Random Variables: Variance
Random Variables: Variance

1. Variance
2. Distributions
Variance

Flip a coin:

If H you make a dollar. If T you lose a dollar.

Let \(X \) be the RV indicating how much money you make.

\[
E(X) = 0.
\]

Flip a coin:

If H you make a million dollars. If T you lose a million dollars.

Let \(Y \) be the RV indicating how much money you make.

\[
E(Y) = 0.
\]

Any other measures???

What else that's informative can we say?
Flip a coin: If H you make a dollar. If T you lose a dollar.
Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make.
Variance

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. $E(X) =$

Any other measures??

What else that's informative can we say?
Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. $E(X) = 0$.
Flipped a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. $E(X) = 0$.

Flipped a coin:
Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. $E(X) = 0$.

Flip a coin: If H you make a million dollars. If T you lose a million dollars.
Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. $E(X) = 0$.

Flip a coin: If H you make a million dollars. If T you lose a million dollars. Let Y be the RV indicating how much money you make.
Variance

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. $E(X) = 0$.

Flip a coin: If H you make a million dollars. If T you lose a million dollars. Let Y be the RV indicating how much money you make. $E(Y) =$
Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. $E(X) = 0$.

Flip a coin: If H you make a million dollars. If T you lose a million dollars. Let Y be the RV indicating how much money you make. $E(Y) = 0$.
Variance

Flip a coin: If H you make a dollar. If T you lose a dollar. Let X be the RV indicating how much money you make. $E(X) = 0$.

Flip a coin: If H you make a million dollars. If T you lose a million dollars. Let Y be the RV indicating how much money you make. $E(Y) = 0$.

Any other measures???
Flip a coin: If H you make a dollar. If T you lose a dollar. Let \(X \) be the RV indicating how much money you make. \(E(X) = 0 \).

Flip a coin: If H you make a million dollars. If T you lose a million dollars. Let \(Y \) be the RV indicating how much money you make. \(E(Y) = 0 \).

Any other measures???
What else that’s informative can we say?
Variance

The variance measures the deviation from the mean value.

Definition:

The variance of X is $\sigma^2(X) := \text{var}[X] = E[(X - E[X])^2]$.

$\sigma(X)$ is called the standard deviation of X.

Variance

The variance measures the deviation from the mean value.

Definition:

The variance of X is $\sigma^2(X) := \text{var}[X] = E[(X - E[X])^2]$.

$\sigma(X)$ is called the standard deviation of X.

![Diagram showing two bell curves with different variances. One labeled Var = 1, the other Var = 10.}]
Variance

The variance measures the deviation from the mean value.

\[
\sigma^2(X) := \text{var}[X] = E[(X - E[X])^2].
\]

\(\sigma(X)\) is called the standard deviation of \(X\).
Variance

The variance measures the deviation from the mean value.

Definition: The *variance* of X is
Variance

The variance measures the deviation from the mean value.

Definition: The variance of X is

$$\sigma^2(X) := var[X] = E[(X - E[X])^2].$$
The variance measures the deviation from the mean value.

Definition: The variance of X is

$$\sigma^2(X) := \text{var}[X] = E[(X - E[X])^2].$$

$\sigma(X)$ is called the standard deviation of X.
Variance and Standard Deviation

Fact:

\[var[X] = E[X^2] - E[X]^2. \]
Fact:

Indeed:

$$\text{var}(X) = E[(X - E[X])^2]$$
Fact:

\[var[X] = E[X^2] - E[X]^2. \]

Indeed:

\[
\begin{align*}
var(X) &= E[(X - E[X])^2] \\
&= E[X^2 - 2XE[X] + E[X]^2]
\end{align*}
\]
Variance and Standard Deviation

Fact:

\[
\]

Indeed:

\[
\text{var}(X) = E[(X - E[X])^2] \\
= E[X^2 - 2XE[X] + E[X]^2] \\
= E[X^2] - E[2XE[X]] + E[E[X]^2]
\]
Variance and Standard Deviation

Fact:

\[\text{var}[X] = E[X^2] - E[X]^2. \]

Indeed:

\[
\text{var}(X) = E[(X - E[X])^2] \\
= E[X^2 - 2XE[X] + E[X]^2] \\
= E[X^2] - E[2XE[X]] + E[E[X]^2] \text{ by linearity}
\]
Variance and Standard Deviation

Fact:

\[\text{var}[X] = E[X^2] - E[X]^2. \]

Indeed:

\[
\begin{align*}
\text{var}(X) & = E[(X - E[X])^2] \\
& = E[X^2 - 2XE[X] + E[X]^2] \\
& = E[X^2] - E[2XE[X]] + E[E[X]^2] \text{ by linearity} \\
& = E[X^2] - 2E[X]E[X] + E[X]^2, \\
\end{align*}
\]
Variance and Standard Deviation

Fact:

\[\text{var}[X] = E[X^2] - E[X]^2. \]

Indeed:

\[
\begin{align*}
\text{var}(X) &= E[(X - E[X])^2] \\
&= E[X^2 - 2XE[X] + E[X]^2] \\
&= E[X^2] - E[2XE[X]] + E[E[X]^2] \text{ by linearity} \\
&= E[X^2] - 2E[X]E[X] + E[X]^2, \\
&= E[X^2] - E[X]^2.
\end{align*}
\]
Example

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01}. \end{cases}$$
Example

Consider X with

$$X = \begin{cases} -1, & \text{w. p. 0.99} \\ 99, & \text{w. p. 0.01}. \end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$
Consider X with

$$X = \begin{cases}
-1, & \text{w. p. 0.99} \\
99, & \text{w. p. 0.01}.
\end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$
$$E[X^2] = (-1)^2 \times 0.99 + (99)^2 \times 0.01 \approx 100.$$
Example

Consider X with

$$X = \begin{cases}
-1, & \text{w. p. 0.99} \\
99, & \text{w. p. 0.01}.
\end{cases}$$

Then

$$E[X] = -1 \times 0.99 + 99 \times 0.01 = 0.$$
$$E[X^2] = (-1)^2 \times 0.99 + (99)^2 \times 0.01 \approx 100.$$
$$Var(X) \approx 100 \implies \sigma(X) \approx 10.$$
A simple example

This example illustrates the term ‘standard deviation.’
A simple example

This example illustrates the term ‘standard deviation.’

\[Pr = 0.5 \quad \sigma \quad \mu \quad \sigma \quad Pr = 0.5 \]

\[\mu - \sigma \quad \mu \quad \mu + \sigma \]
A simple example

This example illustrates the term ‘standard deviation.’

Consider the random variable X such that

$$X = \begin{cases}
\mu - \sigma, & \text{w.p. } 1/2 \\
\mu + \sigma, & \text{w.p. } 1/2.
\end{cases}$$
A simple example

This example illustrates the term ‘standard deviation.’

Consider the random variable X such that

$$X = \begin{cases}
\mu - \sigma, & \text{w.p. } 1/2 \\
\mu + \sigma, & \text{w.p. } 1/2.
\end{cases}$$

Then, $E[X] = \mu$ and $E[(X - E[X])^2] = \sigma^2$.
A simple example

This example illustrates the term ‘standard deviation.’

