1. Basic RSA Operations

Consider an RSA scheme modulus $N = pq$, where p and q are prime numbers larger than 3. In this setting, Alice wants to send a message x to Bob with public key (N, e).

(a) Now suppose that $p = 11$, $q = 17$, and $e = 3$. Find the secret key d used in this scheme.
(b) Alice wants to send a message $x = 70$ to Bob. What is the encrypted message she sends using the public key?

2. RSA with Multiple Keys

Members of a secret society know a secret word. They transmit this secret word x between each other many times, each time encrypting it with the RSA method. Eve who is listening to all of their communications notices that in all of the public keys they use, the exponent e is the same. Therefore the public keys used look like $(e, N_1), \ldots, (e, N_k)$ where no two N_i’s are the same. Assume that the message is x such that $0 \leq x < N_i$ for every i.

(a) Suppose Eve sees the public keys $(7, 35)$ and $(7, 77)$ as well as the corresponding transmissions. Note that $\gcd(77, 35) = 7$. Can Eve use this knowledge to break the encryption?
(b) The secret society has wised up to Eve and changed their choices of N, in addition to changing their word x. Now, Eve sees keys $(3, 5 \times 23)$, $(3, 11 \times 17)$, and $(3, 29 \times 41)$ along with their transmissions. Argue why Eve cannot break the encryption in the same way as above.
(c) Recall that these public keys imply that $(x < 5 \times 23) \land (x < 11 \times 17) \land (x < 29 \times 41)$. Let us suppose for this part and the next that the society chose $x = 100$ (though Eve doesn’t know!). Is x^3 greater or less than $(5 \times 23)(11 \times 17)(29 \times 41)$?
(d) Imagine that, from the transmissions above, Eve can figure out $x^3 \mod (5 \times 23)(11 \times 17)(29 \times 41)$. In addition, give her a machine that lets her take cube-roots of integers. Can Eve deduce x?
3. Roots

Let’s make sure you’re comfortable with thinking about roots of polynomials in familiar old \(\mathbb{R} \). For all of these questions, take the context to be \(\mathbb{R} \):

(a) True or False: if \(p(x) = ax^2 + bx + c \) has two positive roots, then \(ab < 0 \) and \(ac > 0 \). Argue why or provide a counterexample.

(b) Suppose \(P(x) \) and \(Q(x) \) are two different nonzero polynomials with degrees \(d_1 \) and \(d_2 \) respectively. What can you say about the number of solutions of \(P(x) = Q(x) \)? How about \(P(x) \cdot Q(x) = 0 \)?

(c) We’ve given a lot of attention to the fact that a nonzero polynomial of degree \(d \) can have at most \(d \) roots. Well, I’m sick of it. What I want to know is, what is the minimal number of real roots that a nonzero polynomial of degree \(d \) can have? How does the answer depend on \(d \)?

(d) Consider the degree 2 polynomial \(f(x) = x^2 + ax + b \). Show that, if \(f \) has exactly one root, then \(a^2 = 4b \).

4. Polynomial Interpolation

Let \(p(x) \) be a polynomial of degree at most 2 such that \(p(-1) = 3, p(0) = 1, p(1) = 2 \).

(a) Find the coefficients of \(p(x) \) by solving a system of linear equations.

(b) Find the coefficients of \(p(x) \) using the Lagrange interpolation.

5. Surjection, Injection, Bijection

Are the following functions (“mod” here is an operation) surjective, injective, and/or bijective?

(a) \(f(x) = x^3 \mod 3 \), with domain \(A = \{0, 1, 2\} \) and range \(B = \{0, 1, 2\} \).

(b) \(f(x) = x^3 \mod 3 \), with domain \(A = \{0, 1, 2, 3\} \) and range \(B = \{0, 1, 2\} \).

(c) \(f(x) = x^3 \mod 3 \), with domain \(A = \{0, 1, 2\} \) and range \(B = \{0, 1, 2, 3\} \).

(d) \(f(x) = x^3 \mod 4 \), with domain \(A = \{0, 1, 2, 3\} \) and range \(B = \{0, 1, 2, 3\} \).