Today

Finish up Conditional Expectation.
Markov Chains.
Application: Mixing

Each step, pick ball from each well-mixed urn. Transfer it to other urn. Let X_n be the number of red balls in the bottom urn at step n. What is $E[X_n]$?

Given $X_n = m$, $X_{n+1} = m + 1$ w.p. p and $X_{n+1} = m - 1$ w.p. q

where $p = (1 - m/N)^2$ (B goes up, R down) and $q = (m/N)^2$ (R goes up, B down).

Thus,

$$E[X_{n+1}|X_n] = X_n + p - q = X_n + 1 - 2X_n/N = 1 + \rho X_n, \quad \rho := (1 - 2/N).$$
We saw that $E[X_{n+1} | X_n] = 1 + \rho X_n$, $\rho := (1 - 2/N)$.

Does that make sense? Decreases: $X_n > n/2$. Increases: $X_n < n/2$. Hence,

\[
E[X_{n+1}] = 1 + \rho E[X_n]
\]

\[
E[X_2] = 1 + \rho N; E[X_3] = 1 + \rho (1 + \rho N) = 1 + \rho + \rho^2 N
\]

\[
E[X_4] = 1 + \rho (1 + \rho + \rho^2 N) = 1 + \rho + \rho^2 + \rho^3 N
\]

\[
E[X_n] = 1 + \rho + \cdots + \rho^{n-2} + \rho^{n-1} N.
\]

Hence,

\[
E[X_n] = \frac{1 - \rho^{n-1}}{1 - \rho} + \rho^{n-1} N, n \geq 1.
\]

As $n \to \infty$, goes to $N/2$.

Since $1 - \rho = 2/N$. And $\rho^n \to 0$.

Application: Mixing

Here is the plot.

$E[X_n]$
Application: Going Viral

Consider a social network (e.g., Twitter).
You start a rumor (e.g., Rao is bad at making copies).
You have d friends. Each of your friend retweets w.p. p.
Each of your friends has d friends, etc.
Does the rumor spread? Does it die out (mercifully)?

In this example, $d = 4$.
Application: Going Viral

Fact: Number of tweets $X = \sum_{n=1}^{\infty} X_n$ where X_n is tweets in level n. Then, $E[X] < \infty$ iff $pd < 1$.

Proof:
Given $X_n = k$, $X_{n+1} = B(kd, p)$. Hence, $E[X_{n+1} | X_n = k] = kpd$.
Thus, $E[X_{n+1} | X_n] = pdX_n$. Consequently, $E[X_n] = (pd)^{n-1}, n \geq 1$.
If $pd < 1$, then $E[X_1 + \cdots + X_n] \leq (1 - pd)^{-1} \implies E[X] \leq (1 - pd)^{-1}$.
If $pd \geq 1$, then for all C one can find n s.t.
\[E[X] \geq E[X_1 + \cdots + X_n] \geq C. \]

In fact, one can show that $pd \geq 1 \implies Pr[X = \infty] > 0$.

[Diagram with nodes and arrows indicating tweets and levels]
An easy extension: Assume that everyone has an independent number D_i of friends with $E[D_i] = d_i$. Then, the same fact holds.

Why? Given $X_n = k$.

$D_1 = d_1, \ldots, D_k = d_k$ – numbers of friends of these X_n people.

$\implies X_{n+1} = B(d_1 + \cdots + d_k, p)$. Hence,

$$E[X_{n+1}|X_n = k, D_1 = d_1, \ldots, D_k = d_k] = p(d_1 + \cdots + d_k).$$

Thus, $E[X_{n+1}|X_n = k, D_1, \ldots, D_k] = p(D_1 + \cdots + D_k)$.

Consequently, $E[X_{n+1}|X_n = k] = E[p(D_1 + \cdots + D_k)] = pdk$.

Finally, $E[X_{n+1}|X_n] = pdX_n$, and $E[X_{n+1}] = pdE[X_n]$.

We conclude as before.
Application: Wald’s Identity

Here is an extension of an identity we used in the last slide.