Consider the random variable \(X\) such that

\[
X = \begin{cases}
 \mu - \sigma, & \text{w.p. } 1/2 \\
 \mu + \sigma, & \text{w.p. } 1/2.
\end{cases}
\]

Then, \(E[X] = \mu\) and \(E[(X - E[X])^2] = \sigma^2\). Hence,

\[\text{var}(X) = \sigma^2\text{ and } \sigma(X) = \sigma.\]
Properties of variance.

1. $\text{Var}(cX) = c^2 \text{Var}(X)$, where c is a constant.
Properties of variance.

1. $\text{Var}(cX) = c^2 \text{Var}(X)$, where c is a constant.
 Scales by c^2.
Properties of variance.

1. $\text{Var}(cX) = c^2 \text{Var}(X)$, where c is a constant. Scales by c^2.
2. $\text{Var}(X + c) = \text{Var}(X)$, where c is a constant.
Properties of variance.

1. $\text{Var}(cX) = c^2 \text{Var}(X)$, where c is a constant. Scales by c^2.
2. $\text{Var}(X + c) = \text{Var}(X)$, where c is a constant. Shifts center.
Properties of variance.

1. $\text{Var}(cX) = c^2 \text{Var}(X)$, where c is a constant. Scales by c^2.

2. $\text{Var}(X + c) = \text{Var}(X)$, where c is a constant. Shifts center.

Proof:

$$\text{Var}(cX) = E((cX)^2) - (E(cX))^2$$
Properties of variance.

1. \(\text{Var}(cX) = c^2 \text{Var}(X) \), where \(c \) is a constant. Scales by \(c^2 \).

2. \(\text{Var}(X + c) = \text{Var}(X) \), where \(c \) is a constant. Shifts center.

Proof:

\[
\text{Var}(cX) = E((cX)^2) - (E(cX))^2 \\
= c^2 E(X^2) - c^2 (E(X))^2
\]
Properties of variance.

1. \(\text{Var}(cX) = c^2 \text{Var}(X) \), where \(c \) is a constant.
 Scales by \(c^2 \).

2. \(\text{Var}(X + c) = \text{Var}(X) \), where \(c \) is a constant.
 Shifts center.

Proof:

\[
\text{Var}(cX) = E((cX)^2) - (E(cX))^2 \\
= c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2)
\]
Properties of variance.

1. \(\text{Var}(cX) = c^2 \text{Var}(X) \), where \(c \) is a constant. Scales by \(c^2 \).

2. \(\text{Var}(X + c) = \text{Var}(X) \), where \(c \) is a constant. Shifts center.

Proof:

\[
\begin{align*}
\text{Var}(cX) &= E((cX)^2) - (E(cX))^2 \\
&= c^2 E(X^2) - c^2 (E(X))^2 \\
&= c^2 (E(X^2) - E(X)^2) \\
&= c^2 \text{Var}(X)
\end{align*}
\]
Properties of variance.

1. $\text{Var}(cX) = c^2 \text{Var}(X)$, where c is a constant.
 Scales by c^2.

2. $\text{Var}(X + c) = \text{Var}(X)$, where c is a constant.
 Shifts center.

Proof:

$$\text{Var}(cX) = E((cX)^2) - (E(cX))^2$$
$$= c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2)$$
$$= c^2 \text{Var}(X)$$

$$\text{Var}(X + c) = E((X + c - E(X + c))^2)$$
Properties of variance.

1. \(\text{Var}(cX) = c^2 \text{Var}(X) \), where \(c \) is a constant.
 Scales by \(c^2 \).

2. \(\text{Var}(X + c) = \text{Var}(X) \), where \(c \) is a constant.
 Shifts center.

Proof:

\[
\begin{align*}
\text{Var}(cX) &= E((cX)^2) - (E(cX))^2 \\
&= c^2 E(X^2) - c^2 (E(X))^2 \\
&= c^2 (E(X^2) - E(X)^2) \\
&= c^2 \text{Var}(X) \\
\text{Var}(X + c) &= E((X + c - E(X + c))^2) \\
&= E((X + c - E(X) - c)^2)
\end{align*}
\]
Properties of variance.

1. \(Var(cX) = c^2 Var(X) \), where \(c \) is a constant.
 Scales by \(c^2 \).

2. \(Var(X + c) = Var(X) \), where \(c \) is a constant.
 Shifts center.

Proof:

\[
Var(cX) = E((cX)^2) - (E(cX))^2
\]
\[
= c^2 E(X^2) - c^2 (E(X))^2
= c^2 (E(X^2) - E(X)^2)
= c^2 Var(X)
\]

\[
Var(X + c) = E((X + c - E(X + c))^2)
\]
\[
= E((X + c - E(X) - c)^2)
= E((X - E(X))^2)
\]
Properties of variance.

1. \(\text{Var}(cX) = c^2 \text{Var}(X) \), where \(c \) is a constant. Scales by \(c^2 \).

2. \(\text{Var}(X + c) = \text{Var}(X) \), where \(c \) is a constant. Shifts center.

Proof:

\[
\begin{align*}
\text{Var}(cX) &= E((cX)^2) - (E(cX))^2 \\
&= c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2) \\
&= c^2 \text{Var}(X)
\end{align*}
\]

\[
\begin{align*}
\text{Var}(X + c) &= E((X + c - E(X + c))^2) \\
&= E((X + c - E(X) - c)^2) \\
&= E((X - E(X))^2) = \text{Var}(X)
\end{align*}
\]
Properties of variance.

1. \(\text{Var}(cX) = c^2 \text{Var}(X) \), where \(c \) is a constant. Scales by \(c^2 \).

2. \(\text{Var}(X + c) = \text{Var}(X) \), where \(c \) is a constant. Shifts center.

Proof:

\[
\begin{align*}
\text{Var}(cX) &= E((cX)^2) - (E(cX))^2 \\
&= c^2 E(X^2) - c^2 (E(X))^2 = c^2 (E(X^2) - E(X)^2) \\
&= c^2 \text{Var}(X)
\end{align*}
\]

\[
\begin{align*}
\text{Var}(X + c) &= E((X + c - E(X + c))^2) \\
&= E((X + c - E(X) - c)^2) \\
&= E((X - E(X))^2) = \text{Var}(X)
\end{align*}
\]
Theorem: If X and Y are independent, then
$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y).$$

Proof: Since shifting the random variables does not change their variance, let us subtract their means. That is, we assume that $E(X) = 0$ and $E(Y) = 0$. Then, by independence,
$$E(XY) = E(X)E(Y) = 0.$$

Hence,
$$\text{Var}(X) = E(X^2), \quad \text{Var}(Y) = E(Y^2).$$

Thus,
$$\text{Var}(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2) = E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2) = \text{Var}(X) + \text{Var}(Y).$$
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E(X) = 0$ and $E(Y) = 0$.
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$\text{Var}(X + Y) = \text{Var}(X) + \text{Var}(Y).$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E(X) = 0$ and $E(Y) = 0$.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E(X) = 0$ and $E(Y) = 0$.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Thus,

$$Var(X) = E(X^2), Var(Y) = E(Y^2).$$
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E(X) = 0$ and $E(Y) = 0$.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Hence,

$$Var(X) = E(X^2), \ Var(Y) = E(Y^2).$$

Hence,

$$var(X + Y) = E((X + Y)^2).$$
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E(X) = 0$ and $E(Y) = 0$.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$Var(X) = E(X^2), \ Var(Y) = E(Y^2).$$

Hence,

$$\text{var}(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E(X) = 0$ and $E(Y) = 0$.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Hence,

$$Var(X) = E(X^2), Var(Y) = E(Y^2).$$

Hence,

$$\text{var}(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2) = E(X^2) + 2E(XY) + E(Y^2)$$
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E(X) = 0$ and $E(Y) = 0$.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

Hence,

$$Var(X) = E(X^2), \ Var(Y) = E(Y^2).$$

Hence,

$$\text{var}(X + Y) = E((X + Y)^2) = E(X^2 + 2XY + Y^2)$$
$$= E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2)$$
Variance of sum of two independent random variables

Theorem:
If X and Y are independent, then

$$Var(X + Y) = Var(X) + Var(Y).$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E(X) = 0$ and $E(Y) = 0$.

