Today.

Principle of Induction.
Today.

Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n + 1) \]
Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1) \]
Today.

Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n + 1) \]

And we get...

...Yes for 0, and we can conclude Yes for 1...

...and we can conclude Yes for 2...

...
Today.

Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N})P(n) \implies P(n + 1) \]

And we get...

\[(\forall n \in \mathbb{N})P(n). \]
Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n + 1) \]

And we get...

\[(\forall n \in \mathbb{N}) P(n). \]

...Yes for 0,
Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N})P(n) \implies P(n + 1) \]

And we get...

\[(\forall n \in \mathbb{N})P(n). \]

...Yes for 0, and we can conclude
Today.

Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N})P(n) \implies P(n + 1) \]

And we get...

\[(\forall n \in \mathbb{N})P(n).\]

...Yes for 0, and we can conclude Yes for 1...
Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N})P(n) \implies P(n + 1) \]

And we get...

\[(\forall n \in \mathbb{N})P(n). \]

...Yes for 0, and we can conclude Yes for 1...

and we can conclude
Today.

Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n + 1) \]

And we get...

\[(\forall n \in \mathbb{N}) P(n). \]

...Yes for 0, and we can conclude Yes for 1...

and we can conclude Yes for 2...
Today.

Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N}) P(n) \implies P(n+1) \]

And we get...

\[(\forall n \in \mathbb{N}) P(n). \]

...Yes for 0, and we can conclude Yes for 1...
and we can conclude Yes for 2.......
Today.

Principle of Induction.

\[P(0) \land (\forall n \in \mathbb{N})P(n) \implies P(n+1) \]

And we get...

\[(\forall n \in \mathbb{N})P(n). \]

...Yes for 0, and we can conclude Yes for 1...

and we can conclude Yes for 2.......
Climb an infinite ladder?
Climb an infinite ladder?
Climb an infinite ladder?

∀ k, P(k) ⇒ P(k+1)

P(0) ⇒ P(1) ⇒ P(2) ⇒ P(3)...

∀ n ∈ N, P(n)
Climb an infinite ladder?

\[P(0) \]
\[\forall k, P(k) \implies P(k + 1) \]
Climb an infinite ladder?

∀k, P(k) \implies P(k + 1)

P(0) \implies P(1) \implies P(2)

\ldots

\forall n \in \mathbb{N} \ P(n)
Climb an infinite ladder?

\[P(0) \]
\[\forall k, P(k) \implies P(k + 1) \]
\[P(0) \implies P(1) \implies P(2) \implies P(3) \]
Climb an infinite ladder?

∀ k, P(k) \implies P(k + 1)

P(0) \implies P(1) \implies P(2) \implies P(3) \ldots

Your favorite example of forever.
or the natural numbers...
Climb an infinite ladder?

∀k, \(P(k) \implies P(k + 1) \)

\[\begin{align*}
P(0) & \implies P(1) \implies P(2) \implies P(3) \ldots
\end{align*} \]
Climb an infinite ladder?

\[P(0) \]

\[P(1) \]

\[P(2) \]

\[P(3) \]

\[\forall k, P(k) \implies P(k + 1) \]

\[P(0) \implies P(1) \implies P(2) \implies P(3) \ldots \]
Climb an infinite ladder?

∀ \(n \in \mathbb{N} \)

\[P(n) \implies P(n+1) \implies P(n+2) \implies P(n+3) \implies \ldots \]
Climb an infinite ladder?

\[P(0) \Rightarrow P(1) \Rightarrow P(2) \Rightarrow P(3) \ldots \]

\((\forall n \in \mathbb{N}) P(n) \)
Climb an infinite ladder?

Your favorite example of forever..
Climb an infinite ladder?

∀ \(n \in \mathbb{N}\), \(P(n) \Rightarrow P(n+1) \Rightarrow P(n+2) \Rightarrow P(n+3) \Rightarrow \ldots \)

Your favorite example of forever..or the natural numbers...
Another Induction Proof.

Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. \((3 | (n^3 - n)) \).
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3|(n^3 - n)$).

Proof:

By induction.

Base Case: $P(0)$ is "$(0^3 - 0)$" is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \Rightarrow P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$(k+1)^3 - (k+1) = k^3 + 3k^2 + 3k + 1 - (k+1) = k^3 - k + 3k^2 + 3k = (k^3 - k) + 3k^2 + 3k$

Subtract/add $k = 3q + 3(k^2 + k)$

Induction Hyp.

Factor.

$(k+1)^3 - (k+1) = 3(q + k^2 + k)$

(Un)Distributive + over \times

$(q + k^2 + k)$ is integer (closed under addition and multiplication).

$\Rightarrow (k+1)^3 - (k+1)$ is divisible by 3.

Thus, $(\forall k \in N) P(k) \Rightarrow P(k+1)$ thus, theorem holds by induction.
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3 \mid (n^3 - n)$).

Proof: By induction.
Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3|\left(n^3 - n\right)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3.
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. (\(3 \mid (n^3 - n) \)).

Proof: By induction.
Base Case: \(P(0) \) is \("(0^3) - 0" \) is divisible by 3. Yes!
Another Induction Proof.

Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. \((3 | (n^3 - n))\).

Proof: By induction.
Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!
Induction Step: \((\forall k \in N), P(k) \implies P(k + 1)\)
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. \((3 | (n^3 - n)) \).

Proof: By induction.
Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!
Induction Step: \((\forall k \in \mathbb{N}), P(k) \implies P(k + 1)\)
Induction Hypothesis: \(k^3 - k \) is divisible by 3.
Another Induction Proof.

Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. \((3 | (n^3 - n)) \).

Proof: By induction.

Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!

Induction Step: \((\forall k \in N), P(k) \implies P(k + 1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3|(n^3 - n))$.

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
or $k^3 - k = 3q$ for some integer q.

Another Induction Proof.

Theorem: For every \(n \in \mathbb{N}, \ n^3 - n \) is divisible by 3. \((3 | (n^3 - n))\).

Proof: By induction.

Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!

Induction Step: \((\forall k \in \mathbb{N}), P(k) \implies P(k+1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\((k + 1)^3 - (k + 1)\)
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. (\(3 | (n^3 - n) \)).

Proof: By induction.

Base Case: \(P(0) \) is “\((0^3) - 0 \)” is divisible by 3. Yes!

Induction Step: \((\forall k \in \mathbb{N}), P(k) \implies P(k + 1) \)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
\]
Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
 or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$

$$= k^3 + 3k^2 + 2k$$
Another Induction Proof.

Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. \((3|(n^3 - n))\).

Proof: By induction.

Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!

Induction Step: \((\forall k \in N), P(k) \implies P(k + 1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
= k^3 + 3k^2 + 2k
= (k^3 - k) + 3k^2 + 3k
\]
Another Induction Proof.

Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. \((3 | (n^3 - n))\).

Proof: By induction.
Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!
Induction Step: \((\forall k \in N), P(k) \implies P(k + 1)\)
Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
= k^3 + 3k^2 + 2k
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
\]
Another Induction Proof.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3|(n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in \mathbb{N}), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
 or $k^3 - k = 3q$ for some integer q.

$$
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1) \\
= k^3 + 3k^2 + 2k \\
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k \\
= 3q + 3(k^2 + k)
$$
Another Induction Proof.

Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. (3|\((n^3 - n)\)).

Proof: By induction.

Base Case: \(P(0) \) is "\((0^3) - 0\)" is divisible by 3. Yes!

Induction Step: \((\forall k \in N), P(k) \implies P(k + 1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.
 or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
= k^3 + 3k^2 + 2k
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
= 3q + 3(k^2 + k) \quad \text{Induction Hyp.}
\]
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3|(n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$
$$= k^3 + 3k^2 + 2k$$
$$= (k^3 - k) + 3k^2 + 3k$$
$$= 3q + 3(k^2 + k)$$

Induction Hyp. Factor.
Another Induction Proof.

Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. \((3|(n^3 - n))\).

Proof: By induction.
Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!
Induction Step: \((\forall k \in N), P(k) \implies P(k + 1) \)
Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
\]
\[
= k^3 + 3k^2 + 2k
\]
\[
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
\]
\[
= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.}
\]
\[
= 3(q + k^2 + k)
\]
Another Induction Proof.

Theorem: For every \(n \in \mathbb{N} \), \(n^3 - n \) is divisible by 3. \((3 \mid (n^3 - n))\).

Proof: By induction.

Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!

Induction Step: \((\forall k \in \mathbb{N}), P(k) \implies P(k + 1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
\]
\[
= k^3 + 3k^2 + 2k
\]
\[
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
\]
\[
= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.}
\]
\[
= 3(q + k^2 + k) \quad \text{(Un)Distributive + over } \times
\]
Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. \((3 | (n^3 - n))\).

Proof: By induction.

Base Case: \(P(0) \) is \((0^3) - 0 \) is divisible by 3. Yes!

Induction Step: \((\forall k \in N), P(k) \implies P(k + 1) \)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
\]
\[
= k^3 + 3k^2 + 2k
\]
\[
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
\]
\[
= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.}
\]
\[
= 3(q + k^2 + k) \quad \text{(Un)Distributive + over } \times
\]

Or \((k + 1)^3 - (k + 1) = 3(q + k^2 + k) \).
Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3|(n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
or $k^3 - k = 3q$ for some integer q.

$$\begin{align*}
(k + 1)^3 - (k + 1) &= k^3 + 3k^2 + 3k + 1 - (k + 1) \\
&= k^3 + 3k^2 + 2k \\
&= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k \\
&= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.} \\
&= 3(q + k^2 + k) \quad \text{(Un)Distributive + over } \times
\end{align*}$$

Or $(k + 1)^3 - (k + 1) = 3(q + k^2 + k)$.

$(q + k^2 + k)$ is integer (closed under addition and multiplication).
Theorem: For every \(n \in N \), \(n^3 - n \) is divisible by 3. \((3|(n^3 - n))\).

Proof: By induction.

Base Case: \(P(0) \) is “\((0^3) - 0\)” is divisible by 3. Yes!

