Instructions:

- Do not turn over this page until the proctor tells you to.
- Don’t write any answers on the backs of pages (we won’t be scanning those). There is an extra page at the end in case you run out of space.
- The exam has 9 pages (the last two are mostly blank).

PRINT your student ID:

PRINT AND SIGN your name:

(last) (first) (signature)

PRINT your discussion section and GSI (the one you attend):

Name of the person to your left:

Name of the person to your right:

Name of someone in front of you:

Name of someone behind you:

True/False

1. (16 pts.) For each of the following statements, circle T if it is true and F otherwise. You do not need to justify or explain your answers.

 T F For all positive integers x and p, if gcd(x, p) = 1, then $x^{p-1} \equiv 1 \pmod{p}$.

 T F One way to prove a statement of the form $P \implies Q$ is to assume $\neg Q$ and prove $\neg P$.

 T F $\forall x \exists y P(x, y) \equiv \exists x \forall y P(y, x)$.

 T F $P \implies (Q \implies R) \equiv (P \land Q) \implies R$

 T F $P \implies (Q \land R) \equiv (P \implies Q) \lor R$

 T F To prove $(\forall n \in \mathbb{N}) P(n)$, it is enough to prove $P(0)$, $P(2)$ and $(\forall n \geq 2)(P(n) \implies P(n+2))$.

 T F In a stable marriage instance, there can be two women with the same optimal man.

 T F In stable marriage, if Man 1 is at the top of Woman A’s ranking but the bottom of every other woman’s ranking, then every stable matching must pair 1 with A.
Short Answer

2. (4 pts.) Compute \((2^3 \cdot 5^{71}) + (3^3 + 4^2) \mod 8\).

3. (4 pts.) Compute \(\frac{200 + 14 \cdot 102}{99} \mod 10\).

4. (4 pts.) Prove that \((\exists x \in \mathbb{R}) (\forall y \in \mathbb{R}) x \cdot y < 2\).
RSA

5. (12 pts.) Someone sends Pandu an RSA-encrypted message x. The encrypted value is $E(x) = 2$. However, Pandu was silly and picked numbers far too small to make RSA secure. Given his public key $(N = 77, e = 43)$, find x.
Induction

6. (12 pts.) Prove that every two consecutive numbers in the Fibonacci sequence are coprime. (In other words, for all \(n \geq 1 \), \(\gcd(F_n, F_{n+1}) = 1 \). Recall that the Fibonacci sequence is defined by \(F_1 = 1 \), \(F_2 = 1 \) and \(F_n = F_{n-2} + F_{n-1} \) for \(n > 2 \).)
Error-Correcting Codes

7. (15 pts.) Alice wants to send to Bob a message of length 3, and protect against up to 2 erasure errors. Using the error-correcting code we learned in class, she obtains a polynomial \(P(x) \) modulo 11 and sends 5 points to Bob. Bob only receives 3 of the points: \(P(1) = 4, P(3) = 1, P(4) = 5 \).

(a) (12 pts.) Decode Alice’s original message \(P(1), P(2), P(3) \).

(b) (3 pts.) If Alice tried to send a message with a modulus of 10 instead of 11, what exactly could go wrong? (You don’t need to do any computations in your answer.)
Polynomials

8. (16 pts.) Suppose P is a polynomial over \mathbb{R}, and for every $x, y \in \mathbb{R}$, $P(x + y) = P(x) + P(y)$.

(a) Prove that for every positive integer n, $P(n) = n \cdot P(1)$.

(b) Prove that P has degree at most 1.
PRINT your name and student ID: __

[Extra page. If you want the work on this page to be graded, make sure you tell us on the problem’s main page.]
PRINT your name and student ID: __

[Doodle page! Draw us something if you want or give us suggestions or complaints.]