Today

Finish Linear Regression:
Best linear function prediction of Y given X.

MMSE: Best Function that predicts Y from S.

Conditional Expectation.

Applications to random processes.

Estimation Error

We saw that the LLSE of Y given X is

$$ L[Y|X] = \hat{Y} = \hat{Y} = E[Y] + \frac{\text{cov}(X,Y)}{\text{var}(X)}(X - E[X]). $$

How good is this estimator?

Or what is the mean squared estimation error?

We find

$$ E[(Y - L[Y|X])^2] = E[(Y - E[Y] - \frac{\text{cov}(X,Y)}{\text{var}(X)}(X - E[X]))^2] $$

$$ = E[(Y - E[Y])^2] - 2\text{cov}(X,Y)/\text{var}(X)E[(Y - E[Y])(X - E[X])] $$

$$ + \frac{\text{cov}(X,Y)^2}{\text{var}(X)}E[(X - E[X])^2] $$

$$ = \text{var}(Y) - \text{cov}(X,Y)^2/\text{var}(X). $$

Without observations, the estimate is $E[Y]$. The error is $\text{var}(Y)$. Observing X reduces the error.

LLSE

Theorem

Consider two RVs X, Y with a given distribution $\Pr[X = x, Y = y]$.

Then,

$$ L[Y|X] = \hat{Y} = E[Y] + \frac{\text{cov}(X,Y)}{\text{var}(X)}(X - E[X]). $$

Proof 1:

$$ E[Y|X] = E[Y] + \frac{\text{cov}(X,Y)}{\text{var}(X)}(X - E[X]) $$

Or what is the mean squared estimation error?

Since:

$$ \text{var}(Y) = E[(Y - E[Y])^2] $$

Then,

$$ E[(Y - \hat{Y})^2] = E[(Y - E[Y] - \frac{\text{cov}(X,Y)}{\text{var}(X)}(X - E[X]))^2] $$

This shows that $E[(Y - \hat{Y})^2] \leq E[(Y - a - bX)^2]$, for all (a,b).

Thus \hat{Y} is the LLSE.

A Bit of Algebra

$$ Y - \hat{Y} = (Y - E[Y]) - \frac{\text{cov}(X,Y)}{\text{var}(X)}(X - E[X]). $$

Hence, $E[Y - \hat{Y}] = 0$. We want to show that $E[(Y - \hat{Y})^2] = 0$.

Note that

$$ E[(Y - \hat{Y})^2] = E[(Y - \hat{Y})(X - E[X])]. $$

because $E[(Y - \hat{Y})X] = E(Y - \hat{Y})E[X] = 0$.

Now,

$$ E[(Y - \hat{Y})(X - E[X])] $$

$$ = E[(Y - E[Y])(X - E[X])] - \frac{\text{cov}(X,Y)}{\text{var}(X)}E[(X - E[X])(X - E[X])] $$

$$ = \text{cov}(X,Y) - \frac{\text{cov}(X,Y)^2}{\text{var}(X)}. $$

(Recall that $\text{cov}(X,Y) = E[(X - E[X])(Y - E[Y])]$ and $\text{var}(X) = E[(X - E[X])^2]$.)

Estimation Error: A Picture

We saw that

$$ L[Y|X] = \hat{Y} = E[Y] + \frac{\text{cov}(X,Y)}{\text{var}(X)}(X - E[X]) $$

and

$$ E[Y - L[Y|X]^2] = \text{var}(Y) - \frac{\text{cov}(X,Y)^2}{\text{var}(X)}. $$

Here is a picture when $E[Y] = 0$.

Dimensions correspond to sample points, uniform sample space.

Linear Regression Examples

Example 1:

- **Linear Regression**
- $\theta_0 + \theta_1 X_0$
Linear Regression Examples

Example 2:

We find:

\[E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = 1/2; \]
\[\text{var}[X] = E[X^2] - E[X]^2 = 1/2; \]
\[\text{cov}(X, Y) = E[XY] - E[X]E[Y] = 1/2; \]
\[\text{LR: } \hat{Y} = E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]) = X. \]

Example 3:

We find:

\[E[X] = 0; E[Y] = 0; E[X^2] = 1/2; E[XY] = -1/2; \]
\[\text{var}[X] = E[X^2] - E[X]^2 = 1/2; \]
\[\text{cov}(X, Y) = E[XY] - E[X]E[Y] = -1/2; \]
\[\text{LR: } \hat{Y} = E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]) = -X. \]

Example 4:

We find:

\[E[X] = 3; E[Y] = 2.5; E[X^2] = \frac{3}{15}(1 + 2^2 + 3^2 + 4^2 + 5^2) = \ldots = 8.4; \]
\[\text{var}[X] = 11 - 9 = 2; \]
\[\text{cov}(X, Y) = 8.4 - 3 \times 2.5 = 0.9; \]
\[\text{LR: } \hat{Y} = 2.5 + \frac{0.9}{2}(X - 3) = 1.15 + 0.45X. \]

Summary

1. Linear Regression: \[L[Y|X] = E[Y] + \frac{\text{cov}(X, Y)}{\text{var}(X)}(X - E[X]) \]
2. Non-Bayesian: minimize \[\sum_a(Y_n - a - bX_n)^2 \]
3. Bayesian: minimize \[E[(Y - a - bX)^2] \]

Note that
- the LR line goes through \((E[X], E[Y])\)
- its slope is \(\frac{\text{cov}(X, Y)}{\text{var}(X)}\).
We get

We set to zero the derivatives w.r.t.