Induction Step: \((\forall k \in N), P(k) \implies P(k + 1)\)

Induction Hypothesis: \(k^3 - k \) is divisible by 3.

or \(k^3 - k = 3q \) for some integer \(q \).

\[
(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)
= k^3 + 3k^2 + 2k
= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k
= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.}
= 3(q + k^2 + k) \quad \text{(Un)Distributive + over } \times
\]

Or \((k + 1)^3 - (k + 1) = 3(q + k^2 + k). \)

\((q + k^2 + k) \) is integer (closed under addition and multiplication).

\(\implies (k + 1)^3 - (k + 1) \) is divisible by 3.
Another Induction Proof.

Theorem: For every $n \in \mathbb{N}$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.
Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!
Induction Step: $(\forall k \in \mathbb{N}), P(k) \implies P(k + 1)$
Induction Hypothesis: $k^3 - k$ is divisible by 3.
or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$
$$= k^3 + 3k^2 + 2k$$
$$= (k^3 - k) + 3k^2 + 3k$$ Subtract/add k
$$= 3q + 3(k^2 + k)$$ Induction Hyp. Factor.
$$= 3(q + k^2 + k)$$ (Un)Distributive + over \times

Or $(k + 1)^3 - (k + 1) = 3(q + k^2 + k)$.

$(q + k^2 + k)$ is integer (closed under addition and multiplication).

$$\implies (k + 1)^3 - (k + 1)$$ is divisible by 3.

Thus, $(\forall k \in \mathbb{N}) P(k) \implies P(k + 1)$
Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. $(3 | (n^3 - n))$.

Proof: By induction.

Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!

Induction Step: $(\forall k \in N), P(k) \implies P(k + 1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$

$$= k^3 + 3k^2 + 2k$$

$$= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k$$

$$= 3q + 3(k^2 + k) \quad \text{Induction Hyp.} \quad \text{Factor.}$$

$$= 3(q + k^2 + k) \quad \text{(Un)Distributive + over} \times$$

Or $(k + 1)^3 - (k + 1) = 3(q + k^2 + k)$.

$(q + k^2 + k)$ is integer (closed under addition and multiplication).

$\implies (k + 1)^3 - (k + 1)$ is divisible by 3.

Thus, $(\forall k \in N)P(k) \implies P(k + 1)$

Thus, theorem holds by induction.
Another Induction Proof.

Theorem: For every $n \in N$, $n^3 - n$ is divisible by 3. ($3 | (n^3 - n)$).

Proof: By induction.

Base Case: $P(0)$ is “$(0^3) - 0$” is divisible by 3. Yes!

Induction Step: $(\forall k \in N), \ P(k) \implies P(k+1)$

Induction Hypothesis: $k^3 - k$ is divisible by 3.

or $k^3 - k = 3q$ for some integer q.

$$(k + 1)^3 - (k + 1) = k^3 + 3k^2 + 3k + 1 - (k + 1)$$
$$= k^3 + 3k^2 + 2k$$
$$= (k^3 - k) + 3k^2 + 3k \quad \text{Subtract/add } k$$
$$= 3q + 3(k^2 + k) \quad \text{Induction Hyp. Factor.}$$
$$= 3(q + k^2 + k) \quad \text{(Un)Distributive + over } \times$$

Or $(k + 1)^3 - (k + 1) = 3(q + k^2 + k)$.

$(q + k^2 + k)$ is integer (closed under addition and multiplication).

$
\implies (k + 1)^3 - (k + 1)$ is divisible by 3.

Thus, $(\forall k \in N) P(k) \implies P(k+1)$

Thus, theorem holds by induction.

\square
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

![Map of the United States colored using the Four Color Theorem](image-url)
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”.

![Map of the United States with states colored according to the Four Color Theorem.](image-url)
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”. States connected at a point, can have same color.
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”. States connected at a point, can have same color. (Couldn’t find a map where they did though.)
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”. States connected at a point, can have same color. (Couldn’t find a map where they did though.)

Quick Test: Which states?
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”.
States connected at a point, can have same color. (Couldn’t find a map where they did though.)

Quick Test: Which states? Utah.
Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”.
States connected at a point, can have same color.
(Couldn’t find a map where they did though.)

Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”.
States connected at a point, can have same color.
(Couldn’t find a map where they did though.)

Four Color Theorem.

Theorem: Any map can be colored so that those regions that share an edge have different colors.

Check Out: “Four corners”.
States connected at a point, can have same color.
(Couldn’t find a map where they did though.)

Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

Fact: Swapping red and blue gives another valid colors.
Two color theorem: example.

Any map formed by dividing the plane into regions by drawing straight lines can be properly colored with two colors.

Fact: Swapping red and blue gives another valid colors.
Base Case.
Two color theorem: proof illustration.

Base Case.
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line. (Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \Rightarrow P(k+1)$.
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions

Algorithm gives $P(k) \Rightarrow P(k+1)$.

[Diagram of two color theorem illustration]
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
 (Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \implies P(k+1)$.
Two color theorem: proof illustration.

1. Add line.
2. Get inherited color for split regions
3. Switch on one side of new line.
(Fixes conflicts along line, and makes no new ones.)

Algorithm gives $P(k) \implies P(k + 1)$.

\[\square \]
Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.
Theorem: The sum of the first \(n \) odd numbers is a perfect square.

\[
k\text{th odd number is } 2(k - 1) + 1.
\]
Theorem: The sum of the first n odd numbers is a perfect square.

kth odd number is $2(k - 1) + 1$.

Base Case 1 (first odd number) is 1^2.

Strengthening Induction Hypothesis.
Theorem: The sum of the first n odd numbers is a perfect square.

kth odd number is $2(k - 1) + 1$.

Base Case 1 (first odd number) is 1^2.

Induction Hypothesis Sum of first k odds is perfect square a^2
Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.

kth odd number is $2(k - 1) + 1$.

Base Case 1 (first odd number) is 1^2.

Induction Hypothesis Sum of first k odds is perfect square a^2.

Induction Step 1. The $(k + 1)$st odd number is $2k + 1$.
Theorem: The sum of the first n odd numbers is a perfect square.

kth odd number is $2(k - 1) + 1$.

Base Case 1 (first odd number) is 1^2.

Induction Hypothesis Sum of first k odds is perfect square a^2.

Induction Step 1. The $(k + 1)$st odd number is $2k + 1$.
2. Sum of the first $k + 1$ odds is $a^2 + 2k + 1$.

Strenthening Induction Hypothesis.
Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.

kth odd number is $2(k - 1) + 1$.

Base Case 1 (first odd number) is 1^2.

Induction Hypothesis Sum of first k odds is perfect square a^2

Induction Step
1. The $(k + 1)$st odd number is $2k + 1$.
2. Sum of the first $k + 1$ odds is $a^2 + 2k + 1$
Theorem: The sum of the first n odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2.

kth odd number is $2(k - 1) + 1$.

Base Case 1 (first odd number) is 1^2.

Induction Hypothesis Sum of first k odds is perfect square a^2

Induction Step

1. The $(k + 1)$st odd number is $2k + 1$.
2. Sum of the first $k + 1$ odds is $a^2 + 2k + 1$
Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2.

The kth odd number is $2(k - 1) + 1$.

Base Case 1 (first odd number) is 1^2.

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

Induction Step

1. The $(k + 1)$st odd number is $2k + 1$.
2. Sum of the first $k + 1$ odds is $a^2 + 2k + 1$
Theorem: The sum of the first \(n \) odd numbers is a perfect square.

Theorem: The sum of the first \(n \) odd numbers is \(n^2 \).

\[
\text{kth odd number is } 2(k - 1) + 1.
\]

Base Case 1 (first odd number) is \(1^2 \).

Induction Hypothesis Sum of first \(k \) odds is perfect square \(a^2 = k^2 \).

Induction Step 1. The \((k + 1)\)st odd number is \(2k + 1 \).

2. Sum of the first \(k + 1 \) odds is

\[
a^2 + 2k + 1 = k^2 + 2k + 1
\]
Theorem: The sum of the first n odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2.

The kth odd number is $2(k - 1) + 1$.

Base Case 1 (first odd number) is 1^2.

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

Induction Step

1. The $(k + 1)$st odd number is $2k + 1$.
2. Sum of the first $k + 1$ odds is $a^2 + 2k + 1 = k^2 + 2k + 1$
3. $k^2 + 2k + 1 = (k + 1)^2$
Theorem: The sum of the first \(n \) odd numbers is a perfect square.

Theorem: The sum of the first \(n \) odd numbers is \(n^2 \).

\(k \)th odd number is \(2(k - 1) + 1 \).

Base Case \(1 \) (first odd number) is \(1^2 \).

Induction Hypothesis Sum of first \(k \) odds is perfect square \(a^2 = k^2 \).

Induction Step

1. The \((k + 1)\)st odd number is \(2k + 1 \).
2. Sum of the first \(k + 1 \) odds is \(a^2 + 2k + 1 = k^2 + 2k + 1 \)

\[k^2 + 2k + 1 = (k + 1)^2 \]

... \(P(k+1)! \)
Strengthening Induction Hypothesis.

Theorem: The sum of the first n odd numbers is a perfect square.

Theorem: The sum of the first n odd numbers is n^2.

kth odd number is $2(k - 1) + 1$.

Base Case 1 (first odd number) is 1^2.

Induction Hypothesis Sum of first k odds is perfect square $a^2 = k^2$.

Induction Step

1. The $(k + 1)$st odd number is $2k + 1$.
2. Sum of the first $k + 1$ odds is $a^2 + 2k + 1 = k^2 + 2k + 1$

3. $k^2 + 2k + 1 = (k + 1)^2$

 ... $P(k+1)!$
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

\[A \quad C \quad \quad B \quad D \quad E \]
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

Alright!
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

Alright!

Tiled 4×4 square with 2×2 L-tiles.
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

Alright!

Tiled 4×4 square with 2×2 L-tiles.
with a center hole.
Tiling Cory Hall Courtyard.

To Tile this 4×4 courtyard.

Use these L-tiles.