Then, by independence,

$$E(XY) = E(X)E(Y) = 0.$$

$$Var(X) = E(X^2), Var(Y) = E(Y^2).$$

Hence,

$$\begin{align*}
var(X + Y) &= E((X + Y)^2) = E(X^2 + 2XY + Y^2) \\
&= E(X^2) + 2E(XY) + E(Y^2) = E(X^2) + E(Y^2) \\
&= var(X) + var(Y).
\end{align*}$$
Theorem:
If X, Y, Z, \ldots are pairwise independent, then
$$\text{var}(X + Y + Z + \cdots) = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means. That is, we assume that $E[X] = E[Y] = \cdots = 0$. Then, by independence,
Also, $E[XZ] = E[YZ] = \cdots = 0$. Hence,
$$\text{var}(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2) = E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots) = E(X^2) + E(Y^2) + E(Z^2) + \cdots + 0 + \cdots + 0 = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.$$
Variance of sum of independent random variables

Theorem:
If X, Y, Z, \ldots are pairwise independent, then

$$\text{var}(X + Y + Z + \cdots) = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.$$
Variance of sum of independent random variables

Theorem:
If X, Y, Z, \ldots are pairwise independent, then

$$var(X + Y + Z + \cdots) = var(X) + var(Y) + var(Z) + \cdots.$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.
Variance of sum of independent random variables

Theorem:
If X, Y, Z, \ldots are pairwise independent, then

$$\text{var}(X + Y + Z + \cdots) = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.
That is, we assume that $E[X] = E[Y] = \cdots = 0.$
Variance of sum of independent random variables

Theorem:
If X, Y, Z, \ldots are pairwise independent, then

\[
\text{var}(X + Y + Z + \cdots) = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.
\]

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

\[
\]
Variance of sum of independent random variables

Theorem:
If X, Y, Z, \ldots are pairwise independent, then

$$\text{var}(X + Y + Z + \cdots) = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

Also, $E[XZ] = E[YZ] = \cdots = 0.$
Variance of sum of independent random variables

Theorem:
If X, Y, Z, \ldots are pairwise independent, then

$$\text{var}(X + Y + Z + \cdots) = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0. \text{ Also, } E[XZ] = E[YZ] = \cdots = 0.$$

Hence,

$$\text{var}(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2)$$
Variance of sum of independent random variables

Theorem:
If \(X, Y, Z, \ldots \) are pairwise independent, then

\[
\text{var}(X + Y + Z + \cdots) = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.
\]

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that \(E[X] = E[Y] = \cdots = 0 \).

Then, by independence,

\[
E[XY] = E[X]E[Y] = 0. \text{ Also, } E[XZ] = E[YZ] = \cdots = 0.
\]

Hence,

\[
\text{var}(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2)
= E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots)
\]
Variance of sum of independent random variables

Theorem:
If X, Y, Z, \ldots are pairwise independent, then

$$\text{var}(X + Y + Z + \cdots) = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0. \text{ Also, } E[XZ] = E[YZ] = \cdots = 0.$$

Hence,

$$\text{var}(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2)$$
$$= E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots)$$
$$= E(X^2) + E(Y^2) + E(Z^2) + \cdots + 0 + \cdots + 0$$
Variance of sum of independent random variables

Theorem:
If X, Y, Z, \ldots are pairwise independent, then

$$\text{var}(X + Y + Z + \cdots) = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.$$

Proof:
Since shifting the random variables does not change their variance, let us subtract their means.

That is, we assume that $E[X] = E[Y] = \cdots = 0$.

Then, by independence,

$$E[XY] = E[X]E[Y] = 0. \text{ Also, } E[XZ] = E[YZ] = \cdots = 0.$$

Hence,

$$\text{var}(X + Y + Z + \cdots) = E((X + Y + Z + \cdots)^2) = E(X^2 + Y^2 + Z^2 + \cdots + 2XY + 2XZ + 2YZ + \cdots) = E(X^2) + E(Y^2) + E(Z^2) + \cdots + 0 + \cdots + 0 = \text{var}(X) + \text{var}(Y) + \text{var}(Z) + \cdots.$$
Distributions

- Bernoulli
- Binomial
- Uniform
- Geometric
Bernoulli

Flip a coin, with heads probability p.

Distribution:

$$X = \begin{cases}
1 \text{ w.p. } p \\
0 \text{ w.p. } 1-p
\end{cases}$$

$$E[X] = p$$

$$E[X^2] = 1 \times p + 0 \times (1-p) = p$$

$$Var[X] = E[X^2] - (E[X])^2 = p - p^2$$

Notice that:

$p = 0 \implies Var(X) = 0$

$p = 1 \implies Var(X) = 0$
Bernoulli

Flip a coin, with heads probability p.
Random variable X: 1 is heads, 0 if not heads.
Bernoulli

Flip a coin, with heads probability \(p \).

Random variable \(X \): 1 is heads, 0 if not heads.

\(X \) has the Bernoulli distribution.
Bernoulli

Flip a coin, with heads probability p.
Random variable X: 1 is heads, 0 if not heads.
X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases}$$
Bernoulli

Flip a coin, with heads probability p.
Random variable X: 1 is heads, 0 if not heads.
X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases}$$

$$E[X] = p$$
Bernoulli

Flip a coin, with heads probability p.
Random variable X: 1 is heads, 0 if not heads.
X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases} 1 \text{ w.p. } p \\ 0 \text{ w.p. } 1 - p \end{cases}$$

$$E[X] = p$$

$$E[X^2] =$$
Bernoulli

Flip a coin, with heads probability p.
Random variable X: 1 is heads, 0 if not heads.
X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases}$$

$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p)$$
Bernoulli

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases}$$

$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p$$
Bernoulli

Flip a coin, with heads probability p.
Random variable X: 1 is heads, 0 if not heads.
X has the Bernoulli distribution.

Distribution:

\[X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases} \]

\[
E[X] = p
\]

\[
E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p
\]

\[
Var[X] = \]

Bernoulli

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases}$$

$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p$$

$$Var[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1 - p)$$
Bernoulli

Flip a coin, with heads probability p.
Random variable X: 1 is heads, 0 if not heads.
X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases}$$

$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p$$

$$Var[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1 - p)$$

Notice that:
Bernoulli

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases}$$

$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p$$

$$Var[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1 - p)$$

Notice that:

$p = 0$
Bernoulli

Flip a coin, with heads probability \(p \).
Random variable \(X \): 1 is heads, 0 if not heads.
\(X \) has the Bernoulli distribution.