The conditional expectation of

Hence,

The quadratic regression of

That is, the estimation error is orthogonal to all

\(Y \) \text{es.}

Quite!

Or

Simple but most convenient.

It could be that

Or that

Conditional Expectation

Let \(X,Y \) be two random variables defined on the same probability space.

Definition: The quadratic regression of \(Y \) over \(X \) is the random variable

\[
Q[Y|X] = a + bX + cX^2
\]

where \(a, b, c \) are chosen to minimize \(E[(Y - a - bX - cX^2)^2] \).

Derivation: We set to zero the derivatives w.r.t. \(a, b, c \). We get

\[
\begin{align*}
0 &= E[Y - a - bX - cX^2] \\
0 &= E[(Y - a - bX - cX^2)|X] \\
0 &= E[(Y - a - bX - cX^2)|X]
\end{align*}
\]

We solve these three equations in the three unknowns \(a, b, c \).

Note: These equations imply that \(E[(Y - Q[Y|X])h(X)] = 0 \) for any \(h(X) = d + eX + fx^2 \). That is, the estimation error is orthogonal to all the quadratic functions of \(X \). Hence, \(Q[Y|X] \) is the projection of \(Y \) onto the space of quadratic functions of \(X \).

Quadratic Regression

Nonlinear Regression: Motivation

There are many situations where a good guess about \(Y \) given \(X \) is not linear.

E.g., (diameter of object, weight), (school years, income), (PSA level, cancer risk).

Our goal: explore estimates \(\hat{Y} = g(X) \) for nonlinear functions \(g(\cdot) \).

Deja vu, all over again?

Have we seen this before? Yes.

Is anything new? Yes.

The idea of defining \(g(x) = E[Y|X = x] \) and then \(E[Y|X] = g(X) \).

Big deal? Quite! Simple but most convenient.

Recall that \(E[Y|X = x] = a + bX \) is a function of \(X \).

This is similar: \(E[Y|X] = g(X) \) for some function \(g(\cdot) \).

In general, \(g(X) \) is not linear, i.e., not \(a + bX \). It could be that \(g(X) = a + bX + cX^2 \). Or that \(g(X) = 2\sin(4X) + \exp(-3X) \). Or something else.

Conditional Expectation

Definition Let \(X \) and \(Y \) be RVs on \(\Omega \). The conditional expectation of \(Y \) given \(X \) is defined as

\[
E[Y|X] = g(X)
\]

where

\[
g(x) = E[Y|X = x] = \sum_y yPr[Y = y|X = x].
\]

Fact

\[
E[Y|X = x] = \sum_y Y(\omega)Pr[\omega|X = x]
\]

Proof:

\[E[Y|X = x] = E[Y|A] \text{ with } A = \{ \omega : X(\omega) = x \}. \]

Properties of CE

\[E[Y|X = x] = \sum_y yPr[Y = y|X = x] \]

Theorem

(a) \(X, Y \) independent \(\Rightarrow E[Y|X] = E[Y] \);

(b) \(E[aY + bZ|X] = aE[Y|X] + bE[Z|X] \);

(c) \(E[Yh(X)|X] = h(x)E[Y|X], \forall h(\cdot) \);

(d) \(E[h(X)E[Y|X]|X] = E[h(x)E[Y|X]], \forall h(\cdot) \);

(e) \(E[E[Y|X]] = E[Y] \).

Proof:

\[\begin{align*}
(a) & \text{ Obvious} \\
(b) & \text{ E[aY + bZ|X] = aE[Y|X] + bE[Z|X] } \\
(c) & \text{ E[Yh(X)|X] = \sum_{\omega} Y(\omega)h(X(\omega))Pr[\omega|X = x] } \\
& \quad = \sum_{\omega} Y(\omega)h(x)Pr[\omega|X = x] = h(x)E[Y|X = x]
\end{align*} \]
Consequently, if you pick a red ball, we find the theorem:

Theorem

(a) X, Y independent ⇒ E[Y|X] = E[Y];
(b) E[aY + bZ|X] = aE[Y|X] + bE[Z|X];
(c) E[Y(X)|X] = h(X)E[Y|X], ∀h(·);
(d) E[|h(X)|E[Y|X]] = E[h(X)]E[Y|X], ∀h(·);
(e) E[E[Y|X]] = E[Y].