Alright!

Tiled 4×4 square with 2×2 L-tiles.

with a center hole.

Can we tile any $2^n \times 2^n$ with L-tiles (with a hole)
Tiling Cory Hall Courtyard.

Use these L-tiles.

To Tile this 4×4 courtyard.

Alright!

Tiled 4×4 square with 2×2 L-tiles.
with a center hole.

Can we tile any $2^n \times 2^n$ with L-tiles (with a hole) for every n!
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$.
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

$$2^{2(k+1)}$$
Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.
Base case: true for $k = 0$. $2^0 = 1$
Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

$$2^{2(k+1)} = 2^{2k} \times 2^2$$
Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

\[
2^{2(k+1)} = 2^{2k} \cdot 2^2 = 4 \cdot 2^{2k}
\]
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

$$
2^{2(k+1)} = 2^{2k} \times 2^2 \\
= 4 \times 2^{2k} \\
= 4 \times (3a + 1)
$$
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

\[
2^{2(k+1)} = 2^{2k} \times 2^2
\]
\[
= 4 \times 2^{2k}
\]
\[
= 4 \times (3a + 1)
\]
\[
= 12a + 3 + 1
\]
Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

\[
2^{2(k+1)} = 2^{2k} \times 2^2 \\
= 4 \times 2^{2k} \\
= 4 \times (3a + 1) \\
= 12a + 3 + 1 \\
= 3(4a + 1) + 1
\]
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

\[
\begin{align*}
2^{2(k+1)} & = 2^{2k} \times 2^2 \\
& = 4 \times 2^{2k} \\
& = 4 \times (3a + 1) \\
& = 12a + 3 + 1 \\
& = 3(4a + 1) + 1
\end{align*}
\]

a integer
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

\[
\begin{align*}
2^{2(k+1)} &= 2^{2k} \cdot 2^2 \\
&= 4 \cdot 2^{2k} \\
&= 4 \cdot (3a + 1) \\
&= 12a + 3 + 1 \\
&= 3(4a + 1) + 1
\end{align*}
\]

a integer $\implies (4a + 1)$ is an integer.
Hole have to be there? Maybe just one?

Theorem: Any tiling of $2^n \times 2^n$ square has to have one hole.

Proof: The remainder of 2^{2n} divided by 3 is 1.

Base case: true for $k = 0$. $2^0 = 1$

Ind Hyp: $2^{2k} = 3a + 1$ for integer a.

\[
2^{2(k+1)} = 2^{2k} \times 2^2 = 4 \times 2^{2k} = 4 \times (3a + 1) = 12a + 3 + 1 = 3(4a + 1) + 1
\]

a integer $\implies (4a + 1)$ is an integer.
Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:
Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.
Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.
 The hole is adjacent to the center of the 2×2 square.
Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.

The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:
Hole in center?

Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.
 The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:
Any $2^n \times 2^n$ square can be tiled with a hole at the center.
Theorem: Can tile the $2^n \times 2^n$ square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.
 The hole is adjacent to the center of the 2×2 square.

Induction Hypothesis:
Any $2^n \times 2^n$ square can be tiled with a hole at the center.
Hole in center?

Theorem: Can tile the \(2^n \times 2^n \) square to leave a hole adjacent to the center.

Proof:

Base case: A single tile works fine.
 The hole is adjacent to the center of the \(2 \times 2 \) square.

Induction Hypothesis:
Any \(2^n \times 2^n \) square can be tiled with a hole at the center.

\[
2^{n+1}
\]

\[
\begin{array}{cc}
\text{hole} & \text{hole} \\
\text{hole} & \text{hole}
\end{array}
\]
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem... better induction hypothesis!

Base case: Sure. A tile is fine. Flipping the orientation can leave hole anywhere.

Induction Hypothesis: "Any $2^n \times 2^n$ square can be tiled with a hole anywhere."

Consider $2^{n+1} \times 2^{n+1}$ square. Use induction hypothesis in each. Use L-tile and ... we are done.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*. Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole *anywhere.*”

Consider $2^{n+1} \times 2^{n+1}$ square.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole *anywhere*.”

Consider $2^{n+1} \times 2^{n+1}$ square.
Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole anywhere.”

Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole *anywhere.*”

Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.
Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent anywhere.

Better theorem ... better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole anywhere.”

Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Use L-tile and ...
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere*.

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole *anywhere.*”

Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Use L-tile and ... we are done.
Hole can be anywhere!

Theorem: Can tile the $2^n \times 2^n$ to leave a hole adjacent *anywhere.*

Better theorem ...better induction hypothesis!

Base case: Sure. A tile is fine.

Flipping the orientation can leave hole anywhere.

Induction Hypothesis:
“Any $2^n \times 2^n$ square can be tiled with a hole *anywhere.*”

Consider $2^{n+1} \times 2^{n+1}$ square.

Use induction hypothesis in each.

Use L-tile and ... we are done.
Strong Induction.

Theorem: Every natural number \(n > 1 \) can be written as a (possibly trivial) product of primes.
Strong Induction.

Theorem: Every natural number $n > 1$ can be written as a (possibly trivial) product of primes.

Definition: A prime n has exactly 2 factors 1 and n.
Strong Induction.

Theorem: Every natural number $n > 1$ can be written as a (possibly trivial) product of primes.

Definition: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Strong Induction.

Theorem: Every natural number $n > 1$ can be written as a (possibly trivial) product of primes.

Definition: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step:
Strong Induction.

Theorem: Every natural number $n > 1$ can be written as a (possibly trivial) product of primes.

Definition: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step:

$P(n) =$ “n can be written as a product of primes.”

Strong Induction Principle:

If $P(0)$ and $(\forall k \in \mathbb{N})(P(0) \land \ldots \land P(k)) \Rightarrow P(k + 1)$,

then $(\forall k \in \mathbb{N})(P(k))$.
Strong Induction.

Theorem: Every natural number \(n > 1 \) can be written as a (possibly trivial) product of primes.

Definition: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\(P(n) = \) “\(n \) can be written as a product of primes. “

Either \(n + 1 \) is a prime
Strong Induction.

Theorem: Every natural number $n > 1$ can be written as a (possibly trivial) product of primes.

Definition: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step:

$P(n) =$ “n can be written as a product of primes. “

Either $n + 1$ is a prime or $n + 1 = a \cdot b$ where $1 < a, b < n + 1$.
Strong Induction.

Theorem: Every natural number \(n > 1 \) can be written as a (possibly trivial) product of primes.

Definition: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\(P(n) \) = “\(n \) can be written as a product of primes. “

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).

\(P(n) \) says nothing about \(a, b \)!
Strong Induction.

Theorem: Every natural number \(n > 1 \) can be written as a (possibly trivial) product of primes.

Definition: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\(P(n) = \text{“} n \text{ can be written as a product of primes. “} \)

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).

\(P(n) \) says nothing about \(a, b \)!

Strong Induction Principle: If \(P(0) \) and

\[
(\forall k \in N)((P(0) \land \ldots \land P(k)) \implies P(k + 1)),
\]

then \((\forall k \in N)(P(k)) \).
Strong Induction.

Theorem: Every natural number \(n > 1 \) can be written as a (possibly trivial) product of primes.

Definition: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\(P(n) = \text{"n can be written as a product of primes."} \)

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).

\(P(n) \) says nothing about \(a, b \)!

Strong Induction Principle: If \(P(0) \) and

\[
(\forall k \in \mathbb{N})((P(0) \land \ldots \land P(k)) \implies P(k+1)),
\]

then \((\forall k \in \mathbb{N})(P(k)) \).

\[
P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots
\]
Strong Induction.

Theorem: Every natural number \(n > 1 \) can be written as a (possibly trivial) product of primes.

Definition: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\(P(n) = \text{"n can be written as a product of primes. "} \)

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).

\(P(n) \) says nothing about \(a, b \)!

Strong Induction Principle: If \(P(0) \) and

\[
(\forall k \in N)((P(0) \land \ldots \land P(k)) \implies P(k + 1)),
\]

then \((\forall k \in N)(P(k)) \).

\[
P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots
\]
Strong Induction.

Theorem: Every natural number $n > 1$ can be written as a (possibly trivial) product of primes.

Definition: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step:

$P(n) =$ "n can be written as a product of primes. "

Either $n + 1$ is a prime or $n + 1 = a \cdot b$ where $1 < a, b < n + 1$.

$P(n)$ says nothing about a, b!

Strong Induction Principle: If $P(0)$ and

$$(\forall k \in \mathbb{N})(P(0) \wedge \ldots \wedge P(k)) \implies P(k + 1),$$

then $(\forall k \in \mathbb{N})(P(k))$.

$$P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots$$

Strong induction hypothesis: “a and b are products of primes”
Strong Induction.

Theorem: Every natural number $n > 1$ can be written as a (possibly trivial) product of primes.

Definition: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step:
$P(n) = \text{“} n \text{ can be written as a product of primes. “}$
Either $n + 1$ is a prime or $n + 1 = a \cdot b$ where $1 < a, b < n + 1$.
$P(n)$ says nothing about a, b!

Strong Induction Principle: If $P(0)$ and

$$(\forall k \in N)((P(0) \land \ldots \land P(k)) \implies P(k + 1)), \text{ then } (\forall k \in N)(P(k)).$$

$P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots$

Strong induction hypothesis: “a and b are products of primes”

$\implies \text{“} n + 1 = a \cdot b \text{“}$
Strong Induction.

Theorem: Every natural number \(n > 1 \) can be written as a (possibly trivial) product of primes.

Definition: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:

\(P(n) = \text{“} n \text{ can be written as a product of primes. “} \)

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).

\(P(n) \) says nothing about \(a, b \)!

Strong Induction Principle: If \(P(0) \) and

\[
(\forall k \in \mathbb{N})((P(0) \land \ldots \land P(k)) \implies P(k+1)),
\]

then \((\forall k \in \mathbb{N})(P(k))\).

\[
P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots
\]

Strong induction hypothesis: “\(a \) and \(b \) are products of primes”

\[\implies \text{“} n + 1 = a \cdot b = (\text{factorization of } a) \text{”} \]
Strong Induction.