Distribution:

\[
X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases}
\]

\[E[X] = p \]

\[E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p \]

\[\text{Var}[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1 - p) \]

Notice that:

\(p = 0 \implies \text{Var}(X) = 0 \)
Bernoulli

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases}
1 & \text{w.p. } p \\
0 & \text{w.p. } 1 - p
\end{cases}$$

$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p$$

$$Var[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1 - p)$$

Notice that:

$$p = 0 \implies Var(X) = 0$$

$$p = 1$$
Bernoulli

Flip a coin, with heads probability p.

Random variable X: 1 is heads, 0 if not heads.

X has the Bernoulli distribution.

Distribution:

$$X = \begin{cases}
1 \text{ w.p. } p \\
0 \text{ w.p. } 1 - p
\end{cases}$$

$$E[X] = p$$

$$E[X^2] = 1^2 \times p + 0^2 \times (1 - p) = p$$

$$Var[X] = E[X^2] - (E[X])^2 = p - p^2 = p(1 - p)$$

Notice that:

$p = 0 \implies Var(X) = 0$

$p = 1 \implies Var(X) = 0$
Jacob Bernoulli
Binomial

Flip n coins with heads probability p.
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.

Binomial Distribution: $Pr[X = i]$, for each i.

How many sample points in event "$X = i$"?

i heads out of n coin flips $\Rightarrow \binom{n}{i}$

Sample space: $\Omega = \{\text{HHH}...\text{HH}, \text{HHH}...\text{HT},...\}$

What is the probability of ω if ω has i heads?

Probability of heads in any position is p.
Probability of tails in any position is $(1 - p)$.

So, we get $Pr[\omega] = p^i (1 - p)^{n-i}$.

Probability of "$X = i$" is sum of $Pr[\omega]$, $\omega \in \{X = i\}$.

$Pr[X = i] = \binom{n}{i} p^i (1 - p)^{n-i}, i = 0, 1, ..., n$: Binomial distribution
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.

Binomial Distribution: $Pr[X = i]$, for each i.

How many sample points in event “$X = i$”?
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.

Binomial Distribution: $Pr[X = i]$, for each i.

How many sample points in event “$X = i$”?
i heads out of n coin flips
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.

Binomial Distribution: $Pr[X = i]$, for each i.

How many sample points in event “$X = i$”?
i heads out of n coin flips $\implies \binom{n}{i}$
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.

Binomial Distribution: $Pr[X = i]$, for each i.

How many sample points in event “$X = i$”?
i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT, \ldots\}$
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.

Binomial Distribution: $Pr[X = i]$, for each i.

How many sample points in event “$X = i$”?
- i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT, \ldots\}$
What is the probability of ω if ω has i heads?
Binomial

Flip \(n \) coins with heads probability \(p \).
Random variable: number of heads.

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

How many sample points in event “\(X = i \)”?
\(i \) heads out of \(n \) coin flips \(\implies \binom{n}{i} \)

Sample space: \(\Omega = \{HHH...HH, HHH...HT, \ldots\} \)
What is the probability of \(\omega \) if \(\omega \) has \(i \) heads?
Probability of heads in any position is \(p \).
Binomial

Flip \(n \) coins with heads probability \(p \).
Random variable: number of heads.

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

How many sample points in event “\(X = i \)”?
\(i \) heads out of \(n \) coin flips \(\implies \binom{n}{i} \)

Sample space: \(\Omega = \{HHH...HH, HHH...HT, \ldots\} \)

What is the probability of \(\omega \) if \(\omega \) has \(i \) heads?
Probability of heads in any position is \(p \).
Probability of tails in any position is \((1 - p) \).
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.

Binomial Distribution: $Pr[X = i]$, for each i.

How many sample points in event “$X = i$”?
i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT, \ldots\}$

What is the probability of ω if ω has i heads?
Probability of heads in any position is p.
Probability of tails in any position is $(1 - p)$.
So, we get $Pr[\omega] = p^i$
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.

Binomial Distribution: $Pr[X = i]$, for each i.

How many sample points in event “$X = i$”?
i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH\ldots HH, HHH\ldots HT, \ldots\}$

What is the probability of ω if ω has i heads?
Probability of heads in any position is p.
Probability of tails in any position is $(1 - p)$.
So, we get $Pr[\omega] = p^i(1 - p)^{n-i}$.
Binomial

Flip n coins with heads probability p.
Random variable: number of heads.

Binomial Distribution: $Pr[X = i]$, for each i.

How many sample points in event “$X = i$”?
i heads out of n coin flips $\implies \binom{n}{i}$

Sample space: $\Omega = \{HHH...HH, HHH...HT, ...\}$

What is the probability of ω if ω has i heads?
Probability of heads in any position is p.
Probability of tails in any position is $(1 - p)$.
So, we get $Pr[\omega] = p^i(1 - p)^{n-i}$.

Probability of “$X = i$” is sum of $Pr[\omega]$, $\omega \in \{X = i\}$.
Binomial

Flip \(n \) coins with heads probability \(p \).
Random variable: number of heads.

Binomial Distribution: \(Pr[X = i] \), for each \(i \).

How many sample points in event “\(X = i \)”?
\(i \) heads out of \(n \) coin flips \(\Rightarrow \binom{n}{i} \)

Sample space: \(\Omega = \{HHH...HH, HHH...HT, \ldots\} \)

What is the probability of \(\omega \) if \(\omega \) has \(i \) heads?
Probability of heads in any position is \(p \).
Probability of tails in any position is \((1 - p) \).
So, we get \(Pr[\omega] = p^i(1 - p)^{n-i} \).

Probability of “\(X = i \)” is sum of \(Pr[\omega] \), \(\omega \in “X = i” \).

\[
Pr[X = i] = \binom{n}{i} p^i(1 - p)^{n-i}, \quad i = 0, 1, \ldots, n: B(n, p) \text{ distribution}
\]
Expectation of Binomial Distribution

Indicator for the i-th coin:

$$x_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$
Expectation of Binomial Distribution

Indicator for the i-th coin:

$$X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$E[X_i] = 1 \times Pr["heads"] + 0 \times Pr["tails"]$$
Expectation of Binomial Distribution

Indicator for the i-th coin:

$$X_i = \begin{cases}
1 & \text{if } i \text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$E[X_i] = 1 \times Pr[\text{“heads”}] + 0 \times Pr[\text{“tails”}] = p.$$
Expectation of Binomial Distribution

Indicator for the \(i\)-th coin:

\[
X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]

\[
E[X_i] = 1 \times Pr[\text{“heads”}] + 0 \times Pr[\text{“tails”}] = p.
\]

Moreover \(X = X_1 + \cdots X_n\) and
Expectation of Binomial Distribution

Indicator for the \(i \)-th coin:

\[
X_i = \begin{cases}
1 & \text{if \(i \)th flip is heads} \\
0 & \text{otherwise}
\end{cases}
\]

\[
E[X_i] = 1 \times Pr[\text{"heads"}] + 0 \times Pr[\text{"tails"}] = p.
\]

