK to replace σ^2 by the following sample variance:
Unknown σ

For $B(p)$, we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: $1/2$.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^{n} (X_m - A_n)^2.$$
Unknown σ

For $B(p)$, we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1 - p)}$. We replaced σ by an upper bound: $1/2$.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^{n} (X_m - A_n)^2.$$

However, in some cases, this is dangerous!
Unknown \(\sigma \)

For \(B(p) \), we wanted to estimate \(p \). The CI requires \(\sigma = \sqrt{p(1-p)} \). We replaced \(\sigma \) by an upper bound: \(1/2 \).

In some applications, it may be OK to replace \(\sigma^2 \) by the following sample variance:

\[
s_n^2 := \frac{1}{n} \sum_{m=1}^{n} (X_m - A_n)^2.
\]

However, in some cases, this is dangerous! The theory says it is OK if the distribution of \(X_n \) is nice (Gaussian).
Unknown σ

For $B(p)$, we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: $1/2$.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^{n} (X_m - A_n)^2.$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian). This is used regularly in practice.
Unknown σ

For $B(p)$, we wanted to estimate p. The CI requires $\sigma = \sqrt{p(1-p)}$. We replaced σ by an upper bound: $1/2$.

In some applications, it may be OK to replace σ^2 by the following sample variance:

$$s_n^2 := \frac{1}{n} \sum_{m=1}^{n} (X_m - A_n)^2.$$

However, in some cases, this is dangerous! The theory says it is OK if the distribution of X_n is nice (Gaussian). This is used regularly in practice. However, be aware of the risk.
Confidence Intervals

1. Estimates without confidence level are useless!
2. \([a, b]\) is a 95\% CI for \(\theta\) if \(\Pr[\theta \in [a, b]] \geq 95\%\).
3. Using Chebyshev: \([A_n - 4\frac{\sigma}{\sqrt{n}}, A_n + 4\frac{\sigma}{\sqrt{n}}]\) is a 95\% CI for \(\mu\).
4. Using CLT, we will replace 4\frac{\sigma}{\sqrt{n}} by 2\frac{\sigma}{\sqrt{n}}.
5. When \(\sigma\) is not known, one can replace it by an upper bound.
6. Examples: \(B(p), G(p)\), which coin is better?
7. In some cases, one can replace \(\sigma\) by the empirical standard deviation.
1. Estimates without confidence level are useless!
1. Estimates without confidence level are useless!

2. \([a, b]\) is a 95%-CI for \(\theta\) if
1. Estimates without confidence level are useless!
2. \([a, b]\) is a 95\%-CI for \(\theta\) if \(Pr[\theta \in [a, b]] \geq 95\%\).
Summary

Confidence Intervals

1. Estimates without confidence level are useless!
2. \([a, b]\) is a 95\%-CI for \(\theta\) if \(Pr[\theta \in [a, b]] \geq 95\%\).
3. Using Chebyshev: \([A_n - 4.5\sigma / \sqrt{n}, A_n + 4.5\sigma / \sqrt{n}]\) is a 95\%-CI for \(\mu\).
1. Estimates without confidence level are useless!

2. \([a, b]\) is a 95\%-CI for \(\theta\) if \(Pr[\theta \in [a, b]] \geq 95\%\).

3. Using Chebyshev: \([A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]\) is a 95\%-CI for \(\mu\).

4. Using CLT, we will replace 4.5 by 2.
1. Estimates without confidence level are useless!

2. $[a, b]$ is a 95%-CI for θ if $Pr[\theta \in [a, b]] \geq 95\%$.

3. Using Chebyshev: $[A_n - 4.5\sigma / \sqrt{n}, A_n + 4.5\sigma / \sqrt{n}]$ is a 95%-CI for μ.

4. Using CLT, we will replace 4.5 by 2.

5. When σ is not known, one can replace it by an upper bound.
1. Estimates without confidence level are useless!

2. \([a, b]\) is a 95\%-CI for \(\theta\) if \(Pr[\theta \in [a, b]] \geq 95\%\).

3. Using Chebyshev: \([A_n - 4.5\sigma/\sqrt{n}, A_n + 4.5\sigma/\sqrt{n}]\) is a 95\%-CI for \(\mu\).

4. Using CLT, we will replace 4.5 by 2.

5. When \(\sigma\) is not known, one can replace it by an upper bound.

6. Examples: \(B(p), G(p)\), which coin is better?

7. In some cases, one can replace \(\sigma\) by the empirical standard deviation.
Linear Regression.

Linear Regression

1. Preamble
2. Motivation for LR
3. History of LR
4. Linear Regression
5. Derivation
6. More examples
1. Preamble
2. Motivation for LR
3. History of LR
4. Linear Regression
5. Derivation
6. More examples
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y} c] = 0$ for all c. Now,

with $c = E[Y] - a = E[\hat{Y}]$. Hence,

$$E[(Y - a)^2] \geq E[(Y - E[Y])^2], \quad \forall a.$$
The best guess about Y,

\[E[Y] \]
The best guess about Y, if we know only the distribution of Y, is

$E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$. Proof:

Let $\hat{Y} = Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y}^2] = 0$, $\forall c$.