Theorem: Every natural number \(n > 1 \) can be written as a (possibly trivial) product of primes.

Definition: A prime \(n \) has exactly 2 factors 1 and \(n \).

Base Case: \(n = 2 \).

Induction Step:
\(P(n) = \) “\(n \) can be written as a product of primes.”

Either \(n + 1 \) is a prime or \(n + 1 = a \cdot b \) where \(1 < a, b < n + 1 \).

\(P(n) \) says nothing about \(a, b \! \)

Strong Induction Principle: If \(P(0) \) and
\[
(\forall k \in N)((P(0) \land \ldots \land P(k)) \implies P(k+1)),
\]
then \((\forall k \in N)(P(k)). \)

\[
P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots
\]

Strong induction hypothesis: “\(a \) and \(b \) are products of primes”

\[
\implies \text{“} n + 1 = a \cdot b = \text{(factorization of } a)\text{(factorization of } b)\text{”}
\]

\(n + 1 \) can be written as the product of the prime factors!
Strong Induction.

Theorem: Every natural number $n > 1$ can be written as a (possibly trivial) product of primes.

Definition: A prime n has exactly 2 factors 1 and n.

Base Case: $n = 2$.

Induction Step:

$P(n) =$ “n can be written as a product of primes. “

Either $n + 1$ is a prime or $n + 1 = a \cdot b$ where $1 < a, b < n + 1$.

$P(n)$ says nothing about a, b!

Strong Induction Principle: If $P(0)$ and

$$(\forall k \in N)((P(0) \land \ldots \land P(k)) \implies P(k + 1)),$$

then $(\forall k \in N)(P(k))$.

$P(0) \implies P(1) \implies P(2) \implies P(3) \implies \ldots$

Strong induction hypothesis: “a and b are products of primes”

\implies “$n + 1 = a \cdot b =$ (factorization of a)(factorization of b)”

$n + 1$ can be written as the product of the prime factors!
Induction \implies Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.
Induction \Rightarrow Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in \mathbb{N})(Q(k) \implies Q(k + 1))$ then $(\forall k \in \mathbb{N})(Q(k))$”
Induction \iff Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in \mathbb{N})(Q(k) \implies Q(k+1))$ then $(\forall k \in \mathbb{N})(Q(k))$”

Also, $Q(0) \equiv P(0)$, and
Induction \implies Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in N)(Q(k) \implies Q(k + 1))$ then $(\forall k \in N)(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$
Induction \implies Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in N)(Q(k) \implies Q(k + 1))$ then $(\forall k \in N)(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$

$(\forall k \in N)(Q(k) \implies Q(k + 1))$
$\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k + 1))))$
Induction \implies Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$

$(\forall k \in N)(Q(k) \implies Q(k+1))$
$\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k+1))))$
Induction \implies Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in N)(Q(k) \implies Q(k + 1))$ then $(\forall k \in N)(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$

$(\forall k \in N)(Q(k) \implies Q(k + 1))$
\[\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k + 1)))\]
\[\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies P(k + 1))\]
Induction \implies Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in N)(Q(k) \implies Q(k+1))$ then $(\forall k \in N)(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$

$(\forall k \in N)(Q(k) \implies Q(k+1))$

$\equiv (\forall k \in N)((P(0)\cdots \land P(k)) \implies (P(0)\cdots P(k) \land P(k+1))))$

$\equiv (\forall k \in N)((P(0)\cdots \land P(k)) \implies P(k+1)))$
Induction \implies Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in \mathbb{N})(Q(k) \implies Q(k + 1))$ then $(\forall k \in \mathbb{N})(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in \mathbb{N})(Q(k)) \equiv (\forall k \in \mathbb{N})(P(k))$

$(\forall k \in \mathbb{N})(Q(k) \implies Q(k + 1))$
$\equiv (\forall k \in \mathbb{N})((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k + 1)))$
$\equiv (\forall k \in \mathbb{N})((P(0) \cdots \land P(k)) \implies P(k + 1))$
Induction \implies Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in \mathbb{N})(Q(k) \implies Q(k+1))$ then $(\forall k \in \mathbb{N})(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in \mathbb{N})(Q(k)) \equiv (\forall k \in \mathbb{N})(P(k))$

$(\forall k \in \mathbb{N})(Q(k) \implies Q(k+1))$

$\equiv (\forall k \in \mathbb{N})((P(0)\cdots \land P(k)) \implies (P(0)\cdots P(k) \land P(k+1)))$

$\equiv (\forall k \in \mathbb{N})((P(0)\cdots \land P(k)) \implies P(k+1))$

Strong Induction Principle: If $P(0)$ and

$(\forall k \in \mathbb{N})((P(0) \land \cdots \land P(k)) \implies P(k+1))$, then $(\forall k \in \mathbb{N})(P(k))$.
Induction \implies Strong Induction.

Let $Q(k) = P(0) \land P(1) \cdots P(k)$.

By the induction principle:
“If $Q(0)$, and $(\forall k \in N)(Q(k) \implies Q(k + 1))$ then $(\forall k \in N)(Q(k))$”

Also, $Q(0) \equiv P(0)$, and $(\forall k \in N)(Q(k)) \equiv (\forall k \in N)(P(k))$

$(\forall k \in N)(Q(k) \implies Q(k + 1))$

$\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies (P(0) \cdots P(k) \land P(k + 1)))$

$\equiv (\forall k \in N)((P(0) \cdots \land P(k)) \implies P(k + 1))$

Strong Induction Principle: If $P(0)$ and

$(\forall k \in N)((P(0) \land \cdots \land P(k)) \implies P(k + 1)),$

then $(\forall k \in N)(P(k))$.
Well Ordering Principle and Induction.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$.
Well Ordering Principle and Induction.

If $(\forall n) P(n)$ is not true, then $(\exists n) \neg P(n)$.

Consider smallest m, with $\neg P(m)$, $m \geq 0$
Well Ordering Principle and Induction.

If \((\forall n) P(n)\) is not true, then \((\exists n) \neg P(n)\).
Consider smallest \(m\), with \(\neg P(m), m \geq 0\)
\(P(m-1) \implies P(m)\) must be false (assuming \(P(0)\) holds.)
Well Ordering Principle and Induction.

If $(\forall n)P(n)$ is not true, then $(\exists n)\lnot P(n)$.

Consider smallest m, with $\lnot P(m)$, $m \geq 0$

$P(m - 1) \implies P(m)$ must be false (assuming $P(0)$ holds.)

This is a proof of the induction principle!

I.e.,

$$(\lnot \forall n)P(n) \implies ((\exists n)\lnot (P(n-1) \implies P(n))).$$
Well Ordering Principle and Induction.

If \((\forall n)P(n)\) is not true, then \((\exists n)\neg P(n)\).
Consider smallest \(m\), with \(\neg P(m)\), \(m \geq 0\)
\(P(m-1) \implies P(m)\) must be false (assuming \(P(0)\) holds.)
This is a proof of the induction principle!
I.e.,
\[
(\neg \forall n)P(n) \implies ((\exists n)(\neg (P(n-1) \implies P(n)))).
\]
(Contrapositive of Induction principle (assuming \(P(0)\))
Well Ordering Principle and Induction.

If \((\forall n)P(n)\) is not true, then \((\exists n)\neg P(n)\).

Consider smallest \(m\), with \(\neg P(m), m \geq 0\)

\(P(m-1) \implies P(m)\) must be false (assuming \(P(0)\) holds.)

This is a proof of the induction principle!
I.e.,

\[
(\neg \forall n)P(n) \implies ((\exists n)(\neg (P(n-1) \implies P(n))).
\]

(Contrapositive of Induction principle (assuming \(P(0)\))

It assumes that there is a smallest \(m\) where \(P(m)\) does not hold.
Well Ordering Principle and Induction.

If \((\forall n)P(n)\) is not true, then \((\exists n)\neg P(n)\).

Consider smallest \(m\), with \(\neg P(m), \ m \geq 0\)

\(P(m-1) \implies P(m)\) must be false (assuming \(P(0)\) holds.)

This is a proof of the induction principle!

I.e.,

\[(\neg \forall n)P(n) \implies (\exists n)\neg (P(n-1) \implies P(n)). \]

(Contrapositive of Induction principle (assuming \(P(0)\))

It assumes that there is a smallest \(m\) where \(P(m)\) does not hold.

The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element.
Well Ordering Principle and Induction.

If \((\forall n) P(n)\) is not true, then \((\exists n) \neg P(n)\).

Consider smallest \(m\), with \(\neg P(m), \ m \geq 0\)

\(P(m - 1) \implies P(m)\) must be false (assuming \(P(0)\) holds.)

This is a proof of the induction principle!

I.e.,

\[
(\neg \forall n) P(n) \implies ((\exists n) \neg (P(n - 1) \implies P(n))).
\]

(Contrapositive of Induction principle (assuming \(P(0)\))

It assumes that there is a smallest \(m\) where \(P(m)\) does not hold.

The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element.

Smallest may not be what you expect: the well ordering principal holds for rationals but with different ordering!!
Well Ordering Principle and Induction.

If $(\forall n)P(n)$ is not true, then $(\exists n)\neg P(n)$.

Consider smallest m, with $\neg P(m)$, $m \geq 0$

$P(m−1) \implies P(m)$ must be false (assuming $P(0)$ holds.)

This is a proof of the induction principle!

I.e.,

$$(\neg \forall n)P(n) \implies ((\exists n)\neg (P(n−1) \implies P(n))).$$

(Contrapositive of Induction principle (assuming $P(0)$))

It assumes that there is a smallest m where $P(m)$ does not hold.

The **Well ordering principle** states that for any subset of the natural numbers there is a smallest element.

Smallest may not be what you expect: the well ordering principal holds for rationals but with different ordering!!

E.g. Reduced form is “smallest” representation of a rational number a/b.
Well ordering principle.

Thm: All natural numbers are interesting.
Thm: All natural numbers are interesting.