Theorem Wald’s Identity

Assume that X_1, X_2, \ldots and Z are independent, where

- Z takes values in \{0, 1, 2, \ldots\} and $E[X_n] = \mu$ for all $n \geq 1$.

Then,

$$E[X_1 + \cdots + X_Z] = \mu E[Z].$$

Proof:

$$E[X_1 + \cdots + X_Z | Z = k] = \mu k.$$

Thus, $E[X_1 + \cdots + X_Z | Z] = \mu Z$.

Hence, $E[X_1 + \cdots + X_Z] = E[\mu Z] = \mu E[Z].$
CE = MMSE

Theorem

\(E[Y|X] \) is the ‘best’ guess about \(Y \) based on \(X \).

Specifically, it is the function \(g(X) \) of \(X \) that minimizes \(E[(Y - g(X))^2] \).
Theorem $CE = MMSE$

$g(X) := E[Y|X]$ is the function of X that minimizes $E[(Y - g(X))^2]$.

Proof:

Let $h(X)$ be any function of X. Then

$$
E[(Y - h(X))^2] = E[(Y - g(X) + g(X) - h(X))^2] \\
= E[(Y - g(X))^2] + E[(g(X) - h(X))^2] \\
+ 2E[(Y - g(X))(g(X) - h(X))].
$$

But,

$$E[(Y - g(X))(g(X) - h(X))] = 0 \text{ by the projection property.}$$

Thus, $E[(Y - h(X))^2] \geq E[(Y - g(X))^2]$. \qed
$E[Y|X]$ and $L[Y|X]$ as projections

$L[Y|X]$ is the projection of Y on \(\{ a + bX, a, b \in \mathbb{R} \} \): LLSE

$E[Y|X]$ is the projection of Y on \(\{ g(X), g(\cdot) : \mathbb{R} \to \mathbb{R} \} \): MMSE.

Functions of X are linear subspace?

Vector \((g(X(\omega_1)), \ldots, g(X(\omega_\Omega))) \).

Coordinates ω and ω' with $X(\omega) = X(\omega')$

have same value: $\nu_\omega = \nu_{\omega'}$.

Linear constraints! Linear Subspace.
Summary

Conditional Expectation

- **Definition:** \(E[Y|X] := \sum_y yPr[Y = y|X = x] \)
- **Properties:** Linearity, \(Y - E[Y|X] \perp h(X) \); \(E[E[Y|X]] = E[Y] \)
- **Some Applications:**
 - Calculating \(E[Y|X] \)
 - Diluting
 - Mixing
 - Rumors
 - Wald

- **MMSE:** \(E[Y|X] \) minimizes \(E[(Y - g(X))^2] \) over all \(g(\cdot) \)
1. Examples
2. Definition
3. First Passage Time
Two-State Markov Chain

Here is a symmetric two-state Markov chain. It describes a random motion in \{0, 1\}. Here, \(a\) is the probability that the state changes in the next step.

Let's simulate the Markov chain:
Five-State Markov Chain

At each step, the MC follows one of the outgoing arrows of the current state, with equal probabilities.

Let’s simulate the Markov chain:
Finite Markov Chain: Definition

- A finite set of states: $\mathcal{X} = \{1, 2, \ldots, K\}$
- A probability distribution π_0 on \mathcal{X}: $\pi_0(i) \geq 0, \sum_i \pi_0(i) = 1$
- Transition probabilities: $P(i,j)$ for $i,j \in \mathcal{X}$

 $P(i,j) \geq 0, \forall i,j; \sum_j P(i,j) = 1, \forall i$

- $\{X_n, n \geq 0\}$ is defined so that

 $Pr[X_0 = i] = \pi_0(i), i \in \mathcal{X}$ (initial distribution)

 $Pr[X_{n+1} = j \mid X_0, \ldots, X_n = i] = P(i,j), i,j \in \mathcal{X}$.