Linear Regression: Preamble

The best guess about Y, if we know only the distribution of Y, is $E[Y]$.
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is...
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
Let $\hat{Y} := Y - E[Y]$.
Linear Regression: Preamble

The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$.
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y}c] = 0, \forall c$.

Linear Regression: Preamble

The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y}c] = 0, \forall c$. Now,

The best guess about \(Y \), if we know only the distribution of \(Y \), is \(E[Y] \). More precisely, the value of \(a \) that minimizes \(E[(Y - a)^2] \) is \(a = E[Y] \).

Proof:
Let \(\hat{Y} := Y - E[Y] \). Then, \(E[\hat{Y}] = 0 \). So, \(E[\hat{Y}c] = 0, \forall c \). Now,

\[
= E[(\hat{Y} + c)^2]
\]
Linear Regression: Preamble

The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y}c] = 0, \forall c$. Now,

The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y}c] = 0, \forall c$. Now,

$$= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a$$

$$= E[\hat{Y}^2 + 2\hat{Y}c + c^2]$$
The best guess about \(Y \), if we know only the distribution of \(Y \), is \(E[Y] \). More precisely, the value of \(a \) that minimizes \(E[(Y - a)^2] \) is \(a = E[Y] \).

Proof:

Let \(\hat{Y} := Y - E[Y] \). Then, \(E[\hat{Y}] = 0 \). So, \(E[\hat{Y}c] = 0, \forall c \). Now,

\[
\]
\[
= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a
\]
\[
= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2
\]
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:

Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y}c] = 0$, $\forall c$. Now,

\[
\]

\[
= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a
\]

\[
= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2
\]

\[
= E[\hat{Y}^2] + 0 + c^2
\]
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y}c] = 0, \forall c$. Now,

$$= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a$$

$$= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2$$

$$= E[\hat{Y}^2] + 0 + c^2 \geq E[\hat{Y}^2].$$
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y}c] = 0, \forall c$. Now,

$$= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a$$
$$= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2$$
$$= E[\hat{Y}^2] + 0 + c^2 \geq E[\hat{Y}^2].$$

Hence, $E[(Y - a)^2] \geq E[(Y - E[Y])^2], \forall a.$
The best guess about Y, if we know only the distribution of Y, is $E[Y]$. More precisely, the value of a that minimizes $E[(Y - a)^2]$ is $a = E[Y]$.

Proof:
Let $\hat{Y} := Y - E[Y]$. Then, $E[\hat{Y}] = 0$. So, $E[\hat{Y}c] = 0, \forall c$. Now,

$$= E[(\hat{Y} + c)^2] \text{ with } c = E[Y] - a$$

$$= E[\hat{Y}^2 + 2\hat{Y}c + c^2] = E[\hat{Y}^2] + 2E[\hat{Y}c] + c^2$$

$$= E[\hat{Y}^2] + 0 + c^2 \geq E[\hat{Y}^2].$$

Hence, $E[(Y - a)^2] \geq E[(Y - E[Y])^2], \forall a.$

\square
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend on X. The next simplest function is linear: $g(X) = a + bX$. What is the best linear function? That is our next topic. A bit later, we will consider a general function $g(X)$.
Thus, if we want to guess the value of Y, we choose $E[Y]$.
Thus, if we want to guess the value of Y, we choose $E[Y]$.

Now assume we make some observation X related to Y.
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y?
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y.
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend of X.
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend on X. The next simplest function is linear: $g(X) = a + bX$.
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend of X. The next simplest function is linear: $g(X) = a + bX$. What is the best linear function?
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend of X. The next simplest function is linear: $g(X) = a + bX$. What is the best linear function? That is our next topic.
Thus, if we want to guess the value of Y, we choose $E[Y]$. Now assume we make some observation X related to Y. How do we use that observation to improve our guess about Y? The idea is to use a function $g(X)$ of the observation to estimate Y. The simplest function $g(X)$ is a constant that does not depend of X. The next simplest function is linear: $g(X) = a + bX$. What is the best linear function? That is our next topic. A bit later, we will consider a general function $g(X)$.

