Graphs!
 Euler
Definitions: model.
Fact!
Euler Again!!
Planar graphs.
Euler Again!!!!
Konigsberg bridges problem.

Can you make a tour visiting each bridge exactly once?

“Konigsberg bridges" by Bogdan Giuscă - License.

Can you draw a tour in the graph where you visit each edge once? Yes? No? We will see!
Graphs: formally.

Graph: $G = (V, E)$.
- V - set of vertices.
 - $\{A, B, C, D\}$
- $E \subseteq V \times V$ - set of edges.
 - $\{\{A, B\}, \{A, B\}, \{A, C\}, \{B, C\}, \{B, D\}, \{B, D\}, \{C, D\}\}$.

For CS 70, usually simple graphs.
- No parallel edges.

Multigraph above.
Directed Graphs

\[G = (V, E) \]
- **\(V \)** - set of vertices.
 \[\{1, 2, 3, 4\} \]
- **\(E \)** - ordered pairs of vertices.
 \[\{(1,2), (1,3), (1,4), (2,4), (3,4)\} \]

One way streets.
Tournament: 1 beats 2, ...
Precedence: 1 is before 2, ..

Social Network: Directed? Undirected?
 - Friends. Undirected.
 - Likes. Directed.
Graph Concepts and Definitions.

Graph: $G = (V, E)$

neighbors, adjacent, degree, incident, in-degree, out-degree

Neighbors of 10? 1, 5, 7, 8.

u is neighbor of v if $(u, v) \in E$.

Edge (10, 5) is incident to vertex 10 and vertex 5.

Edge (u, v) is incident to u and v.

Degree of vertex 1? 2

Degree of vertex u is number of incident edges.

Equals number of neighbors in simple graph.

Directed graph?

In-degree of 10? 1 Out-degree of 10? 3
Quick Proof.

The sum of the vertex degrees is equal to

(A) the total number of vertices, \(|V|\).
(B) the total number of edges, \(|E|\).
(C) What?

Not (A)! Triangle.

Not (B)! Triangle.

What? For triangle number of edges is 3, the sum of degrees is 6.

Could it always be... \(2|E|\) ? ..or \(2|V|\)?

How many incidences does each edge contribute? 2.
2\(|E|\) incidences are contributed in total!

What is degree \(v\)? incidences contributed to \(v\)!

sum of degrees is total incidences ... or \(2|E|\).

Thm: Sum of vertex degrees is \(2|E|\).
Paths, walks, cycles, tour.

A path in a graph is a sequence of edges.

Path? \{1, 10\}, \{8, 5\}, \{4, 5\}? No!
Path? \{1, 10\}, \{10, 5\}, \{5, 4\}, \{4, 11\}? Yes!
Path: \((v_1, v_2), (v_2, v_3), \ldots (v_{k-1}, v_k)\).
Quick Check! Length of path? \(k\) vertices or \(k - 1\) edges.

Cycle: Path with \(v_1 = v_k\). Length of cycle? \(k - 1\) vertices and edges!
Path is usually simple. No repeated vertex!

Quick Check!
Path is to Walk as Cycle is to ?? Tour!

Walk is sequence of edges with possible repeated vertex or edge.
Tour is walk that starts and ends at the same node.
Directed Paths.

Path: $(v_1, v_2), (v_2, v_3), \ldots (v_{k-1}, v_k)$.

Paths, walks, cycles, tours ... are analogous to undirected now.
Connectivity

u and *v* are connected if there is a path between *u* and *v*.

A connected graph is a graph where all pairs of vertices are connected.

If one vertex *x* is connected to every other vertex.

Is graph connected? Yes? No?

Proof: Use path from *u* to *x* and then from *x* to *v*.

May not be simple!

Either modify definition to walk.

Or cut out cycles.
Is graph above connected? Yes!

How about now? No!

Connected Components? \{1\}, \{10, 7, 5, 8, 4, 3, 11\}, \{2, 9, 6\}.

Connected component - maximal set of connected vertices.

Quick Check: Is \{10, 7, 5\} a connected component? No.
An Eulerian Tour is a tour that visits each edge exactly once.

Theorem: Any undirected graph has an Eulerian tour if and only if all vertices have even degree and is connected.

Proof of only if: Eulerian \implies connected and all even degree.

Eulerian Tour is connected so graph is connected. Tour enters and leaves vertex v on each visit. Uses two incident edges per visit. Tour uses all incident edges. Therefore v has even degree.

When you enter, you leave. For starting node, tour leaves firstthen enters at end.
Finding a tour!

Proof of if: Even + connected \(\implies\) Eulerian Tour.
We will give an algorithm. First by picture.

1. Take a walk starting from \(v (1)\) on “unused” edges
 ... till you get back to \(v\).
2. Remove tour, \(C\).
3. Let \(G_1, \ldots, G_k\) be connected components.
 Each is touched by \(C\).
 Why? \(G\) was connected.
 Let \(v_i\) be (first) node in \(G_i\) touched by \(C\).
 Example: \(v_1 = 1, v_2 = 10, v_3 = 4, v_4 = 2\).
4. Recurse on \(G_1, \ldots, G_k\) starting from \(v_i\)
5. Splice together.
 \(1,10,7,8,5,10,8,4,3,11,4,5,2,6,9,2\) and to 1!
Recursive/Inductive Algorithm.