0 is interesting...
Well ordering principle.

Thm: All natural numbers are interesting.
0 is interesting...
Let n be the first uninteresting number.
Well ordering principle.

Thm: All natural numbers are interesting.

0 is interesting...

Let \(n \) be the first uninteresting number.

But \(n - 1 \) is interesting and \(n \) is uninteresting,
Thm: All natural numbers are interesting.

0 is interesting...

Let n be the first uninteresting number.
 But $n - 1$ is interesting and n is uninteresting, so this is the first uninteresting number.
Well ordering principle.

Thm: All natural numbers are interesting.

0 is interesting...
Let n be the first uninteresting number.
 But $n – 1$ is interesting and n is uninteresting,
 so this is the first uninteresting number.
 But this is interesting.
Well ordering principle.

Thm: All natural numbers are interesting.

0 is interesting...
Let \(n \) be the first uninteresting number.
 But \(n - 1 \) is interesting and \(n \) is uninteresting,
 so this is the first uninteresting number.
 But this is interesting.
Thus, there is no smallest uninteresting natural number.
Well ordering principle.

Thm: All natural numbers are interesting.

0 is interesting...
Let \(n \) be the first uninteresting number.
 But \(n - 1 \) is interesting and \(n \) is uninteresting,
 so this is the first uninteresting number.
 But this is interesting.
Thus, there is no smallest uninteresting natural number.

Thus: All natural numbers are interesting.
Def: A **round robin tournament on** n **players**: every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow p$ (q beats p.)
Tournaments have short cycles

Def: A **round robin tournament on** n **players**: every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow p$ (q beats p.)

Def: A **cycle**: a sequence of p_1, \ldots, p_k, $p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.
Tournaments have short cycles

Def: A **round robin tournament on** n **players:** every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow p$ (q beats p.)

Def: A **cycle:** a sequence of p_1, \ldots, p_k, $p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.

![Diagram of a tournament with cycles](image)
Def: A round robin tournament on n players: every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow p$ (q beats p.)

Def: A cycle: a sequence of p_1, \ldots, p_k, $p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.

Theorem: Any tournament that has a cycle has a cycle of length 3.
Tournaments have short cycles

Def: A **round robin tournament on** n **players**: every player p plays every other player q, and either $p \to q$ (p beats q) or $q \to p$ (q beats p.)

Def: A **cycle**: a sequence of p_1, \ldots, p_k, $p_i \to p_{i+1}$ and $p_k \to p_1$.

Theorem: Any tournament that has a cycle has a cycle of length 3.
Tournaments have short cycles

Def: A **round robin tournament on** n **players**: every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow p$ (q beats p.)

Def: A **cycle**: a sequence of p_1, \ldots, p_k, $p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.

Theorem: Any tournament that has a cycle has a cycle of length 3.
Tournaments have short cycles

Def: A round robin tournament on \(n \) players: every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow p \) (\(q \) beats \(p \)).

Def: A cycle: a sequence of \(p_1, \ldots, p_k \), \(p_i \rightarrow p_{i+1} \) and \(p_k \rightarrow p_1 \).

Theorem: Any tournament that has a cycle has a cycle of length 3.
Tournaments have short cycles

Def: A **round robin tournament on** n **players**: every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow p$ (q beats p.)

Def: A **cycle**: a sequence of p_1, \ldots, p_k, $p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.

Theorem: Any tournament that has a cycle has a cycle of length 3.
Tournaments have short cycles

Def: A round robin tournament on n players: every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow p$ (q beats p.)

Def: A cycle: a sequence of p_1, \ldots, p_k, $p_i \rightarrow p_{i+1}$ and $p_k \rightarrow p_1$.

Theorem: Any tournament that has a cycle has a cycle of length 3.
Tournament has a cycle of length 3 if at all.
Tournament has a cycle of length 3 if at all.

Assume the smallest cycle is of length k.

Case 1: Of length 3. Done.

Case 2: Of length larger than 3.

$p_1 \rightarrow p_2 \rightarrow p_3 \rightarrow \cdots \rightarrow p_k \rightarrow \cdots \rightarrow \cdots = \cdots \rightarrow p_1$ \Rightarrow 3 cycle

Contradiction.

$p_1 \rightarrow p_3$ \Rightarrow $k-1$ length cycle!

Contradiction!
Tournament has a cycle of length 3 if at all.

Assume the smallest cycle is of length k.

Case 1: Of length 3.
Tournament has a cycle of length 3 if at all.

Assume the the smallest cycle is of length k.

Case 1: Of length 3. Done.
Tournament has a cycle of length 3 if at all.

Assume the smallest cycle is of length k.

Case 1: Of length 3. Done.

Case 2: Of length larger than 3.

```
$p_1 \rightarrow p_3 \rightarrow p_1$ $\implies$ 3 cycle
```

Contradiction.
Tournament has a cycle of length 3 if at all.

Assume the the smallest cycle is of length k.

Case 1: Of length 3. Done.

Case 2: Of length larger than 3.

\[p_1 \rightarrow p_3 = \Rightarrow 3 \text{ cycle} \]

Contradiction.
Tournament has a cycle of length 3 if at all.

Assume the smallest cycle is of length k.

Case 1: Of length 3. Done.

Case 2: Of length larger than 3.

```
\[
p_1 \rightarrow p_3 \quad \Rightarrow \quad p_3 \rightarrow p_1 \quad \Rightarrow \quad 3 \text{ cycle}
\]
```

Contradiction.

```
\[
p_1 \rightarrow p_3 \quad \Rightarrow \quad k - 1 \text{ length cycle!}
\]
```

Contradiction!
Tournaments have long paths.

Def: A round robin tournament on n players: every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow q$ (q beats q.)
Tournaments have long paths.

Def: A round robin tournament on n players: every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow q$ (q beats q.)

Def: A Hamiltonian path: a sequence
Tournaments have long paths.

Def: A round robin tournament on \(n\) players: every player \(p\) plays every other player \(q\), and either \(p \rightarrow q\) (\(p\) beats \(q\)) or \(q \rightarrow q\) (\(q\) beats \(q\)).

Def: A Hamiltonian path: a sequence \(p_1, \ldots, p_n\), \((\forall i, 0 \leq i < n)\) \(p_i \rightarrow p_{i+1}\).
Tournaments have long paths.

Def: A round robin tournament on \(n \) players: every player \(p \) plays every other player \(q \), and either \(p \to q \) (\(p \) beats \(q \)) or \(q \to q \) (\(q \) beats \(q \)).

Def: A Hamiltonian path: a sequence \(p_1, \ldots, p_n \), \((\forall i, 0 \leq i < n) \) \(p_i \to p_{i+1} \).

Base: True for two vertices.
Tournaments have long paths.

Def: A round robin tournament on \(n \) players: every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow q \) (\(q \) beats \(q \)).

Def: A Hamiltonian path: a sequence
\[p_1, \ldots, p_n, \quad (\forall i, 0 \leq i < n) \quad p_i \rightarrow p_{i+1}. \]

Base: True for two vertices.
(Also for one, but two is more useful as base case!)
Tournaments have long paths.

Def: A round robin tournament on \(n \) players: every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow p \) (\(q \) beats \(p \)).

Def: A Hamiltonian path: a sequence
\[
p_1, \ldots, p_n, \quad (\forall i, 0 \leq i < n) \quad p_i \rightarrow p_{i+1}.
\]

Base: True for two vertices.
 (Also for one, but two is more useful as base case!)

Tournament on \(n + 1 \) people,
Tournaments have long paths.

Def: A round robin tournament on n players: every player p plays every other player q, and either $p \to q$ (p beats q) or $q \to q$ (q beats q.)

Def: A Hamiltonian path: a sequence p_1, \ldots, p_n, ($\forall i, 0 \leq i < n$) $p_i \to p_{i+1}$.

Base: True for two vertices. (Also for one, but two is more useful as base case!)

Tournament on $n+1$ people,
Remove arbitrary person
Tournaments have long paths.

Def: A **round robin tournament on** n **players:** every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow q$ (q beats q.)

Def: A **Hamiltonian path:** a sequence p_1, \ldots, p_n, $(\forall i, 0 \leq i < n) \ p_i \rightarrow p_{i+1}$.

Base: True for two vertices.

(Also for one, but two is more useful as base case!)

Tournament on $n + 1$ **people,**

Remove arbitrary person \rightarrow yield tournament on $n - 1$ people.
Tournaments have long paths.

Def: A **round robin tournament on** \(n \) **players:** every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow q \) (\(q \) beats \(q \)).

Def: A **Hamiltonian path:** a sequence

\[
p_1, \ldots, p_n, \quad (\forall i, 0 \leq i < n) \ p_i \rightarrow p_{i+1}.
\]

Base: True for two vertices.
(Also for one, but two is more useful as base case!)

Tournament on \(n + 1 \) people,
Remove arbitrary person \(\rightarrow \) yield tournament on \(n - 1 \) people.
(RESULT specified for each remaining pair from original tournament.)
Tournaments have long paths.

Def: A *round robin tournament on n players*: every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow q \) (\(q \) beats \(q \)).

Def: A *Hamiltonian path*: a sequence
\[p_1, \ldots, p_n, (\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}. \]

Base: True for two vertices.
(Also for one, but two is more useful as base case!)

Tournament on \(n + 1 \) people,
Remove arbitrary person \(\rightarrow \) yield tournament on \(n – 1 \) people.
(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence \(p_1, \ldots, p_n \).
Tournaments have long paths.

Def: A **round robin tournament on** \(n \) **players:** every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow q \) (\(q \) beats \(q \)).

Def: A **Hamiltonian path:** a sequence \(p_1, \ldots, p_n \), \((\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}\).

Base: True for two vertices. (Also for one, but two is more useful as base case!)

Tournament on \(n + 1 \) people,
- Remove arbitrary person \(\rightarrow \) yield tournament on \(n - 1 \) people.
 (Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence \(p_1, \ldots, p_n \)
- contains all the people
Tournaments have long paths.