Linear Regression: Preamble
Linear Regression: Motivation

Example 1: 100 people.

Let $(X_n, Y_n) = (\text{height}, \text{weight})$ of person n, for $n = 1, \ldots, 100$:

The blue line is $Y = -114.3 + 106.5X$. (X in meters, Y in kg.)

Best linear fit: Linear Regression.
Example 1: 100 people.
Linear Regression: Motivation

Example 1: 100 people.
Let \((X_n, Y_n)\) = (height, weight) of person \(n\), for \(n = 1, \ldots, 100\):
Linear Regression: Motivation

Example 1: 100 people.

Let \((X_n, Y_n) = (\text{height, weight})\) of person \(n\), for \(n = 1, \ldots, 100\):
Linear Regression: Motivation

Example 1: 100 people.

Let \((X_n, Y_n) = (\text{height, weight})\) of person \(n\), for \(n = 1, \ldots, 100\):

![Fitted Line Plot](image)

The blue line is \(Y = -114.3 + 106.5X\). (\(X\) in meters, \(Y\) in kg.)
Linear Regression: Motivation

Example 1: 100 people.

Let \((X_n, Y_n) = \text{(height, weight)}\) of person \(n\), for \(n = 1, \ldots, 100\):

The blue line is \(Y = -114.3 + 106.5X\). \((X\ \text{in meters, } Y\ \text{in kg.})\)

Best linear fit: Linear Regression.
Example 2: 15 people.
Motivation

Example 2: 15 people.

We look at two attributes: \((X_n, Y_n)\) of person \(n\), for \(n = 1, \ldots, 15:\)
Motivation

Example 2: 15 people.

We look at two attributes: \((X_n, Y_n)\) of person \(n\), for \(n = 1, \ldots, 15\):
Motivation

Example 2: 15 people.

We look at two attributes: \((X_n, Y_n)\) of person \(n\), for \(n = 1, \ldots, 15\):

The line \(Y = a + bX\) is the linear regression.
Covariance

Definition The covariance of X and Y is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$
Definition The covariance of X and Y is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$
Covariance

Definition The covariance of X and Y is

$$\text{cov}(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$\text{cov}(X, Y) = E[XY] - E[X]E[Y].$$

Proof:
Covariance

Definition The covariance of X and Y is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Proof:
Covariance

Definition The covariance of X and Y is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Proof:
Covariance

Definition The covariance of X and Y is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Proof:
Think about $E[X] = E[Y] = 0$. Just $E[XY]$. \(\square \)

For the sake of completeness.
Covariance

Definition The covariance of X and Y is

$$cov(X, Y) := E[(X - E[X])(Y - E[Y])].$$

Fact

$$cov(X, Y) = E[XY] - E[X]E[Y].$$

Proof:

For the sake of completeness.

$$= E[XY] - E[X]E[Y].$$
Examples of Covariance

Note that $E[X] = 0$ and $E[Y] = 0$ in these examples. Then $\text{cov}(X, Y) = E[XY]$.

When $\text{cov}(X, Y) > 0$, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.

When $\text{cov}(X, Y) < 0$, when X is larger, Y tends to be smaller. X and Y are said to be negatively correlated.

When $\text{cov}(X, Y) = 0$, we say that X and Y are uncorrelated.
Examples of Covariance

Note that $E[X] = 0$ and $E[Y] = 0$ in these examples. Then $\text{cov}(X, Y) = E[XY]$.
Examples of Covariance

Note that $E[X] = 0$ and $E[Y] = 0$ in these examples. Then $\text{cov}(X, Y) = E[XY]$.

When $\text{cov}(X, Y) > 0$, the RVs X and Y tend to be large or small together.
Examples of Covariance

Note that $E[X] = 0$ and $E[Y] = 0$ in these examples. Then $cov(X, Y) = E[XY]$.

When $cov(X, Y) > 0$, the RVs X and Y tend to be large or small together. X and Y are said to be **positively correlated**.
Examples of Covariance

Note that $E[X] = 0$ and $E[Y] = 0$ in these examples. Then $\text{cov}(X, Y) = E[XY]$.

When $\text{cov}(X, Y) > 0$, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.

When $\text{cov}(X, Y) < 0$, when X is larger, Y tends to be smaller.
Examples of Covariance

Note that $E[X] = 0$ and $E[Y] = 0$ in these examples. Then $cov(X, Y) = E[XY]$.

When $cov(X, Y) > 0$, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.

When $cov(X, Y) < 0$, when X is larger, Y tends to be smaller. X and Y are said to be negatively correlated.
Examples of Covariance

Note that $E[X] = 0$ and $E[Y] = 0$ in these examples. Then $\text{cov}(X, Y) = E[XY]$.