1. Take a walk from arbitrary node \(v \), until you get back to \(v \).

Claim: Do get back to \(v \)!

Proof of Claim: Even degree. If enter, can leave except for \(v \).

2. Remove cycle, \(C \), from \(G \).

Resulting graph may be disconnected. (Removed edges!)

Let components be \(G_1, \ldots, G_k \).

Let \(v_i \) be first vertex of \(C \) that is in \(G_i \).

Why is there a \(v_i \) in \(C \)?

\(G \) was connected \(\implies \) a vertex in \(G_i \) must be incident to a removed edge in \(C \).

Claim: Each vertex in each \(G_i \) has even degree and is connected.

Prf: Tour \(C \) has even incidences to any vertex \(v \).

3. Find tour \(T_i \) of \(G_i \) starting/ending at \(v_i \). Induction.

4. Splice \(T_i \) into \(C \) where \(v_i \) first appears in \(C \).

Visits every edge once:

- Visits edges in \(C \) exactly once.
- By induction for all edges in each \(G_i \).
Break time!

Well admin time!

Must choose homework option or test only: soon after receiving hw 1 scores.

Test Option: don’t have to do homework. Yes!!
Should do homework. No need to write up.
Homework Option: have to do homework. Bummer!

The truth: mostly test, both options!
Variance mostly in exams for A/B range.
most homework students get near perfect scores on homework.

How will I do?
Mostly up to you.
Planar graphs.

A graph that can be drawn in the plane without edge crossings.

Planar? Yes for Triangle.
Four node complete? Yes.
Five node complete or K_5? No! Why? Later.

Two to three nodes, bipartite? Yes.
Three to three nodes, complete/bipartite or $K_{3,3}$. No. Why? Later.
Euler’s Formula.

Faces: connected regions of the plane.

How many faces for
triangle? 2
complete on four vertices or K_4? 4
bipartite, complete two/three or $K_{2,3}$? 3

v is number of vertices, e is number of edges, f is number of faces.

Euler’s Formula: Connected planar graph has $v + f = e + 2$.

Triangle: $3 + 2 = 3 + 2!$
K_4: $4 + 4 = 6 + 2!$
$K_{2,3}$: $5 + 3 = 6 + 2!$

Examples = 3! Proven! Not!!!!
Euler and Polyhedron.

Greeks knew formula for polyhedron.

\[v + f = e + 2. \]
\[8 + 6 = 12 + 2. \]

Greeks couldn’t prove it. Induction? Remove vertex for polyhedron?

Polyhedron without holes \(\equiv\) Planar graphs.

Surround by sphere.
Project from point inside polytope onto sphere.
Sphere \(\equiv\) Plane! Topologically.

Euler proved formula thousands of years later!
Euler and planarity of K_5 and $K_{3,3}$

Euler: $v + f = e + 2$ for connected planar graph.

We consider graphs where $v \geq 3$.

Each face is adjacent to at least three edges.

$\geq 3f$ face-edge adjacencies.

Each edge is adjacent to (at most) two faces.

$\leq 2e$ face-edge adjacencies.

$\implies 3f \leq 2e$ for any planar graph.

Euler: $v + \frac{2}{3}e \geq e + 2 \implies e \leq 3v - 6$

for graphs with every edge on a cycle.

$10 \not\leq 3(5) - 6 = 9. \implies K_5$ is not planar.

$K_{3,3}$? Edges? 9. Vertices. 6. $9 \leq 3(6) - 6$? Sure!

But no cycles that are triangles. Face is of length ≥ 4.

$\implies 4f \leq 2e$ for any bipartite planar graph.

Euler: $v + \frac{1}{2}e \geq e + 2 \implies e \leq 2v - 4$ for bipartite planar graph.
A tree is a connected acyclic graph.

To tree or not to tree!

Yes. No. Yes. No. No.

Faces? 1. 2. 1. 1. 2.

Vertices/Edges. Notice: $e = v - 1$ for tree.

One face for trees!

Euler works for trees: $v + f = e + 2$.

$v + 1 = v - 1 + 2$
Euler's formula.

Euler: Connected planar graph has \(v + f = e + 2 \).

Proof sketch: Induction on \(e \).

Base: \(e = 0, \ v = f = 1 \).

Induction Step:
- If it is a tree. Done.
- If not a tree.
 - Find a cycle. Remove edge.

\[\text{Outer face.} \]

Joins two faces.

New graph: \(v \)-vertices. \(e - 1 \) edges. \(f - 1 \) faces. Planar.

\[v + (f - 1) = (e - 1) + 2 \] by induction hypothesis.

Therefore \(v + f = e + 2 \).

\[\square \]
Oh my goodness..what have we done!

Graphs.
Basics.
Connectivity.
Algorithm for Eulerian Tour.

Also Euler’s formula.

Yay!