Def: A round robin tournament on \(n \) players: every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow q \) (\(q \) beats \(q \)).

Def: A Hamiltonian path: a sequence
\[p_1, \ldots, p_n, \quad (\forall i, 0 \leq i < n) \ p_i \rightarrow p_{i+1}. \]

Base: True for two vertices.
(Also for one, but two is more useful as base case!)

Tournament on \(n + 1 \) people,
Remove arbitrary person \(\rightarrow \) yield tournament on \(n - 1 \) people.
(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence \(p_1, \ldots, p_n \) contains all the people
where \(p_i \rightarrow p_{i+1} \)
Tournaments have long paths.

Def: A **round robin tournament on** \(n \) **players**: every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow q \) (\(q \) beats \(q \)).

Def: A **Hamiltonian path**: a sequence
\[
p_1, \ldots, p_n, \ (\forall i, 0 \leq i < n) \ p_i \rightarrow p_{i+1}.
\]

Base: True for two vertices.
(Also for one, but two is more useful as base case!)

Tournament on \(n+1 \) **people,**

Remove arbitrary person \(\rightarrow \) yield tournament on \(n-1 \) **people.**
(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence \(p_1, \ldots, p_n \)
contains all the people
where \(p_i \rightarrow p_{i+1} \)
Tournaments have long paths.

Def: A round robin tournament on \(n \) players: every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow q \) (\(q \) beats \(q \)).

Def: A Hamiltonian path: a sequence \(p_1, \ldots, p_n \), \((\forall i, 0 \leq i < n) \ p_i \rightarrow p_{i+1} \).

Base: True for two vertices.
(Also for one, but two is more useful as base case!)

Tournament on \(n + 1 \) people,
Remove arbitrary person \(\rightarrow \) yield tournament on \(n - 1 \) people.
(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence \(p_1, \ldots, p_n \) contains all the people where \(p_i \rightarrow p_{i+1} \)

If \(p \) is big winner, put at beginning.
Tournaments have long paths.

Def: A **round robin tournament on** \(n \) **players**: every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow q \) (\(q \) beats \(q \)).

Def: A **Hamiltonian path**: a sequence
\[p_1, \ldots, p_n, \quad (\forall i, 0 \leq i < n) \quad p_i \rightarrow p_{i+1}. \]

Base: True for two vertices.
(Also for one, but two is more useful as base case!)

Tournament on \(n + 1 \) people,
Remove arbitrary person \(\rightarrow \) yield tournament on \(n - 1 \) people.
(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence \(p_1, \ldots, p_n \)
contains all the people
where \(p_i \rightarrow p_{i+1} \)

If \(p \) is big winner, put at beginning.
If not, find first place \(i \), where \(p \) beats \(p_i \).
Tournaments have long paths.

Def: A round robin tournament on \(n \) players: every player \(p \) plays every other player \(q \), and either \(p \rightarrow q \) (\(p \) beats \(q \)) or \(q \rightarrow q \) (\(q \) beats \(q \)).

Def: A Hamiltonian path: a sequence \(p_1, \ldots, p_n \), \((\forall i, 0 \leq i < n) \; p_i \rightarrow p_{i+1} \).

Base: True for two vertices.
 (Also for one, but two is more useful as base case!)

Tournament on \(n+1 \) people,
 Remove arbitrary person \(\rightarrow \) yield tournament on \(n-1 \) people.
 (Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence \(p_1, \ldots, p_n \)
 contains all the people
 where \(p_i \rightarrow p_{i+1} \)

If \(p \) is big winner, put at beginning.
If not, find first place \(i \), where \(p \) beats \(p_i \).
 \(p_1, \ldots, p_{i-1}, p, p_i, \ldots p_n \) is hamiltonian path.
Tournaments have long paths.

Def: A round robin tournament on \(n\) players: every player \(p\) plays every other player \(q\), and either \(p \rightarrow q\) (\(p\) beats \(q\)) or \(q \rightarrow q\) (\(q\) beats \(q\)).

Def: A Hamiltonian path: a sequence
\[p_1, \ldots, p_n, (\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}.\]

Base: True for two vertices.
(Also for one, but two is more useful as base case!)

Tournament on \(n+1\) people,
Remove arbitrary person \(\rightarrow\) yield tournament on \(n-1\) people.
(Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence \(p_1, \ldots, p_n\)
contains all the people
where \(p_i \rightarrow p_{i+1}\)

If \(p\) is big winner, put at beginning.
If not, find first place \(i\), where \(p\) beats \(p_i\).
\[p_1, \ldots, p_{i-1}, p, p_i, \ldots p_n\] is hamiltonion path.
If no place, place at the end.
Tournaments have long paths.

Def: A **round robin tournament on** n **players**: every player p plays every other player q, and either $p \rightarrow q$ (p beats q) or $q \rightarrow q$ (q beats q.)

Def: A **Hamiltonian path**: a sequence p_1, \ldots, p_n, $(\forall i, 0 \leq i < n) p_i \rightarrow p_{i+1}$.

Base: True for two vertices. (Also for one, but two is more useful as base case!)

Tournament on $n + 1$ people,
Remove arbitrary person \rightarrow yield tournament on $n - 1$ people. (Result specified for each remaining pair from original tournament.)

By induction hypothesis: There is a sequence p_1, \ldots, p_n
contains all the people
where $p_i \rightarrow p_{i+1}$

If p is big winner, put at beginning.
If not, find first place i, where p beats p_i.
$p_1, \ldots, p_{i-1}, p, p_i, \ldots p_n$ is hamiltonian path.
If no place, place at the end.
Horses of the same color...

Theorem: All horses have the same color.
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

...Still doesn't work!!

(There are two horses is $\not\equiv$ For all two horses!!)

Of course it doesn't work.

As we will see, it is more subtle to catch errors in proofs of correct theorems!!
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

Fix base case. ...Still doesn't work!! (There are two horses is $\not\equiv$ For all two horses!!!)

Of course it doesn't work. As we will see, it is more subtle to catch errors in proofs of correct theorems!!
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

First k have same color by $P(k)$. $1, 2, 3, \ldots, k, k + 1$
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?

First k have same color by $P(k)$. $1,2,3,\ldots,k,k+1$

Second k have same color by $P(k)$. $1,2,3,\ldots,k,k+1$
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?

First k have same color by $P(k)$. \[1, 2, 3, \ldots, k, k+1\]

Second k have same color by $P(k)$. \[1, 2, 3, \ldots, k, k+1\]

A horse in the middle in common! \[1, 2, 3, \ldots, k, k+1\]
Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?
- First k have same color by $P(k)$. $1,2,3,\ldots,k,k+1$
- Second k have same color by $P(k)$. $1,2,3,\ldots,k,k+1$
 A horse in the middle in common! $1,2,3,\ldots,k,k+1$
 All k must have the same color. $1,2,3,\ldots,k,k+1$
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?

First k have same color by $P(k)$.
Second k have same color by $P(k)$.
A horse in the middle in common!

How about $P(1) \implies P(2)$?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?
- First k have same color by $P(k)$.
- Second k have same color by $P(k)$.
 - A horse in the middle in common!

How about $P(1) \implies P(2)$?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?

First k have same color by $P(k)$. 1, 2
Second k have same color by $P(k)$.
A horse in the middle in common!

How about $P(1) \implies P(2)$?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?

- First k have same color by $P(k)$. $1, 2$
- Second k have same color by $P(k)$. $1, 2$
- A horse in the middle in common!

How about $P(1) \implies P(2)$?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?

 First k have same color by $P(k)$. 1,2
 Second k have same color by $P(k)$. 1,2
 A horse in the middle in common! 1,2
 No horse in common!

How about $P(1) \implies P(2)$?
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?
- First k have same color by $P(k)$. 1,2
- Second k have same color by $P(k)$. 1,2
 - A horse in the middle in common! 1,2
 - No horse in common!

How about $P(1) \implies P(2)$?
Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?
 First k have same color by $P(k)$.
 Second k have same color by $P(k)$.
 A horse in the middle in common!

Fix base case.
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.
New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?
- First k have same color by $P(k)$.
- Second k have same color by $P(k)$.
 - A horse in the middle in common!

Fix base case.
...Still doesn’t work!!
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?
- First k have same color by $P(k)$.
- Second k have same color by $P(k)$.
 A horse in the middle in common!

Fix base case.
...Still doesn’t work!!
(There are two horses is \neq For all two horses!!)
Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.

New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k+1)$?

First k have same color by $P(k)$.

Second k have same color by $P(k)$.

A horse in the middle in common!

Fix base case.

...Still doesn’t work!!

(There are two horses is \neq For all two horses!!!)

Of course it doesn’t work.
Horses of the same color...

Theorem: All horses have the same color.

Base Case: $P(1)$ - trivially true.
New Base Case: $P(2)$: there are two horses with same color.

Induction Hypothesis: $P(k)$ - Any k horses have the same color.

Induction step $P(k + 1)$?
- First k have same color by $P(k)$.
- Second k have same color by $P(k)$.
 A horse in the middle in common!

Fix base case.
...Still doesn’t work!!
(There are two horses is $\not\equiv$ For all two horses!!!)

Of course it doesn’t work.

As we will see, it is more subtle to catch errors in proofs of correct theorems!!
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find_x_y(n):
    if (n==12): return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find_x_y(n-4)
        return(x'+1,y')
```

Base cases: $P(12), P(13), P(14), P(15)$.

Yes.

Strong Induction step: Recursive call is correct: $P(n-4) \Rightarrow P(n)$.

$n - 4 = 4x' + 5y' \Rightarrow n = 4(x' + 1) + 5y'$.

Slight differences: showed for all $n \geq 16$ that $\land \ i = 4P(i) \Rightarrow P(n)$.

Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.
Instead of proof, let’s write some code!

