1. Roots: The Next Generations
Now go back and do it all over in modular arithmetic.

(a) True or False: if \(p(x) = ax^2 + bx + c \) has two positive roots, then \(ab < 0 \) and \(ac > 0 \). Argue why or provide a counterexample.

(b) Suppose \(P(x) \) and \(Q(x) \) are two different nonzero polynomials with degrees \(d_1 \) and \(d_2 \) respectively. What can you say about the number of solutions of \(P(x) = Q(x) \)? How about \(P(x) \cdot Q(x) = 0 \)?

(c) We’ve given a lot of attention to the fact that a nonzero polynomial of degree \(d \) can have at most \(d \) roots. Well, I’m sick of it. What I want to know is, what is the minimal number of real roots that a nonzero polynomial of degree \(d \) can have? How does the answer depend on \(d \)?

(d) Consider the degree 2 polynomial \(f(x) = x^2 + ax + b \). Show that, if \(f \) has exactly one root, then \(a^2 = 4b \).

Which of the facts from above stay true when considering mod \(p \) (i.e., integer arithmetic modulo the prime \(p \))? Which change, and how? Which statements won’t even make sense anymore?

2. Lagrange Interpolation in Finite Field
Find a unique polynomial \(p(x) \) of degree at most 3 that passes through points \((-1,3), (0,1), (1,2), \) and \((2,0)\) in modulo 5 arithmetic using the Lagrange interpolation.

(a) Find \(\Delta_{-1}(x) \) where \(\Delta_{-1}(0) \equiv \Delta_{-1}(1) \equiv \Delta_{-1}(2) \equiv 0 \) (mod 5) and \(\Delta_{-1}(-1) \equiv 1 \) (mod 5).

(b) Find \(\Delta_{0}(x) \) where \(\Delta_{0}(-1) \equiv \Delta_{0}(1) \equiv \Delta_{0}(2) \equiv 0 \) (mod 5) and \(\Delta_{0}(0) \equiv 1 \) (mod 5).

(c) Find \(\Delta_{1}(x) \) where \(\Delta_{1}(-1) \equiv \Delta_{1}(0) \equiv \Delta_{1}(2) \equiv 0 \) (mod 5) and \(\Delta_{1}(1) \equiv 1 \) (mod 5).

(d) Find \(\Delta_{2}(x) \) where \(\Delta_{2}(-1) \equiv \Delta_{2}(0) \equiv \Delta_{2}(1) \equiv 0 \) (mod 5) and \(\Delta_{2}(2) \equiv 1 \) (mod 5).

(e) Construct \(p(x) \) using a linear combination of \(\Delta_{-1}(x), \Delta_{0}(x), \Delta_{1}(x), \) and \(\Delta_{2}(x) \).
3. How Many Polynomials?

Let \(P(x) \) be a polynomial of degree 2 over GF(5). As we saw in lecture, we need \(d + 1 \) distinct points to determine a unique \(d \)-degree polynomial.

(a) Assume that we know \(P(0) = 1 \), and \(P(1) = 2 \). Now we consider \(P(2) \). How many values can \(P(2) \) have? List all possible polynomials of degree 2. How many distinct polynomials are there?

(b) Now assume that we only know \(P(0) = 1 \). We consider \(P(1) \), and \(P(2) \). How many different \((P(1), P(2)) \) pairs are there? How many different polynomials are there?

(c) How many different polynomials of degree \(d \) over \(GF(p) \) are there if we only know \(k \), where \(k \leq d \), values?

4. Secret Sharing

Steven would like to share a secret number \(s \) among us, with \(s \) could be any integer from 0 to 10. He chose a polynomial with degree 1 such that \(P(0) \equiv s \pmod{11} \), but he only shared \(P(1) \) to your TA. Another key is on your hands. The way he distributed the second key \(w = P(2) \) \((0 \leq w \leq 58)\) is by choosing a polynomial \(Q(x) \) of degree \(\leq 2 \) such that \(Q(0) \equiv w \pmod{59} \). Here are your \(x \) and \(Q(x) \):

(a) At least how many students would we need in order to find \(w \)?

(b) Please find \(w \).

(c) Please help your TA find the secret number \(s \).

5. Secret in the United Nations

The United Nations (for the purposes of this question) consists of \(n \) countries, each having \(k \) representatives. A vault in the United Nations can be opened with a secret combination \(s \). The vault should only be opened in one of two situations. First, it can be opened if all \(n \) countries in the UN help. Second, it can be opened if at least \(m \) countries get together with the Secretary General of the UN.

(a) Propose a scheme that gives private information to the Secretary General and \(n \) countries so that \(s \) can only be recovered under either one of the two specified conditions.

(b) The General Assembly of the UN decides to add an extra level of security: in order for a country to help, all of the country’s \(k \) representatives must agree. Propose a scheme that adds this new feature. The scheme should give private information to the Secretary General and to each representative of each country.