When $\text{cov}(X, Y) > 0$, the RVs X and Y tend to be large or small together. X and Y are said to be positively correlated.

When $\text{cov}(X, Y) < 0$, when X is larger, Y tends to be smaller. X and Y are said to be negatively correlated.

When $\text{cov}(X, Y) = 0$, we say that X and Y are uncorrelated.
Examples of Covariance

\[E[X] = 1 \times 0.15 + 2 \times 0.4 + 3 \times 0.45 = 1.9 \]

\[E[X^2] = 12 \times 0.15 + 2^2 \times 0.4 + 3^2 \times 0.45 = 5.8 \]

\[E[Y] = 1 \times 0.2 + 2 \times 0.6 + 3 \times 0.2 = 2 \]

\[E[XY] = 1 \times 0.05 + 2 \times 0.15 + \cdots + 3^2 \times 0.2 = 4.85 \]

\[\text{cov}(X,Y) = E[XY] - E[X]E[Y] = 1.05 - 1.9 \times 2 = -0.95 \]

\[\text{var}(X) = E[X^2] - (E[X])^2 = 5.8 - 1.9^2 = 2.19 \]
Examples of Covariance

\[E[X] = 1 \times 0.15 + 2 \times 0.4 + 3 \times 0.45 = 1.9 \]
Examples of Covariance

\[E[X] = 1 \times 0.15 + 2 \times 0.4 + 3 \times 0.45 = 1.9 \]
\[E[X^2] = 1^2 \times 0.15 + 2^2 \times 0.4 + 3^2 \times 0.45 = 5.8 \]
Examples of Covariance

\[E[X] = 1 \times 0.15 + 2 \times 0.4 + 3 \times 0.45 = 1.9 \]
\[E[X^2] = 1^2 \times 0.15 + 2^2 \times 0.4 + 3^2 \times 0.45 = 5.8 \]
\[E[Y] = 1 \times 0.2 + 2 \times 0.6 + 3 \times 0.2 = 2 \]
Examples of Covariance

\[
E[X] = 1 \times 0.15 + 2 \times 0.4 + 3 \times 0.45 = 1.9
\]
\[
E[X^2] = 1^2 \times 0.15 + 2^2 \times 0.4 + 3^2 \times 0.45 = 5.8
\]
\[
E[Y] = 1 \times 0.2 + 2 \times 0.6 + 3 \times 0.2 = 2
\]
\[
E[XY] = 1 \times 0.05 + 1 \times 2 \times 0.1 + \cdots + 3 \times 3 \times 0.2 = 4.85
\]
Examples of Covariance

\[E[X] = 1 \times 0.15 + 2 \times 0.4 + 3 \times 0.45 = 1.9 \]
\[E[X^2] = 1^2 \times 0.15 + 2^2 \times 0.4 + 3^2 \times 0.45 = 5.8 \]
\[E[Y] = 1 \times 0.2 + 2 \times 0.6 + 3 \times 0.2 = 2 \]
\[E[XY] = 1 \times 0.05 + 1 \times 2 \times 0.1 + \cdots + 3 \times 3 \times 0.2 = 4.85 \]
\[\text{cov}(X, Y) = E[XY] - E[X]E[Y] = 1.05 \]
Examples of Covariance

\[E[X] = 1 \times 0.15 + 2 \times 0.4 + 3 \times 0.45 = 1.9 \]
\[E[X^2] = 1^2 \times 0.15 + 2^2 \times 0.4 + 3^2 \times 0.45 = 5.8 \]
\[E[Y] = 1 \times 0.2 + 2 \times 0.6 + 3 \times 0.2 = 2 \]
\[E[XY] = 1 \times 0.05 + 1 \times 2 \times 0.1 + \cdots + 3 \times 3 \times 0.2 = 4.85 \]
\[\text{cov}(X, Y) = E[XY] - E[X]E[Y] = 1.05 \]
\[\text{var}[X] = E[X^2] - E[X]^2 = 2.19. \]
Properties of Covariance

\[
\]
Properties of Covariance

\[
\]

Fact

(a) var\([X]\) = \text{cov}(X, X)
Properties of Covariance

Fact
(a) \(\text{var}[X] = \text{cov}(X, X) \)
(b) \(X, Y \) independent \(\Rightarrow \text{cov}(X, Y) = \)
Properties of Covariance

Fact
(a) \(\text{var}[X] = \text{cov}(X, X) \)
(b) \(X, Y \) independent \(\Rightarrow \text{cov}(X, Y) = 0 \)
Properties of Covariance