```python
def find_x_y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find_x_y(n-4)
        return(x'+1,y')
```

Base cases:
P(12), P(13), P(14), P(15).
Yes.

Strong Induction step:
Recursive call is correct:
P$(n-4) = \Rightarrow Pn$.

$n-4 = 4x' + 5y' = \Rightarrow n = 4(x'+1) + 5y'$

Slight differences: showed for all $n \geq 16$ that $\land_{i=1}^{n} = 4P(i) = \Rightarrow Pn$.
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x’,y’) = find-x-y(n-4)
 return(x’+1,y’)

Base cases:
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x’,y’) = find-x-y(n-4)
 return(x’+1,y’)

Base cases: P(12)
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find_x_y(n):
    if (n == 12): return (3,0)
    elif (n == 13): return (2,1)
    elif (n == 14): return (1,2)
    elif (n == 15): return (0,3)
    else:
        (x', y') = find_x_y(n-4)
        return (x'+1, y')
```

Base cases: P(12), P(13)
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x’,y’) = find-x-y(n-4)
 return(x’+1,y’)

Base cases: P(12) , P(13) , P(14)
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: $P(12)$, $P(13)$, $P(14)$, $P(15)$.
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x’,y’) = find-x-y(n-4)
 return(x’+1,y’)

Base cases: \(P(12) \), \(P(13) \), \(P(14) \), \(P(15) \). Yes.
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: $P(12), P(13), P(14), P(15)$. Yes.

Strong Induction step:
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```


Strong Induction step:
Recursive call is correct: $P(n-4)$
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```


Strong Induction step:
 Recursive call is correct: $P(n-4) \implies P(n)$.
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x',y') = find-x-y(n-4)
        return(x'+1,y')
```

Base cases: $P(12), P(13), P(14), P(15)$. Yes.

Strong Induction step:
Recursive call is correct: $P(n-4) \implies P(n)$.
$n-4 = 4x' + 5y' \implies n = 4(x' + 1) + 5(y')$
Strong Induction and Recursion.

Thm: For every natural number \(n \geq 12 \), \(n = 4x + 5y \).

Instead of proof, let’s write some code!