Moreover \(X = X_1 + \cdots + X_n \) and

\[
E[X] = E[X_1] + E[X_2] + \cdots + E[X_n]
\]
Expectation of Binomial Distribution

Indicator for the i-th coin:

$$X_i = \begin{cases}
1 & \text{if ith flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$E[X_i] = 1 \times Pr[\text{"heads"}] + 0 \times Pr[\text{"tails"}] = p.$$

Moreover $X = X_1 + \cdots X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots E[X_n] = n \times E[X_i]$$
Expectation of Binomial Distribution

Indicator for the i-th coin:

$$X_i = \begin{cases}
1 & \text{if ith flip is heads} \\
0 & \text{otherwise}
\end{cases}$$

$$E[X_i] = 1 \times Pr[\text{"heads"}] + 0 \times Pr[\text{"tails"}] = p.$$

Moreover $X = X_1 + \cdots + X_n$ and

$$E[X] = E[X_1] + E[X_2] + \cdots E[X_n] = n \times E[X_i] = np.$$
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } \text{ith flip is heads} \\
0 & \text{otherwise}
\end{cases} \]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[E(X_i^2) \]

\[\text{Var}(X_i) = p - (E(X_i))^2 = p(1-p) \]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } \text{ith flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) \]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p. \]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } \text{i}th \text{ flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p. \]
\[Var(X_i) = p - (E(X_i))^2 \]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[
E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p.
\]
\[
Var(X_i) = p - (E(X_i))^2 = p - p^2
\]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } \text{ith flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p. \]

\[\text{Var}(X_i) = p - (E(X_i))^2 = p - p^2 = p(1 - p). \]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p. \]
\[\text{Var}(X_i) = p - (E(X_i))^2 = p - p^2 = p(1 - p). \]
\[X = X_1 + X_2 + \ldots X_n. \]
Variance of Binomial Distribution.

\[X_i = \begin{cases} 1 & \text{if } i\text{th flip is heads} \\ 0 & \text{otherwise} \end{cases} \]

\[E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p. \]
\[\text{Var}(X_i) = p - (E(X_i))^2 = p - p^2 = p(1 - p). \]

\[X = X_1 + X_2 + \ldots + X_n. \]

\[X_i \text{ and } X_j \text{ are independent:} \]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p. \]

\[\text{Var}(X_i) = p - (E(X_i))^2 = p - p^2 = p(1 - p). \]

\[X = X_1 + X_2 + \ldots X_n. \]

\[X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1|X_j = 1] = Pr[X_i = 1]. \]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p. \]

\[\text{Var}(X_i) = p - (E(X_i))^2 = p - p^2 = p(1 - p). \]

\[X = X_1 + X_2 + \ldots + X_n. \]

\(X_i \) and \(X_j \) are independent: \(\Pr[X_i = 1|X_j = 1] = \Pr[X_i = 1] \).

\[\text{Var}(X) = \text{Var}(X_1 + \cdots + X_n) \]
Variance of Binomial Distribution.

\[X_i = \begin{cases}
1 & \text{if } i\text{th flip is heads} \\
0 & \text{otherwise}
\end{cases} \]

\[E(X_i^2) = 1^2 \times p + 0^2 \times (1 - p) = p. \]
\[\text{Var}(X_i) = p - (E(X_i))^2 = p - p^2 = p(1 - p). \]
\[X = X_1 + X_2 + \ldots X_n. \]

\[X_i \text{ and } X_j \text{ are independent: } Pr[X_i = 1|X_j = 1] = Pr[X_i = 1]. \]

\[\text{Var}(X) = \text{Var}(X_1 + \cdots X_n) = np(1 - p). \]
Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is uniformly distributed in $\{1, 2, \ldots, 6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, \ldots, n\}$ if $\Pr[X = m] = \frac{1}{n}$ for $m = 1, 2, \ldots, n$. In that case, $E[X] = \frac{n}{2}(n + 1)$.

Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots).
Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values \{1, 2, ..., 6\}.
Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is *uniformly distributed* in $\{1, 2, \ldots, 6\}$.
Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is \textit{uniformly distributed} in $\{1, 2, \ldots, 6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, \ldots, n\}$ if $\Pr[X = m] = 1/n$ for $m = 1, 2, \ldots, n$.
Uniform Distribution

Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values $\{1, 2, \ldots, 6\}$. We say that X is uniformly distributed in $\{1, 2, \ldots, 6\}$.

More generally, we say that X is uniformly distributed in $\{1, 2, \ldots, n\}$ if $Pr[X = m] = 1/n$ for $m = 1, 2, \ldots, n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m]$$
Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values \{1, 2, \ldots, 6\}. We say that X is \textit{uniformly distributed} in \{1, 2, \ldots, 6\}.

More generally, we say that X is uniformly distributed in \{1, 2, \ldots, n\} if $Pr[X = m] = 1/n$ for $m = 1, 2, \ldots, n$. In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n}$$
Roll a six-sided balanced die. Let X be the number of pips (dots). Then X is equally likely to take any of the values \{1, 2, \ldots, 6\}. We say that X is uniformly distributed in \{1, 2, \ldots, 6\}.

More generally, we say that X is uniformly distributed in \{1, 2, \ldots, n\} if $Pr[X = m] = 1/n$ for $m = 1, 2, \ldots, n$.

In that case,

$$E[X] = \sum_{m=1}^{n} mPr[X = m] = \sum_{m=1}^{n} m \times \frac{1}{n} = \frac{1}{n} \frac{n(n+1)}{2} = \frac{n+1}{2}.$$
Variance of Uniform

\[E[X] = \frac{n + 1}{2}. \]
Variance of Uniform

\[E[X] = \frac{n+1}{2}. \]

Also,

\[E[X^2] = \sum_{i=1}^{n} i^2 \Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2 \]
Variance of Uniform

\[E[X] = \frac{n+1}{2}. \]

Also,

\[E[X^2] = \sum_{i=1}^{n} i^2 \Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2 = \frac{1 + 3n + 2n^2}{6}, \]
Variance of Uniform

\[E[X] = \frac{n+1}{2}. \]

Also,

\[
E[X^2] = \sum_{i=1}^{n} i^2 \Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2
\]

\[
= \frac{1 + 3n + 2n^2}{6}, \text{ as you can verify.}
\]
Variance of Uniform

\[E[X] = \frac{n+1}{2}. \]

Also,

\[E[X^2] = \sum_{i=1}^{n} i^2 Pr[X = i] = \frac{1}{n} \sum_{i=1}^{n} i^2 = \frac{1 + 3n + 2n^2}{6}, \]

as you can verify.

This gives

\[\text{var}(X) = \frac{1 + 3n + 2n^2}{6} - \frac{(n+1)^2}{4} = \frac{n^2 - 1}{12}. \]
Geometric Distribution

Let's flip a coin with $\Pr[H] = p$ until we get H. For instance:

- $\omega_1 = H$,
- $\omega_2 = TH$,
- $\omega_3 = TTH$,
- $\omega_n = TTT\cdots TH$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also, $\Pr[X = n] = (1 - p)^{n-1}p$, $n \geq 1$.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also, $Pr[X = n] = \left(1 - p\right)^{n-1} p$, $n \geq 1$.

Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$,

$\omega_2 = T H$,

$\omega_3 = T T H$,

$\omega_n = T T T T \cdots T H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also, $Pr[X = n] = (1 - p)^{n-1} p$, $n \geq 1$.

Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
Geometric Distribution

Let's flip a coin with $Pr[H] = p$ until we get H.

For instance:

\[\omega_1 = H, \text{ or } \omega_2 = T \, H, \text{ or } \omega_3 = T \, T \, H, \ldots \]

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$. Also,

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

\[\omega_1 = H, \text{ or } \]
\[\omega_2 = T H, \text{ or } \]
\[\omega_3 = T T H, \text{ or } \]
Geometric Distribution

Let's flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T\ H$, or
$\omega_3 = T\ T\ H$, or
$\omega_n = T\ T\ T\ T\ \cdots\ T\ H$.
Geometric Distribution

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \).

For instance:

\[
\begin{align*}
\omega_1 &= H, \text{ or} \\
\omega_2 &= T \ H, \text{ or} \\
\omega_3 &= T \ T \ H, \text{ or} \\
\omega_n &= T \ T \ T \ T \ \cdots \ T \ H.
\end{align*}
\]

Note that \(\Omega = \{ \omega_n, n = 1, 2, \ldots \} \).
Geometric Distribution
Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T \ H$, or
$\omega_3 = T \ T \ H$, or
$\omega_n = T \ T \ T \ T \ \cdots \ T \ H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) =$
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T \ H$, or
$\omega_3 = T \ T \ H$, or
$\omega_n = T \ T \ T \ T \ \cdots \ T \ H$.

Note that $\Omega = \{ \omega_n, n = 1, 2, \ldots \}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.
Geometric Distribution

Let’s flip a coin with $Pr[H] = p$ until we get H.

For instance:

$\omega_1 = H$, or
$\omega_2 = T\ H$, or
$\omega_3 = T\ T\ H$, or
$\omega_n = T\ T\ T\ T\ \cdots\ T\ H$.

Note that $\Omega = \{\omega_n, n = 1, 2, \ldots\}$.

Let X be the number of flips until the first H. Then, $X(\omega_n) = n$.

Also,

$Pr[X = n] =$
Geometric Distribution

Let’s flip a coin with \(Pr[H] = p \) until we get \(H \).

For instance:

\[
\begin{align*}
\omega_1 &= H, \text{ or} \\
\omega_2 &= T \ H, \text{ or} \\
\omega_3 &= T \ T \ H, \text{ or} \\
\omega_n &= T \ T \ T \ T \ \cdots \ T \ H.
\end{align*}
\]

Note that \(\Omega = \{ \omega_n, n = 1, 2, \ldots \} \).

Let \(X \) be the number of flips until the first \(H \). Then, \(X(\omega_n) = n \).

Also,

\[
Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1.
\]
Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1} p, n \geq 1.$$
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X = n] = \]

\[\frac{1}{1 - p}. \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = \]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1}
\]
Geometric Distribution

$$Pr[X = n] = (1 - p)^{n-1} p, n \geq 1.$$

Note that

$$\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.$$
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

We want to analyze \(S := \sum_{n=0}^{\infty} a^n \) for \(|a| < 1 \).
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

We want to analyze \(S := \sum_{n=0}^{\infty} a^n \) for \(|a| < 1\). \(S = \frac{1}{1-a} \).
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

We want to analyze \(S := \sum_{n=0}^{\infty} a^n \) for \(|a| < 1 \). \(S = \frac{1}{1-a} \). Indeed,

\[
S = 1 + a + a^2 + a^3 + \cdots
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

We want to analyze \(S := \sum_{n=0}^{\infty} a^n \) for \(|a| < 1\). \(S = \frac{1}{1-a} \). Indeed,

\[
S = 1 + a + a^2 + a^3 + \cdots
\]
\[
aS = a + a^2 + a^3 + a^4 + \cdots
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \; n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

We want to analyze \(S := \sum_{n=0}^{\infty} a^n \) for \(|a| < 1 \). \(S = \frac{1}{1-a} \). Indeed,

\[
S = 1 + a + a^2 + a^3 + \cdots
\]

\[
aS = a + a^2 + a^3 + a^4 + \cdots
\]

\[
(1-a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

We want to analyze \(S := \sum_{n=0}^{\infty} a^n \) for \(|a| < 1\). \(S = \frac{1}{1-a} \). Indeed,

\[
S = 1 + a + a^2 + a^3 + \cdots \\
aS = a + a^2 + a^3 + a^4 + \cdots \\
(1-a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.
\]

Hence,

\[
\sum_{n=1}^{\infty} Pr[X = n] =
\]
Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1}p, \ n \geq 1. \]

Note that

\[
\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1}p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n.
\]

We want to analyze \(S := \sum_{n=0}^{\infty} a^n \) for \(|a| < 1 \). \(S = \frac{1}{1-a} \). Indeed,

\[
S = 1 + a + a^2 + a^3 + \cdots
\]
\[
aS = a + a^2 + a^3 + a^4 + \cdots
\]
\[
(1 - a)S = 1 + a - a + a^2 - a^2 + \cdots = 1.
\]

Hence,

\[
\sum_{n=1}^{\infty} Pr[X = n] = p \frac{1}{1 - (1 - p)} = \]

Geometric Distribution

\[Pr[X = n] = (1 - p)^{n-1} p, \quad n \geq 1. \]

Note that

\[\sum_{n=1}^{\infty} Pr[X = n] = \sum_{n=1}^{\infty} (1 - p)^{n-1} p = p \sum_{n=1}^{\infty} (1 - p)^{n-1} = p \sum_{n=0}^{\infty} (1 - p)^n. \]

We want to analyze \(S := \sum_{n=0}^{\infty} a^n \) for \(|a| < 1 \). \(S = \frac{1}{1-a} \). Indeed,

\[
\begin{align*}
S &= 1 + a + a^2 + a^3 + \cdots \\
\quad aS &= a + a^2 + a^3 + a^4 + \cdots \\
(1-a)S &= 1 + a - a + a^2 - a^2 + \cdots = 1.
\end{align*}
\]

Hence,

\[\sum_{n=1}^{\infty} Pr[X = n] = p \frac{1}{1 - (1 - p)} = 1. \]
Geometric Distribution: Expectation

\[X \sim \text{Geom}(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1} p, n \geq 1. \]
Geometric Distribution: Expectation

\[X \sim Geom(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p. \]
Geometric Distribution: Expectation

\[X \sim \text{Geom}(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1} p, n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p. \]

Thus,

\[E[X] = p \]
Geometric Distribution: Expectation

\[X \sim Geom(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1} p, n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p. \]

Thus,

\[E[X] = p + 2(1 - p)p \]
Geometric Distribution: Expectation

\[X \sim \text{Geom}(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, \ n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]

Thus,

\[E[X] = p + 2(1 - p)p + 3(1 - p)^2p \]
Geometric Distribution: Expectation

\[X \sim Geom(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, \ n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]

Thus,

\[E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \]
Geometric Distribution: Expectation

\(X \sim Geom(p) \), i.e., \(Pr[X = n] = (1 - p)^{n-1} p, \ n \geq 1. \)

One has

\[
E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1} p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2 p + 4(1 - p)^3 p + \ldots
\]

\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2 p + 3(1 - p)^3 p + \ldots
\]
Geometric Distribution: Expectation

\(X \sim \text{Geom}(p), \) i.e., \(\Pr[X = n] = (1 - p)^{n-1}p, \ n \geq 1. \)

One has

\[
E[X] = \sum_{n=1}^{\infty} n\Pr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots
\]

\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots
\]

\[
pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots
\]
Geometric Distribution: Expectation

\(X \sim \text{Geom}(p) \), i.e., \(Pr[X = n] = (1 - p)^{n-1}p, n \geq 1 \).