Fact
(a) \(\text{var}[X] = \text{cov}(X, X) \)
(b) \(X, Y \) independent \(\Rightarrow \) \(\text{cov}(X, Y) = 0 \)
(c) \(\text{cov}(a + X, b + Y) = \text{cov}(X, Y) \)
Properties of Covariance

Fact
(a) \(\text{var}[X] = \text{cov}(X, X) \)
(b) \(X, Y \) independent \(\Rightarrow \) \(\text{cov}(X, Y) = 0 \)
(c) \(\text{cov}(a + X, b + Y) = \text{cov}(X, Y) \)
(d) \(\text{cov}(aX + bY, cU + dV) = ac \cdot \text{cov}(X, U) + ad \cdot \text{cov}(X, V) \)
\[+ bc \cdot \text{cov}(Y, U) + bd \cdot \text{cov}(Y, V). \]
Properties of Covariance

Fact
(a) \(\text{var}[X] = \text{cov}(X, X) \)
(b) \(X, Y \) independent \(\Rightarrow \) \(\text{cov}(X, Y) = 0 \)
(c) \(\text{cov}(a + X, b + Y) = \text{cov}(X, Y) \)
(d) \(\text{cov}(aX + bY, cU + dV) = ac \cdot \text{cov}(X, U) + ad \cdot \text{cov}(X, V) + bc \cdot \text{cov}(Y, U) + bd \cdot \text{cov}(Y, V) \).

Proof:
(a)-(b)-(c) are obvious.
Properties of Covariance

\[
\]

Fact

(a) \(\text{var}[X] = \text{cov}(X, X) \)

(b) \(X, Y \) independent \(\Rightarrow \) \(\text{cov}(X, Y) = 0 \)

(c) \(\text{cov}(a + X, b + Y) = \text{cov}(X, Y) \)

(d) \(\text{cov}(aX + bY, cU + dV) = ac \cdot \text{cov}(X, U) + ad \cdot \text{cov}(X, V) + bc \cdot \text{cov}(Y, U) + bd \cdot \text{cov}(Y, V). \)

Proof:

(a)-(b)-(c) are obvious.

(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean.
Properties of Covariance

\[
\]

Fact
(a) \(\text{var}[X] = \text{cov}(X, X)\)
(b) \(X, Y\) independent \(\Rightarrow\) \(\text{cov}(X, Y) = 0\)
(c) \(\text{cov}(a + X, b + Y) = \text{cov}(X, Y)\)
(d) \(\text{cov}(aX + bY, cU + dV) = ac \cdot \text{cov}(X, U) + ad \cdot \text{cov}(X, V) + bc \cdot \text{cov}(Y, U) + bd \cdot \text{cov}(Y, V)\).

Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

\[
\text{cov}(aX + bY, cU + dV) = E[(aX + bY)(cU + dV)]
\]
Properties of Covariance

Fact
(a) \(\text{var}[X] = \text{cov}(X, X) \)
(b) \(X, Y \) independent \(\Rightarrow \) \(\text{cov}(X, Y) = 0 \)
(c) \(\text{cov}(a + X, b + Y) = \text{cov}(X, Y) \)
(d) \(\text{cov}(aX + bY, cU + dV) = ac \cdot \text{cov}(X, U) + ad \cdot \text{cov}(X, V) \)
\[+ bc \cdot \text{cov}(Y, U) + bd \cdot \text{cov}(Y, V). \]

Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

\[\text{cov}(aX + bY, cU + dV) = E[(aX + bY)(cU + dV)] \]
\[= ac \cdot E[XU] + ad \cdot E[XV] + bc \cdot E[YU] + bd \cdot E[YV]. \]
Properties of Covariance

\[
\]

Fact
(a) \(\text{var}[X] = \text{cov}(X, X)\)
(b) \(X, Y\) independent \(\Rightarrow \text{cov}(X, Y) = 0\)
(c) \(\text{cov}(a + X, b + Y) = \text{cov}(X, Y)\)
(d) \(\text{cov}(aX + bY, cU + dV) = ac \cdot \text{cov}(X, U) + ad \cdot \text{cov}(X, V) + bc \cdot \text{cov}(Y, U) + bd \cdot \text{cov}(Y, V)\).

Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

\[
\text{cov}(aX + bY, cU + dV) = E[(aX + bY)(cU + dV)] = ac \cdot E[XU] + ad \cdot E[XV] + bc \cdot E[YU] + bd \cdot E[YV] = ac \cdot \text{cov}(X, U) + ad \cdot \text{cov}(X, V) + bc \cdot \text{cov}(Y, U) + bd \cdot \text{cov}(Y, V).
\]
Properties of Covariance

Fact
(a) \(\text{var}[X] = \text{cov}(X, X) \)
(b) \(X, Y \) independent \(\Rightarrow \text{cov}(X, Y) = 0 \)
(c) \(\text{cov}(a + X, b + Y) = \text{cov}(X, Y) \)
(d) \(\text{cov}(aX + bY, cU + dV) = ac \cdot \text{cov}(X, U) + ad \cdot \text{cov}(X, V) \)
\[\quad + bc \cdot \text{cov}(Y, U) + bd \cdot \text{cov}(Y, V). \]

Proof:
(a)-(b)-(c) are obvious.
(d) In view of (c), one can subtract the means and assume that the RVs are zero-mean. Then,

\[\text{cov}(aX + bY, cU + dV) = E[(aX + bY)(cU + dV)] \]
\[= ac \cdot E[XU] + ad \cdot E[XV] + bc \cdot E[YU] + bd \cdot E[XY] \]
\[= ac \cdot \text{cov}(X, U) + ad \cdot \text{cov}(X, V) + bc \cdot \text{cov}(Y, U) + bd \cdot \text{cov}(Y, V). \]
Linear Regression: Non-Bayesian

Definition
Given the samples \(\{(X_n, Y_n), n = 1, \ldots, N\} \),
Linear Regression: Non-Bayesian

Definition
Given the samples \(\{(X_n, Y_n), n = 1, \ldots, N\} \), the Linear Regression of \(Y \) over \(X \) is

\[\hat{Y} = a + bX \]
Linear Regression: Non-Bayesian

Definition
Given the samples \(\{(X_n, Y_n), n = 1, \ldots, N\} \), the Linear Regression of \(Y \) over \(X \) is

\[
\hat{Y} = a + bX
\]

where \((a, b)\) minimize

\[
\sum_{n=1}^{N} (Y_n - a - bX_n)^2.
\]
Linear Regression: Non-Bayesian

Definition
Given the samples \(\{(X_n, Y_n), n = 1, \ldots, N\} \), the Linear Regression of \(Y \) over \(X \) is
\[
\hat{Y} = a + bX
\]
where \((a, b)\) minimize
\[
\sum_{n=1}^{N} (Y_n - a - bX_n)^2.
\]
Thus, \(\hat{Y}_n = a + bX_n \) is our guess about \(Y_n \) given \(X_n \).
Linear Regression: Non-Bayesian

Definition
Given the samples \(\{(X_n, Y_n), n = 1, \ldots, N\} \), the Linear Regression of \(Y \) over \(X \) is

\[
\hat{Y} = a + bX
\]

where \((a, b)\) minimize

\[
\sum_{n=1}^{N} (Y_n - a - bX_n)^2.
\]

Thus, \(\hat{Y}_n = a + bX_n \) is our guess about \(Y_n \) given \(X_n \). The squared error is \((Y_n - \hat{Y}_n)^2 \).
Linear Regression: Non-Bayesian

Definition
Given the samples \(\{(X_n, Y_n), n = 1, \ldots, N\} \), the Linear Regression of \(Y \) over \(X \) is

\[
\hat{Y} = a + bX
\]

where \((a, b)\) minimize

\[
\sum_{n=1}^{N} (Y_n - a - bX_n)^2.
\]

Thus, \(\hat{Y}_n = a + bX_n \) is our guess about \(Y_n \) given \(X_n \).
The squared error is \((Y_n - \hat{Y}_n)^2 \).
The LR minimizes the sum of the squared errors.
Linear Regression: Non-Bayesian

Definition
Given the samples \(\{(X_n, Y_n), n = 1, \ldots, N\} \), the Linear Regression of \(Y \) over \(X \) is

\[
\hat{Y} = a + bX
\]

where \((a, b)\) minimize

\[
\sum_{n=1}^{N} (Y_n - a - bX_n)^2.
\]

Thus, \(\hat{Y}_n = a + bX_n \) is our guess about \(Y_n \) given \(X_n \).
The squared error is \((Y_n - \hat{Y}_n)^2\).
The LR minimizes the sum of the squared errors.

Why the squares and not the absolute values?
Linear Regression: Non-Bayesian

Definition
Given the samples \(\{(X_n, Y_n), n = 1, \ldots, N\} \), the Linear Regression of \(Y \) over \(X \) is

\[
\hat{Y} = a + bX
\]

where \((a, b)\) minimize

\[
\sum_{n=1}^{N} (Y_n - a - bX_n)^2.
\]

Thus, \(\hat{Y}_n = a + bX_n \) is our guess about \(Y_n \) given \(X_n \).