```python
def find-x-y(n):
    if (n==12) return (3,0)
    elif (n==13): return(2,1)
    elif (n==14): return(1,2)
    elif (n==15): return(0,3)
    else:
        (x’,y’) = find-x-y(n-4)
        return(x’+1,y’)
```

Base cases: \(P(12) \), \(P(13) \), \(P(14) \), \(P(15) \). Yes.

Strong Induction step:
Recursive call is correct: \(P(n-4) \implies P(n) \).
\[
n - 4 = 4x' + 5y' \implies n = 4(x' + 1) + 5(y')
\]
Strong Induction and Recursion.

Thm: For every natural number $n \geq 12$, $n = 4x + 5y$.

Instead of proof, let’s write some code!

def find-x-y(n):
 if (n==12) return (3,0)
 elif (n==13): return(2,1)
 elif (n==14): return(1,2)
 elif (n==15): return(0,3)
 else:
 (x',y') = find-x-y(n-4)
 return(x'+1,y')

Strong Induction step:
 Recursive call is correct: $P(n-4) \implies P(n)$.
 $n - 4 = 4x' + 5y' \implies n = 4(x' + 1) + 5(y')$

Slight differences: showed for all $n \geq 16$ that $\land_{i=4}^{n-1} P(i) \implies P(n)$.
Sad Islanders...

Island with 100 possibly blue-eyed and green-eyed inhabitants.
Sad Islanders...

Island with 100 possibly blue-eyed and green-eyed inhabitants.
Any islander who knows they have green eyes must kill themselves that day.
Sad Islanders...

Island with 100 possibly blue-eyed and green-eyed inhabitants.
Any islander who knows they have green eyes must kill themselves that day.
No islander knows their own eye color, but knows everyone else's.

Visitor: "I see someone has green eyes."
Result:
First rule of island: Don't talk about eye color!
On day 100, they all kill themselves.
Why?
Sad Islanders...

Island with 100 possibly blue-eyed and green-eyed inhabitants. Any islander who knows they have green eyes must kill themselves that day. No islander knows their own eye color, but knows everyone else's. All islanders have green eyes!
Sad Islanders...

Island with 100 possibly blue-eyed and green-eyed inhabitants.
Any islander who knows they have green eyes must kill themselves that day.
No islander knows their own eye color, but knows everyone else's.
All islanders have green eyes!
First rule of island:
Sad Islanders...

Island with 100 possibly blue-eyed and green-eyed inhabitants.
Any islander who knows they have green eyes must kill themselves that day.
No islander knows there own eye color, but knows everyone elses.
All islanders have green eyes!
First rule of island: Don’t talk about eye color!
Island with 100 possibly blue-eyed and green-eyed inhabitants.

Any islander who knows they have green eyes must kill themselves that day.

No islander knows their own eye color, but knows everyone else's.

All islanders have green eyes!

First rule of island: Don’t talk about eye color!

Visitor: “I see someone has green eyes.”
Island with 100 possibly blue-eyed and green-eyed inhabitants.
Any islander who knows they have green eyes must kill themselves that day.
No islander knows there own eye color, but knows everyone elses.
All islanders have green eyes!
First rule of island: Don’t talk about eye color!
Visitor: “I see someone has green eyes.”
Result:
Island with 100 possibly blue-eyed and green-eyed inhabitants.
Any islander who knows they have green eyes must kill themselves that day.
No islander knows their own eye color, but knows everyone else's.
All islanders have green eyes!
First rule of island: Don’t talk about eye color!
Visitor: “I see someone has green eyes.”
Result: On day 100, they all kill themselves.
Sad Islanders...

Island with 100 possibly blue-eyed and green-eyed inhabitants. Any islander who knows they have green eyes must kill themselves that day.

No islander knows there own eye color, but knows everyone elses.

All islanders have green eyes!

First rule of island: Don’t talk about eye color!

Visitor: “I see someone has green eyes.”

Result: On day 100, they all kill themselves.

Why?
They know induction.

Thm: If there are \(n \) villagers with green eyes they kill themselves on day \(n \).
They know induction.

Thm: If there are n villagers with green eyes they kill themselves on day n.

Proof:
Base: $n = 1$. Person with green eyes kills themselves on day 1.
They know induction.

Thm: If there are n villagers with green eyes they kill themselves on day n.

Proof:
Base: $n = 1$. Person with green eyes kills themselves on day 1.

Induction hypothesis:
They know induction.

Thm: If there are n villagers with green eyes they kill themselves on day n.

Proof:
Base: $n = 1$. Person with green eyes kills themselves on day 1.

Induction hypothesis:
If there were n people with green eyes, they would pass away on day n.

But they didn't kill themselves. So there must be $n + 1$ people with green eyes. One of them, is me. Sad.

Wait! Visitor added no information.
They know induction.

Thm: If there are \(n \) villagers with green eyes they kill themselves on day \(n \).

Proof:
Base: \(n = 1 \). Person with green eyes kills themselves on day 1.

Induction hypothesis:
If there were \(n \) people with green eyes, they would pass away on day \(n \).

Induction step:
On day \(n + 1 \), a green eyed person sees \(n \) people with green eyes.
They know induction.

Thm: If there are n villagers with green eyes they kill themselves on day n.

Proof:
Base: $n = 1$. Person with green eyes kills themselves on day 1.

Induction hypothesis:
If there were n people with green eyes, they would pass away on day n.

Induction step:
On day $n + 1$, a green eyed person sees n people with green eyes. But they didn’t kill themselves.
They know induction.

Thm: If there are n villagers with green eyes they kill themselves on day n.

Proof:
Base: $n = 1$. Person with green eyes kills themselves on day 1.

Induction hypothesis:
If there were n people with green eyes, they would pass away on day n.

Induction step:
On day $n + 1$, a green eyed person sees n people with green eyes. But they didn’t kill themselves.

So there must be $n + 1$ people with green eyes.
They know induction.

Thm: If there are \(n \) villagers with green eyes they kill themselves on day \(n \).

Proof:
Base: \(n = 1 \). Person with green eyes kills themselves on day 1.

Induction hypothesis:
If there were \(n \) people with green eyes, they would pass away on day \(n \).

Induction step:
On day \(n + 1 \), a green eyed person sees \(n \) people with green eyes. But they didn’t kill themselves.

So there must be \(n + 1 \) people with green eyes.

One of them, is me.
They know induction.

Thm: If there are n villagers with green eyes they kill themselves on day n.

Proof:
Base: $n = 1$. Person with green eyes kills themselves on day 1.

Induction hypothesis:
If there were n people with green eyes, they would pass away on day n.

Induction step:
On day $n + 1$, a green eyed person sees n people with green eyes.
But they didn’t kill themselves.
So there must be $n + 1$ people with green eyes.
One of them, is me.
Sad.
They know induction.

Thm: If there are \(n \) villagers with green eyes they kill themselves on day \(n \).

Proof:
Base: \(n = 1 \). Person with green eyes kills themselves on day 1.

Induction hypothesis:
If there were \(n \) people with green eyes, they would pass away on day \(n \).

Induction step:
On day \(n + 1 \), a green eyed person sees \(n \) people with green eyes.
But they didn’t kill themselves.
So there must be \(n + 1 \) people with green eyes.
One of them, is me.
Sad.
They know induction.

Thm: If there are \(n \) villagers with green eyes they kill themselves on day \(n \).

Proof:
Base: \(n = 1 \). Person with green eyes kills themselves on day 1.

Induction hypothesis:
If there were \(n \) people with green eyes, they would pass away on day \(n \).

Induction step:
On day \(n + 1 \), a green eyed person sees \(n \) people with green eyes. But they didn’t kill themselves.

So there must be \(n + 1 \) people with green eyes.

One of them, is me.

Sad.

Wait! Visitor added no information.
Using knowledge about what other people’s knowledge (your eye color) is.
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.
On day 2, everyone knows everyone sees more than one.
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.
On day 2, everyone knows everyone sees more than one.
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.
On day 2, everyone knows everyone sees more than one.

…
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.
On day 1, everyone knows everyone sees more than zero.
On day 2, everyone knows everyone sees more than one.
...
On day 99, no one sees 98
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.
On day 2, everyone knows everyone sees more than one.
...
On day 99, no one sees 98 since everyone knows everyone else does not see 97...
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.
On day 2, everyone knows everyone sees more than one.

...
On day 99, no one sees 98 since everyone knows everyone else does not see 97...
On day 100,
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.

On day 2, everyone knows everyone sees more than one.

...

On day 99, no one sees 98 since everyone knows everyone else does not see 97...

On day 100, ...uh oh!
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.

On day 2, everyone knows everyone sees more than one.

...

On day 99, no one sees 98 since everyone knows everyone else does not see 97...

On day 100, ...uh oh!

Another example:
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.
On day 2, everyone knows everyone sees more than one.

...
On day 99, no one sees 98 since everyone knows everyone else does not see 97...
On day 100, ...uh oh!

Another example:
Emperor’s new clothes!
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.
On day 1, everyone knows everyone sees more than zero.
On day 2, everyone knows everyone sees more than one.

...
On day 99, no one sees 98 since everyone knows everyone else does not see 97...
On day 100, ...uh oh!

Another example:
Emperor’s new clothes!
No one knows other people see that he has no clothes.
Common Knowledge.

Using knowledge about what other people’s knowledge (your eye color) is.

On day 1, everyone knows everyone sees more than zero.
On day 2, everyone knows everyone sees more than one.

...

On day 99, no one sees 98 since everyone knows everyone else does not see 97...

On day 100, ...uh oh!

Another example:
Emperor’s new clothes!
- No one knows other people see that he has no clothes.
- Until kid points it out.
Summary: principle of induction.

Today: More induction.
Summary: principle of induction.

Today: More induction.

\((P(0) \land \forall k \in \mathbb{N}(P(k) \Rightarrow P(k+1))) \Rightarrow \forall n \in \mathbb{N}(P(n)) \)

Statement to prove:

Base Case: Prove \(P(n_0) \).

Ind. Step: Prove.

For all values, \(n \geq n_0 \), \(P(n) = \Rightarrow P(n+1) \).

Statement is proven!

Strong Induction:

\((P(0) \land \forall n \in \mathbb{N}(P(n)) = \Rightarrow P(n+1))) \Rightarrow \forall n \in \mathbb{N}(P(n)) \)

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.

Sum of first \(n \) odds is \(n^2 \).

Hole anywhere.

Not same as strong induction.

E.g., used in product of primes proof.

Induction ≡ Recursion.
Summary: principle of induction.

Today: More induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1))))\)
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n)) \]
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Summary: principle of induction.

Today: More induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\)

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove.
Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\),
Summary: principle of induction.

Today: More induction.

\[(P(0) \land (\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n+1)\).
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n+1)\).

Statement is proven!
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).
Statement is proven!

Strong Induction:
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).
Statement is proven!

Strong Induction:
\[(P(0) \land ((\forall n \in N)(P(n)) \implies P(n + 1))))\]
Summary: principle of induction.

Today: More induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\)

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).
Statement is proven!

Strong Induction:
\((P(0) \land ((\forall n \in N)(P(n)) \implies P(n + 1)))) \implies (\forall n \in N)(P(n))\)
Summary: principle of induction.

Today: More induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n)) \)

Statement to prove: \(P(n) \) for \(n \) starting from \(n_0 \)

Base Case: Prove \(P(n_0) \).

Ind. Step: Prove. For all values, \(n \geq n_0 \), \(P(n) \implies P(n+1) \).

Statement is proven!

Strong Induction:

\((P(0) \land ((\forall n \in N)(P(n)) \implies P(n+1)))) \implies (\forall n \in N)(P(n)) \)

Also Today: strengthened induction hypothesis.
Summary: principle of induction.

Today: More induction.

\[(P(0) \land \left(\forall k \in N\right)(P(k) \implies P(k+1)))\implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n+1)\).

Statement is proven!

Strong Induction:

\[(P(0) \land \left(\forall n \in N\right)(P(n)) \implies P(n+1)))\implies (\forall n \in N)(P(n))\]

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.
Summary: principle of induction.

Today: More induction.

\((P(0) \land (\forall k \in \mathbb{N})(P(k) \implies P(k+1)))) \implies (\forall n \in \mathbb{N})(P(n))\)

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n+1)\).

Statement is proven!

Strong Induction:

\((P(0) \land ((\forall n \in \mathbb{N})(P(n)) \implies P(n+1)))) \implies (\forall n \in \mathbb{N})(P(n))\)

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.

Sum of first \(n\) odds is \(n^2\).
Summary: principle of induction.

Today: More induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\)

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n+1)\).
Statement is proven!

Strong Induction:
\((P(0) \land ((\forall n \in N)(P(n)) \implies P(n+1)))) \implies (\forall n \in N)(P(n))\)

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.
- Sum of first \(n\) odds is \(n^2\).
- Hole anywhere.
Summary: principle of induction.

Today: More induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\)

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n+1)\).

Statement is proven!

Strong Induction:

\((P(0) \land ((\forall n \in N)(P(n)) \implies P(n+1)))) \implies (\forall n \in N)(P(n))\)

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.

Sum of first \(n\) odds is \(n^2\).

Hole anywhere.

Not same as strong induction.
Summary: principle of induction.

Today: More induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).
Statement is proven!

Strong Induction:
\[(P(0) \land ((\forall n \in N)(P(n)) \implies P(n + 1)))) \implies (\forall n \in N)(P(n))\]

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.
- Sum of first \(n\) odds is \(n^2\).
- Hole anywhere.

Not same as strong induction. E.g., used in product of primes proof.
Summary: principle of induction.

Today: More induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\)

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)

Base Case: Prove \(P(n_0)\).

Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n + 1)\).

Statement is proven!

Strong Induction:

\((P(0) \land ((\forall n \in N)(P(n)) \implies P(n + 1)))) \implies (\forall n \in N)(P(n))\)

Also Today: strengthened induction hypothesis.

Strengthen theorem statement.

- Sum of first \(n\) odds is \(n^2\).
- Hole anywhere.

Not same as strong induction. E.g., used in product of primes proof.

Induction \(\equiv\) Recursion.
Summary: principle of induction.

\((P(0))\)
Summary: principle of induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1))))\]
Summary: principle of induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]
Summary: principle of induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\]

Variations:
\[(P(0) \land ((\forall n \in N)(P(n) \implies P(n+1)))) \implies (\forall n \in N)(P(n))\]
Summary: principle of induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\)

Variations:
\((P(0) \land ((\forall n \in N)(P(n) \implies P(n + 1)))) \implies (\forall n \in N)(P(n))\)
\((P(1) \land ((\forall n \in N)((n \geq 1) \land P(n)) \implies P(n + 1))))\)
Summary: principle of induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\]

Variations:

\[(P(0) \land ((\forall n \in N)(P(n) \implies P(n+1)))) \implies (\forall n \in N)(P(n))\]

\[(P(1) \land ((\forall n \in N)((n \geq 1) \land P(n)) \implies P(n+1)))) \implies (\forall n \in N)((n \geq 1) \implies P(n))\]
Summary: principle of induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\]

Variations:
\[(P(0) \land ((\forall n \in N)(P(n) \implies P(n+1)))) \implies (\forall n \in N)(P(n))\]
\[(P(1) \land ((\forall n \in N)((n \geq 1) \land P(n)) \implies P(n+1)))) \implies (\forall n \in N)((n \geq 1) \implies P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Summary: principle of induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\]

Variations:

\[(P(0) \land ((\forall n \in N)(P(n) \implies P(n+1)))) \implies (\forall n \in N)(P(n))\]

\[(P(1) \land ((\forall n \in N)((n \geq 1) \land P(n)) \implies P(n+1)))) \implies (\forall n \in N)((n \geq 1) \implies P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Summary: principle of induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k + 1)))) \implies (\forall n \in N)(P(n))\]

Variations:
\[(P(0) \land ((\forall n \in N)(P(n) \implies P(n + 1)))) \implies (\forall n \in N)(P(n))\]
\[(P(1) \land ((\forall n \in N)((n \geq 1) \land P(n)) \implies P(n + 1))))\]
\[\implies (\forall n \in N)((n \geq 1) \implies P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove.
Summary: principle of induction.

\[(P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\]

Variations:
\[(P(0) \land ((\forall n \in N)(P(n) \implies P(n+1)))) \implies (\forall n \in N)(P(n))\]
\[(P(1) \land ((\forall n \in N)((n \geq 1) \land P(n)) \implies P(n+1)))) \implies (\forall n \in N)((n \geq 1) \implies P(n))\]

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\),
Summary: principle of induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n)) \)

Variations:
\((P(0) \land ((\forall n \in N)(P(n) \implies P(n+1)))) \implies (\forall n \in N)(P(n)) \)
\((P(1) \land ((\forall n \in N)((n \geq 1) \land P(n)) \implies P(n+1)))) \implies (\forall n \in N)((n \geq 1) \implies P(n)) \)

Statement to prove: \(P(n) \) for \(n \) starting from \(n_0 \)
Base Case: Prove \(P(n_0) \).
Ind. Step: Prove. For all values, \(n \geq n_0 \), \(P(n) \implies P(n+1) \).
Summary: principle of induction.

\((P(0) \land ((\forall k \in N)(P(k) \implies P(k+1)))) \implies (\forall n \in N)(P(n))\)

Variations:
\((P(0) \land ((\forall n \in N)(P(n) \implies P(n+1)))) \implies (\forall n \in N)(P(n))\)
\((P(1) \land ((\forall n \in N)((n \geq 1) \land P(n)) \implies P(n+1)))) \implies (\forall n \in N)((n \geq 1) \implies P(n))\)

Statement to prove: \(P(n)\) for \(n\) starting from \(n_0\)
Base Case: Prove \(P(n_0)\).
Ind. Step: Prove. For all values, \(n \geq n_0\), \(P(n) \implies P(n+1)\).
Statement is proven!