One has

\[
E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots
\]

\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots
\]

\[
pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots
\]

by subtracting the previous two identities
Geometric Distribution: Expectation

\[X \sim Geom(p), \text{ i.e., } Pr[X = n] = (1 - p)^{n-1}p, \, n \geq 1. \]

One has

\[E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p. \]

Thus,

\[E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \]

\[(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots \]

\[pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots \]

by subtracting the previous two identities

\[= \sum_{n=1}^{\infty} (1 - p)^{n-1}p = \]
Geometric Distribution: Expectation

\(X \sim Geom(p), \text{ i.e., } \Pr[X = n] = (1 - p)^{n-1}p, n \geq 1.\)

One has

\[E[X] = \sum_{n=1}^{\infty} n \Pr[X = n] = \sum_{n=1}^{\infty} n (1 - p)^{n-1}p. \]

Thus,

\[E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots \]
\[(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots \]
\[pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots \]

by subtracting the previous two identities

\[= \sum_{n=1}^{\infty} (1 - p)^{n-1}p = \sum_{n=1}^{\infty} \Pr[X = n] = \]
Geometric Distribution: Expectation

\[X \sim \text{Geom}(p), \text{ i.e., } \Pr[X = n] = (1 - p)^{n-1}p, n \geq 1. \]

One has

\[
E[X] = \sum_{n=1}^{\infty} n \Pr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.
\]

Thus,

\[
E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \ldots
\]

\[
(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \ldots
\]

\[
pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \ldots
\]

by subtracting the previous two identities

\[
= \sum_{n=1}^{\infty} (1 - p)^{n-1}p = \sum_{n=1}^{\infty} \Pr[X = n] = 1.
\]
Geometric Distribution: Expectation

$X \sim \text{Geom}(p)$, i.e., $\Pr[X = n] = (1 - p)^{n-1}p, n \geq 1$.

One has

$$E[X] = \sum_{n=1}^{\infty} nPr[X = n] = \sum_{n=1}^{\infty} n(1 - p)^{n-1}p.$$

Thus,

$$E[X] = p + 2(1 - p)p + 3(1 - p)^2p + 4(1 - p)^3p + \cdots$$

$$(1 - p)E[X] = (1 - p)p + 2(1 - p)^2p + 3(1 - p)^3p + \cdots$$

$pE[X] = p + (1 - p)p + (1 - p)^2p + (1 - p)^3p + \cdots$

by subtracting the previous two identities

$$= \sum_{n=1}^{\infty} (1 - p)^{n-1}p = \sum_{n=1}^{\infty} Pr[X = n] = 1.$$

Hence,

$$E[X] = \frac{1}{p}. $$
Experiment: Get coupons at random from n until collect all n coupons.
Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n coupons.
Outcomes: \{123145..., 56765...\}
Coupon Collectors Problem.

Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: X - length of outcome.
Experiment: Get coupons at random from n until collect all n coupons.

Outcomes: $\{123145..., 56765...\}$

Random Variable: X - length of outcome.

Before: $Pr[X \geq n \ln 2n] \leq \frac{1}{2}$.
Coupon Collectors Problem.

Experiment: Get coupons at random from \(n \) until collect all \(n \) coupons.

Outcomes: \{123145..., 56765...\}

Random Variable: \(X \) - length of outcome.

Before: \(Pr[X \geq n\ln 2n] \leq \frac{1}{2} \).

Today: \(E[X] \)?
Time to collect coupons

X-time to get n coupons.
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon.
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$.

$E(X) = 1$.

$E(X_2) = \frac{1}{p} = \frac{n}{n-1}$.

$E(X_i) = \frac{1}{p} = \frac{n}{n-i+1}$, for $i = 1, 2, ..., n$.

$E[X] = E[X_1] + \cdots + E[X_n] = n + n - 1 + n - 2 + \cdots + 1 = n^2 \approx n \ln n + \gamma n$.
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

Note:

$E(X_1) = 1.$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”}|\text{“got first coupon”}]$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”}|\text{“got first coupon”}] = \frac{n-1}{n}$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$?
Time to collect coupons

X - time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”}|\text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1. E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”}|\text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric!
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! !
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[“get second distinct coupon”|“got first coupon”] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! !
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} =$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1}$
Time to collect coupons

- **X-time to get n coupons.**

 - X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

 - X_2 - time to get second (distinct) coupon after getting first.

 $Pr[\text{“get second distinct coupon”} | \text{“got first coupon”}] = \frac{n-1}{n}$

 $E[X_2]?$ Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}.$
Time to collect coupons

- time to get \(n \) coupons.

\(X_1 \) - time to get first coupon. Note: \(X_1 = 1. \) \(E(X_1) = 1. \)

\(X_2 \) - time to get second (distinct) coupon after getting first.

\[\Pr[\text{“get second distinct coupon”} | \text{“got first coupon”}] = \frac{n-1}{n} \]

\(E[X_2]? \) Geometric ! ! ! \(\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}. \)

\[\Pr[\text{“getting } i \text{th distinct coupon”} | \text{“got } i - 1 \text{ distinct coupons”}] \]
Time to collect coupons

- Time to get 1 coupon.
- Time to get second (distinct) coupon after getting first.

\[\Pr[\text{"get second distinct coupon"}|\text{"got first coupon"}] = \frac{n-1}{n} \]

\[E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}. \]

\[\Pr[\text{"getting } i \text{th distinct coupon"}|\text{"got } i-1 \text{ distinct coupons"}] = \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \]
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”|“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}$.

$Pr[\text{“getting } i\text{th distinct coupon|“got } i-1\text{ distinct coupons”}]$

$$= \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$$

$E[X_i]$
Time to collect coupons

- time to get \(n \) coupons.

\(X_1 \) - time to get first coupon. Note: \(X_1 = 1 \). \(E(X_1) = 1 \).

\(X_2 \) - time to get second (distinct) coupon after getting first.

\[P_r[\text{“get second distinct coupon”} | \text{“got first coupon”}] = \frac{n-1}{n} \]

\[E[X_2]? \text{ Geometric ! ! !} \implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}. \]

\[P_r[\text{“getting } i \text{th distinct coupon”} | \text{“got } i-1 \text{ distinct coupons”}] \]

\[= \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \]

\[E[X_i] = \frac{1}{p} \]
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{"get second distinct coupon"}|\text{"got first coupon"}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{ \frac{n-1}{n} } = \frac{n}{n-1}$.

$Pr[\text{"getting ith distinct coupon"}|\text{"got $i-1$ distinct coupons"}]$

$$= \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}$.
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”}|\text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric ! ! ! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr[\text{“getting } i\text{th distinct coupon”}|\text{“got } i-1 \text{ distinct coupons”}]$

$= \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}$, $i = 1, 2, \ldots, n$.