The squared error is \((Y_n - \hat{Y}_n)^2 \).

The LR minimizes the sum of the squared errors.

Why the squares and not the absolute values?

Main justification: much easier!
Linear Regression: Non-Bayesian

Definition
Given the samples \(\{(X_n, Y_n), n = 1, \ldots, N\} \), the Linear Regression of \(Y \) over \(X \) is

\[
\hat{Y} = a + bX
\]

where \((a, b)\) minimize

\[
\sum_{n=1}^{N} (Y_n - a - bX_n)^2.
\]

Thus, \(\hat{Y}_n = a + bX_n \) is our guess about \(Y_n \) given \(X_n \).

The squared error is \((Y_n - \hat{Y}_n)^2\).

The LR minimizes the sum of the squared errors.

Why the squares and not the absolute values?

Main justification: much easier!

Note: This is a non-Bayesian formulation: there is no prior.
Linear Least Squares Estimate

Definition

Given two RVs X and Y with known distribution $P[X = x, Y = y]$, the **Linear Least Squares Estimate** of Y given X is

$$\hat{Y} = a + bX =: L[Y | X]$$

where (a, b) minimize $g(a, b) := E[(Y - a - bX)^2]$. Thus, $\hat{Y} = a + bX$ is our guess about Y given X.

The squared error is $(Y - \hat{Y})^2$. The LLSE minimizes the expected value of the squared error.

Why the squares and not the absolute values? Main justification: much easier!

Note: This is a Bayesian formulation: there is a prior $P[X = x, Y = y]$.
Linear Least Squares Estimate

Definition

Given two RVs X and Y with known distribution $Pr[X=x, Y=y]$, the Linear Least Squares Estimate of Y given X is

$$\hat{Y} = a + bX =: L[Y|X]$$

where (a, b) minimize $g(a, b) := E[(Y - a - bX)^2]$. Thus, $\hat{Y} = a + bX$ is our guess about Y given X.

The squared error is $(Y - \hat{Y})^2$.

The LLSE minimizes the expected value of the squared error.

Why the squares and not the absolute values? Main justification: much easier!

Note: This is a Bayesian formulation: there is a prior $Pr[X=x, Y=y]$.
Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$,

The squared error is $(Y - \hat{Y})^2$. The LLSE minimizes the expected value of the squared error.

Why the squares and not the absolute values? Main justification: much easier!

Note: This is a Bayesian formulation: there is a prior $Pr[X = x, Y = y]$.

Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the Linear Least Squares Estimate of Y given X is

$$\hat{Y} = a + bX =: L[Y|X]$$
Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the Linear Least Squares Estimate of Y given X is

$$\hat{Y} = a + bX =: L[Y|X]$$

where (a, b) minimize

$$g(a, b) := E[(Y - a - bX)^2].$$
Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the Linear Least Squares Estimate of Y given X is

$$\hat{Y} = a + bX =: L[Y|X]$$

where (a, b) minimize

$$g(a, b) := E[(Y - a - bX)^2].$$

Thus, $\hat{Y} = a + bX$ is our guess about Y given X.

The squared error is $(Y - \hat{Y})^2$. The LLSE minimizes the expected value of the squared error. Why the squares and not the absolute values? Main justification: much easier!

Note: This is a Bayesian formulation: there is a prior $Pr[X = x, Y = y]$.
Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the Linear Least Squares Estimate of Y given X is

$$\hat{Y} = a + bX =: L[Y|X]$$

where (a, b) minimize

$$g(a, b) := E[(Y - a - bX)^2].$$

Thus, $\hat{Y} = a + bX$ is our guess about Y given X. The squared error is $(Y - \hat{Y})^2$.
Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the Linear Least Squares Estimate of Y given X is

$$\hat{Y} = a + bX =: L[Y|X]$$

where (a, b) minimize

$$g(a, b) := E[(Y - a - bX)^2].$$

Thus, $\hat{Y} = a + bX$ is our guess about Y given X. The squared error is $(Y - \hat{Y})^2$. The LLSE minimizes the expected value of the squared error.
Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the Linear Least Squares Estimate of Y given X is

$$\hat{Y} = a + bX =: L[Y|X]$$

where (a, b) minimize

$$g(a, b) := E[(Y - a - bX)^2].$$

Thus, $\hat{Y} = a + bX$ is our guess about Y given X.
The squared error is $(Y - \hat{Y})^2$.
The LLSE minimizes the expected value of the squared error.

Why the squares and not the absolute values?
Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the Linear Least Squares Estimate of Y given X is

\[
\hat{Y} = a + bX =: L[Y|X]
\]

where (a, b) minimize

\[
g(a, b) := E[(Y - a - bX)^2].
\]

Thus, $\hat{Y} = a + bX$ is our guess about Y given X. The squared error is $(Y - \hat{Y})^2$. The LLSE minimizes the expected value of the squared error.