Proof: (continued)

(d) E[Xh(X)]E[Y|X] = ∑h(x)E[Y|x]Pr[X = x]Pr[X = x] = ∑h(x)∑yPr(y|x)Pr[X = x] = ∑h(x)E[X = x|y]Pr[X = x] = E[Xh(X)].

Let h(X) = 1 in (d).

We say that the estimation error Y − E[Y|X] is orthogonal to every function h(X) of X.

We call this the projection property. More about this later.
Application: Going Viral

Consider a social network (e.g., Twitter).

You start a rumor (e.g., Rao is bad at making copies).

You have \(d \) friends. Each of your friend retweets w.p. \(p \).

Each of your friends has \(d \) friends, etc.

Does the rumor spread? Does it die out (mercifully)?

In this example, \(d = 4 \).

Fact: Number of tweets \(X = \sum_{n=1}^{\infty} X_n \) where \(X_n \) is tweets in level \(n \).

Then, \(E[X] < \infty \) iff \(pd < 1 \).

Proof:

Given \(X_0 = k, X_{n+1} = B(k, p) \). Hence, \(E[X_{n+1}|X_0] = kpd \).

Thus, \(E[X_{n+1}|X_0] = pdX_0 \). Consequently, \(E[X_0] = (pd)^{n-1}, n > 1 \).

If \(pd < 1 \), then \(E[X_0 + \cdots + X_n] \leq (1 - pd)^{-1} \implies E[X] \leq (1 - pd)^{-1} \).

If \(pd \geq 1 \), then for all \(C \) one can find \(n \) s.t. \(E[X] \geq E[X_0 + \cdots + X_n] \geq C \).

In fact, one can show that \(pd \geq 1 \implies \Pr[X = w] > 0 \).
Application: Going Viral

An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d$. Then, the same fact holds.
To see this, note that given $X_n = k$, and given the numbers of friends $D_1 = d_1$, ..., $D_k = d_k$ of these X_n people, one has $X_{n+1} = B(d_1 + \cdots + d_k, p)$. Hence,
$$E[X_{n+1}|X_n = k, D_1 = d_1, \ldots, D_k = d_k] = p(d_1 + \cdots + d_k).$$
Thus, $E[X_{n+1}|X_n = k, D_1, \ldots, D_k] = p(D_1 + \cdots + D_k)$.
Consequently, $E[X_{n+1}|X_n = k] = E[p(D_1 + \cdots + D_k)] = pdk$.
Finally, $E[X_{n+1}|X_n] = pdX_n$, and $E[X_{n+1}] = pdE[X_n]$.
We conclude as before.

Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald’s Identity

Assume that X_1, X_2, \ldots and Z are independent, where Z takes values in $(0, 1, 2, \ldots)$ and $E[X_n] = \mu$ for all $n \geq 1$.
Then,
$$E[X_1 + \cdots + X_Z | Z] = \mu \cdot Z.$$

Proof:
$$E[X_1 + \cdots + X_Z | Z = k] = \mu k.$$
Thus, $E[X_1 + \cdots + X_Z | Z] = \mu Z$.
Hence, $E[X_1 + \cdots + X_Z] = E[\mu Z] = \mu E[Z]$.

CE = MMSE

Theorem CE = MMSE

$g(X) := E[Y|X]$ is the function of X that minimizes $E[(Y - g(X))^2]$.

Proof:
Let $h(X)$ be any function of X. Then
$$E[(Y - h(X))^2] = E[(Y - g(X) + g(X) - h(X))^2]$$
$$= E[(Y - g(X))^2] + E[(g(X) - h(X))^2]$$
$$\quad + 2E[(Y - g(X))(g(X) - h(X))];$$
But,
$$E[(Y - g(X))(g(X) - h(X))] = 0$$
by the projection property.

Thus, $E[(Y - h(X))^2] \geq E[(Y - g(X))^2]$.

$E[Y|X]$ and $L[Y|X]$ as projections

$L[Y|X]$ is the projection of Y on $\{a + bX, a, b \in \mathbb{R}\}$: LLSE

$E[Y|X]$ is the projection of Y on $\{g(X), g(\cdot) : \mathbb{R} \rightarrow \mathbb{R}\}$: MMSE.

Summary

- Definition: $E[Y|X] := \sum_y y \cdot \Pr(Y = y | X = x)$
- Properties: Linearity: $Y - E[Y|X] \perp h(X); E[E[Y|X]] = E[Y]$.
- Some Applications:
 - Calculating $E[Y|X]$
 - Diluting
 - Mixing
 - Rumors
 - Wald
- MMSE: $E[Y|X]$ minimizes $E[(Y - g(X))^2]$ over all $g(\cdot)$.