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let’s define a Markov chain:

- $X_0 = S$ (start)
- $X_n = S$ for $n \geq 1$, if last flip was T and no H yet
- $X_n = E$ for $n \geq 1$, if we already got H (end)
First Passage Time - Example 1

Let’s flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E, starting from S. Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

(See next slide.) Hence,

$$p\beta(S) = 1,$$

so that $\beta(S) = 1/p$.

Note: Time until E is $G(p)$.

The mean of $G(p)$ is $1/p$!!!
First Passage Time - Example 1

Let's flip a coin with $Pr[H] = p$ until we get H. How many flips, on average?

Let $\beta(S)$ be the average time until E.

Then,

$$\beta(S) = 1 + q\beta(S) + p0.$$

Justification: N – number of steps until E, starting from S.

N' – number of steps until E, after the second visit to S.

And $Z = 1\{\text{first flip} = H\}$. Then,

$$N = 1 + (1 - Z) \times N' + Z \times 0.$$

Z and N' are independent. Also, $E[N'] = E[N] = \beta(S)$.

Hence, taking expectation,

$$\beta(S) = E[N] = 1 + (1 - p)E[N'] + p0 = 1 + q\beta(S) + p0.$$
First Passage Time - Example 2

Let’s flip a coin with \(Pr[H] = p \) until we get two consecutive \(H \)s. How many flips, on average?

\[
H \ T \ H \ T \ T \ T \ H \ T \ H \ T \ H \ T \ T \ H \ T \ H \ H
\]

Let’s define a Markov chain:

- \(X_0 = S \) (start)
- \(X_n = E \), if we already got two consecutive \(H \)s (end)
- \(X_n = T \), if last flip was \(T \) and we are not done
- \(X_n = H \), if last flip was \(H \) and we are not done
First Passage Time - Example 2

Let’s flip a coin with \(Pr[H] = p \) until we get two consecutive Hs. How many flips, on average? Here is a picture:

Let \(\beta(i) \) be the average time from state \(i \) until the MC hits state \(E \). We claim that (these are called the first step equations)

\[
\begin{align*}
\beta(S) &= 1 + p\beta(H) + q\beta(T) \\
\beta(H) &= 1 + p0 + q\beta(T) \\
\beta(T) &= 1 + p\beta(H) + q\beta(T).
\end{align*}
\]

Solving, we find \(\beta(S) = 2 + 3qp^{-1} + q^2p^{-2} \). (E.g., \(\beta(S) = 6 \) if \(p = 1/2 \).)
Let us justify the first step equation for $\beta(T)$. The others are similar.

$N(T)$ – number of steps, starting from T until the MC hits E.
$N(H)$ – be defined similarly.
$N'(T)$ – number of steps after the second visit to T until MC hits E.

\[
N(T) = 1 + Z \times N(H) + (1 - Z) \times N'(T)
\]

where $Z = 1\{\text{first flip in } T \text{ is } H\}$. Since Z and $N(H)$ are independent, and Z and $N'(T)$ are independent, taking expectations, we get

\[
E[N(T)] = 1 + pE[N(H)] + qE[N'(T)]
\]
i.e.,

\[
\beta(T) = 1 + p\beta(H) + q\beta(T).
\]
First Passage Time - Example 3

You roll a balanced six-sided die until the sum of the last two rolls is 8. How many times do you have to roll the die, on average?

\[\beta(S) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(1) = 1 + \frac{1}{6} \sum_{j=1}^{6} \beta(j); \beta(i) = 1 + \frac{1}{6} \sum_{j=1, \ldots, 6; j \neq 8-i}^{6} \beta(j), i = 2, \ldots, 6. \]

Symmetry: \(\beta(2) = \cdots = \beta(6) =: \gamma \). Also, \(\beta(1) = \beta(S) \). Thus,

\[\beta(S) = 1 + \frac{5}{6} \gamma + \beta(S)/6; \quad \gamma = 1 + \frac{4}{6} \gamma + \frac{1}{6} \beta(S). \]

\[\Rightarrow \cdots \beta(S) = 8.4. \]
You try to go up a ladder that has 20 rungs. Each step, succeed or go up one rung with probability $p = 0.9$. Otherwise, you fall back to the ground. Bummer. Time steps to reach the top of the ladder, on average?

$$
\beta(n) = 1 + p\beta(n+1) + q\beta(0), 0 \leq n < 19
$$

$$
\beta(19) = 1 + p0 + q\beta(0)
$$

$$
\Rightarrow \beta(0) = \frac{p^{-20} - 1}{1 - p} \approx 72.
$$

See Lecture Note 24 for algebra.
First Passage Time - Example 5

Game of “heads or tails” using coin with ‘heads’ probability \(p < 0.5 \).
Start with $10.
What is the probability that you reach $100 before $0?