Why the squares and not the absolute values?
Main justification: much easier!
Linear Least Squares Estimate

Definition

Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the Linear Least Squares Estimate of Y given X is

$$\hat{Y} = a + bX =: L[Y|X]$$

where (a, b) minimize

$$g(a, b) := E[(Y - a - bX)^2].$$

Thus, $\hat{Y} = a + bX$ is our guess about Y given X.

The squared error is $(Y - \hat{Y})^2$.

The LLSE minimizes the expected value of the squared error.

Why the squares and not the absolute values?

Main justification: much easier!

Note: This is a **Bayesian** formulation:
Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the Linear Least Squares Estimate of Y given X is

$$\hat{Y} = a + bX =: L[Y|X]$$

where (a, b) minimize

$$g(a, b) := E[(Y - a - bX)^2].$$

Thus, $\hat{Y} = a + bX$ is our guess about Y given X. The squared error is $(Y - \hat{Y})^2$. The LLSE minimizes the expected value of the squared error.

Why the squares and not the absolute values?
Main justification: much easier!

Note: This is a Bayesian formulation:
there is a prior
Linear Least Squares Estimate

Definition
Given two RVs X and Y with known distribution $Pr[X = x, Y = y]$, the **Linear Least Squares Estimate** of Y given X is

$$
\hat{Y} = a + bX =: L[Y|X]
$$

where (a, b) minimize

$$g(a, b) := E[(Y - a - bX)^2].$$

Thus, $\hat{Y} = a + bX$ is our guess about Y given X. The squared error is $(Y - \hat{Y})^2$. The LLSE minimizes the expected value of the squared error.

Why the squares and not the absolute values?
Main justification: much easier!

Note: This is a **Bayesian** formulation:
there is a prior $Pr[X = x, Y = y]$.
LR: Non-Bayesian or Uniform?

Observe that

$$\sum_{n=1}^{N} (Y_n - a - bX_n)^2 = \mathbb{E}[(Y - a - bX)^2]$$

where one assumes that

$$\mathbb{P}((X, Y) = (X_n, Y_n)) = \frac{1}{N}$$

for \(n = 1, \ldots, N\).

That is, the non-Bayesian LR is equivalent to the Bayesian LLSE that assumes that \((X, Y)\) is uniform on the set of observed samples.

Thus, we can study the two cases LR and LLSE in one shot. However, the interpretations are different!
LR: Non-Bayesian or Uniform?

Observe that

\[
\frac{1}{N} \sum_{n=1}^{N} (Y_n - a - bX_n)^2 = E[(Y - a - bX)^2]
\]

where one assumes that

\[(X, Y) = (X_n, Y_n), \text{ w.p. } \frac{1}{N} \text{ for } n = 1, \ldots, N.\]
LR: Non-Bayesian or Uniform?

Observe that

\[
\frac{1}{N} \sum_{n=1}^{N} (Y_n - a - bX_n)^2 = E[(Y - a - bX)^2]
\]

where one assumes that

\[(X, Y) = (X_n, Y_n), \text{ w.p. } \frac{1}{N} \text{ for } n = 1, \ldots, N.\]

That is, the non-Bayesian LR is equivalent to the Bayesian LLSE that assumes that \((X, Y)\) is uniform on the set of observed samples.
LR: Non-Bayesian or Uniform?

Observe that

\[
\frac{1}{N} \sum_{n=1}^{N} (Y_n - a - bX_n)^2 = E[(Y - a - bX)^2]
\]

where one assumes that

\[(X, Y) = (X_n, Y_n), \text{ w.p. } \frac{1}{N} \text{ for } n = 1, \ldots, N.\]

That is, the non-Bayesian LR is equivalent to the Bayesian LLSE that assumes that \((X, Y)\) is uniform on the set of observed samples. Thus, we can study the two cases LR and LLSE in one shot.
LR: Non-Bayesian or Uniform?

Observe that

\[
\frac{1}{N} \sum_{n=1}^{N} (Y_n - a - bX_n)^2 = E[(Y - a - bX)^2]
\]

where one assumes that \((X, Y) = (X_n, Y_n), \text{ w.p. } \frac{1}{N} \text{ for } n = 1, \ldots, N.\)

That is, the non-Bayesian LR is equivalent to the Bayesian LLSE that assumes that \((X, Y)\) is uniform on the set of observed samples.

Thus, we can study the two cases LR and LLSE in one shot. However, the interpretations are different!
Next Time.