1. **Countability**

Consider degree-one polynomials, i.e. polynomials of the form \(P(x) = ax + b \). Determine if the set of all degree-one polynomials is countable under the following conditions:

(a) \(a \) and \(b \) must be integers.

Countable, there is a bijection to \(\mathbb{Z} \times \mathbb{Z} \), which we showed in lecture was countable.

(b) \(a \) and \(b \) must be rational numbers.

Countable, there is a bijection to \(\mathbb{Q} \times \mathbb{Q} \). We showed \(\mathbb{Q} \) was countable, so this is also countable.

(c) \(a \) and \(b \) are real numbers.

Uncountable, there is a bijection with \(\mathbb{R} \times \mathbb{R} \). Since \(\mathbb{R} \) is uncountable, then this is also uncountable.

2. **Injection, Surjection, or Bijection?**

For each of the following functions from \(\mathbb{R} \) to \(\mathbb{R} \), determine whether it is an injection, surjection, bijection, or none of the above.

(a) \(f(x) = 2^x \)

Injection. \(f(x) \) cannot take on non-positive values.

(b) \(f(x) = x^2 \)

None. Not an injection since every non-zero \(f(x) \) occurs twice. Not a surjection because \(f(x) \) cannot take on negative values.

(c) \(f(x) = 2x + 1 \)

Injection, Surjection, and Bijection. There is exactly one \(x \) that maps to any given value, namely \(f^{-1}(y) = (y - 1)/2 \).

3. **Union of Countable Sets**

Prove that if \(A \) is countable and \(B \) is countable, then \(A \cup B \) is countable.

Proof: Direct proof. Since \(A \) is countable, there exists a bijection from \(A \) to a subset of \(\mathbb{N} \). Since \(B \) is countable, there exists a bijection from \(B \) to a subset of \(\mathbb{N} \). Consider the bijection from \(\mathbb{N} \) to nonnegative even numbers. Using that bijection and the bijection from \(A \) to \(\mathbb{N} \), there exists a bijection from \(A \) to a subset of nonnegative even numbers. Using the bijection from \(\mathbb{N} \) to positive odd numbers and the bijection from \(B \) to \(\mathbb{N} \), there exists a bijection from \(B \) to a subset of positive odd numbers. This means that \(A \cup B \) has a bijection onto a subset of the union of nonnegative even numbers and positive odd numbers, which is just \(\mathbb{N} \). This means that \(A \cup B \) is countable.

4. **Another Proof**

Prove that if \(A \) is uncountable and \(B \) is a countable subset of \(A \), then \(A - B \) is uncountable.

We will use proof by contradiction. Suppose for contradiction that \(A \) is uncountable, \(B \) is a countable subset of \(A \), and \(A - B \) is countable. This means that there exists a bijection from \(A - B \) to a subset of \(\mathbb{N} \). Since \(B \) is
countable, this means that there exists a bijection from B to a subset of \mathbb{N}. Consider a bijection from $A - B$ to (possibly a subset of) nonnegative even numbers and a bijection from B to (possibly a subset of) positive odd numbers. This means that “combining” the two bijections gives us a bijection from A to (possibly a subset of) \mathbb{N}. However, if there exists a bijection from A to a subset of \mathbb{N}, then A is countable. This is a contradiction on the assumption that A is uncountable, and thus if A is uncountable and B is a countable subset of A, then $A - B$ is uncountable.