Let \(\alpha(n) \) be the probability of reaching 100 before 0, starting from \(n \), for \(n = 0, 1, \ldots, 100 \).

\[
\alpha(0) = 0; \quad \alpha(100) = 1.
\]

\[
\alpha(n) = p\alpha(n + 1) + q\alpha(n - 1), \quad 0 < n < 100.
\]

\[
\Rightarrow \alpha(n) = \frac{1 - \rho^n}{1 - \rho^{100}} \quad \text{with} \quad \rho = qp^{-1}. \quad \text{(See LN 24)}
\]
First Passage Time - Example 5

Game of “heads or tails” using coin with ‘heads’ probability $p = .48$. Start with 10. Each step, flip yields ‘heads’, earn 1. Otherwise, lose 1. What is the probability that you reach 100 before 0?

Less than 1 in a 1000. Morale of example: Money in Vegas stays in Vegas.
First Step Equations

Let X_n be a MC on \mathcal{X} and $A, B \subset \mathcal{X}$ with $A \cap B = \emptyset$. Define

$$T_A = \min\{n \geq 0 \mid X_n \in A\} \text{ and } T_B = \min\{n \geq 0 \mid X_n \in B\}.$$

Let $\beta(i) = E[T_A \mid X_0 = i]$ and $\alpha(i) = \Pr[T_A < T_B \mid X_0 = i], i \in \mathcal{X}$.

The FSE are

$$\beta(i) = 0, i \in A$$
$$\beta(i) = 1 + \sum_j P(i,j) \beta(j), i \notin A$$
$$\alpha(i) = 1, i \in A$$
$$\alpha(i) = 0, i \in B$$
$$\alpha(i) = \sum_j P(i,j) \alpha(j), i \notin A \cup B.$$
Let X_n be a Markov chain on \mathcal{X} with P. Let $A \subset \mathcal{X}$.

Let also $g : \mathcal{X} \to \mathbb{R}$ be some function.

Define

$$\gamma(i) = E\left[\sum_{n=0}^{T_A} g(X_n) | X_0 = i\right], i \in \mathcal{X}.$$

Then

$$\gamma(i) = \begin{cases} g(i), & \text{if } i \in A \\ g(i) + \sum_j P(i,j) \gamma(j), & \text{otherwise.} \end{cases}$$
Example

Flip a fair coin until you get two consecutive Hs. What is the expected number of Ts that you see?

FSE:

\[
\begin{align*}
\gamma(S) &= 0 + 0.5\gamma(H) + 0.5\gamma(T) \\
\gamma(H) &= 0 + 0.5\gamma(HH) + 0.5\gamma(T) \\
\gamma(T) &= 1 + 0.5\gamma(H) + 0.5\gamma(T) \\
\gamma(HH) &= 0.
\end{align*}
\]

Solving, we find \(\gamma(S) = 2.5\).
Markov Chains

1. \(\Pr[X_{n+1} = j \mid X_0, \ldots, X_n = i] = P(i, j), i, j \in \mathcal{X} \)
2. \(T_A = \min\{n \geq 0 \mid X_n \in A\} \)
3. \(\alpha(i) = \Pr[T_A < T_B \mid X_0 = i] \Rightarrow FSE \)
4. \(\beta(i) = E[T_A \mid X_0 = i] \Rightarrow FSE \)
5. \(\gamma(i) = E[\sum_{n=0}^{T_A} g(X_n) \mid X_0 = i] \Rightarrow FSE. \)