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \cdots + \frac{n}{1} = nH(n) \approx n \left(\ln n + \gamma \right)$
Time to collect coupons

X-time to get n coupons.

X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

X_2 - time to get second (distinct) coupon after getting first.

$Pr[\text{“get second distinct coupon”}|\text{“got first coupon”}] = \frac{n-1}{n}$

$E[X_2]$? Geometric !!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$Pr[\text{“getting } i\text{th distinct coupon}|\text{“got } i-1\text{ distinct coupons”}]$

$$= \frac{n-(i-1)}{n} = \frac{n-i+1}{n}$$

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$$E[X] = E[X_1] + \cdots + E[X_n] =$$
Time to collect coupons

- \(X\) - time to get \(n\) coupons.

- \(X_1\) - time to get first coupon. Note: \(X_1 = 1\). \(E(X_1) = 1\).

- \(X_2\) - time to get second (distinct) coupon after getting first.

\[Pr[“\text{get second distinct coupon”} | “\text{got first coupon’’}] = \frac{n-1}{n} \]

\[E[X_2]? \text{ Geometric ! ! !} \implies E[X_2] = \frac{1}{p} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}. \]

\[Pr[“\text{getting } i\text{th distinct coupon} | “\text{got } i-1\text{ distinct coupons”}] \]

\[= \frac{n-(i-1)}{n} = \frac{n-i+1}{n} \]

\[E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n. \]

\[E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1} \]
Time to collect coupons

\(X\)-time to get \(n\) coupons.

\(X_1\) - time to get first coupon. Note: \(X_1 = 1.\ E(X_1) = 1.\)

\(X_2\) - time to get second (distinct) coupon after getting first.

\(Pr[\text{“get second distinct coupon”|“got first coupon”}] = \frac{n-1}{n}\)

\(E[X_2]?\ Geometric \ ! \ ! \ ! \implies E[X_2] = \frac{1}{\rho} = \frac{1}{\frac{n-1}{n}} = \frac{n}{n-1}.\)

\(Pr[\text{“getting } i\text{th distinct coupon|“got } i-1\text{ distinct coupons”}]\)

\[= \frac{n - (i - 1)}{n} = \frac{n - i + 1}{n}\]

\(E[X_i] = \frac{1}{\rho} = \frac{n}{n-i+1}, \ i = 1, 2, \ldots, n.\)

\(E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}\)

\[= n(1 + \frac{1}{2} + \cdots + \frac{1}{n}) =: nH(n)\)
Time to collect coupons

- X-time to get n coupons.

- X_1 - time to get first coupon. Note: $X_1 = 1$. $E(X_1) = 1$.

- X_2 - time to get second (distinct) coupon after getting first.

$PPr[\text{"get second distinct coupon"}\mid \text{"got first coupon"}] = \frac{n-1}{n}$

$E[X_2]$? Geometric!!! $\implies E[X_2] = \frac{1}{p} = \frac{1}{n-1} = \frac{n}{n-1}$.

$PPr[\text{"getting } i\text{th distinct coupon}\mid \text{"got } i-1\text{ distinct coupons"}]$

\[\frac{n-(i-1)}{n} = \frac{n-i+1}{n} \]

$E[X_i] = \frac{1}{p} = \frac{n}{n-i+1}, i = 1, 2, \ldots, n.$

$E[X] = E[X_1] + \cdots + E[X_n] = \frac{n}{n} + \frac{n}{n-1} + \frac{n}{n-2} + \cdots + \frac{n}{1}$

\[= n(1 + \frac{1}{2} + \cdots + \frac{1}{n}) =: nH(n) \approx n(\ln n + \gamma) \]
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]
Review: Harmonic sum

\[H(n) = 1 + \frac{1}{2} + \cdots + \frac{1}{n} \approx \int_1^n \frac{1}{x} \, dx = \ln(n). \]

A good approximation is

\[H(n) \approx \ln(n) + \gamma \quad \text{where} \quad \gamma \approx 0.58 \quad \text{(Euler-Mascheroni constant)}. \]
Harmonic sum: Paradox

Consider this stack of cards (no glue!):
Harmonic sum: Paradox

Consider this stack of cards (no glue!):
Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table.
Harmonic sum: Paradox

Consider this stack of cards (no glue!):

If each card has length 2, the stack can extend $H(n)$ to the right of the table. As n increases, you can go as far as you want!
Stacking

The cards have width 2. Induction shows that the center of gravity after \(n \) cards is \(H(n) \) away from the right-most edge.

\[
nx = 1 - x \quad \Rightarrow \quad x = 1/(n + 1)
\]
The cards have width 2.
The cards have width 2. Induction shows that the center of gravity after n cards is $H(n)$ away from the right-most edge.
Geometric Distribution: Memoryless

Let X be $\text{Geom}(p)$. Then, for $n \geq 0$,

$$
\Pr\left[X > n \right] = \Pr\left[\text{first } n \text{ flips are } T \right] = (1 - p)^n.
$$

Theorem

$$
\Pr\left[X > n + m \mid X > n \right] = \Pr\left[X > m \right], \quad m, n \geq 0.
$$

Proof:

$$
\Pr\left[X > n + m \mid X > n \right] = \Pr\left[X > n \mid X > n \right] \cdot \Pr\left[X > m \right] = (1 - p)^{n+m} = (1 - p)^n = \Pr\left[X > m \right].
$$
Geometric Distribution: Memoryless

Let X be $\text{Geom}(p)$. Then, for $n \geq 0$,

$$Pr[X > n] =$$
Geometric Distribution: Memoryless

Let X be $\text{Geom}(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = \left(1 - p\right)^n.$$
Geometric Distribution: Memoryless

Let X be $Geom(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$
Geometric Distribution: Memoryless

Let X be $\text{Geom}(p)$. Then, for $n \geq 0$,

$$ Pr[X > n] = Pr[\text{ first } n \text{ flips are } T] = (1 - p)^n. $$

Theorem

$$ Pr[X > n + m | X > n] = Pr[X > m], \ m, n \geq 0. $$
Geometric Distribution: Memoryless

Let X be $\text{Geom}(\rho)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - \rho)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] =$$
Geometric Distribution: Memoryless

Let X be $\text{Geom}(\rho)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - \rho)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], \ m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$
Geometric Distribution: Memoryless

Let X be $\text{Geom}(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]} = \frac{Pr[X > n + m]}{Pr[X > n]}$$
Geometric Distribution: Memoryless

Let X be $Geom(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m | X > n] = Pr[X > m], \ m, n \geq 0.$$

Proof:

$$Pr[X > n + m | X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]} = \frac{Pr[X > n + m]}{Pr[X > n]} = \frac{(1 - p)^{n+m}}{(1 - p)^n} =$$
Geometric Distribution: Memoryless

Let X be $\text{Geom}(p)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - p)^n.$$

Theorem

$$Pr[X > n + m|X > n] = Pr[X > m], m, n \geq 0.$$

Proof:

$$Pr[X > n + m|X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - p)^{n+m}}{(1 - p)^n} = (1 - p)^m$$
Geometric Distribution: Memoryless

Let X be $\text{Geom}(\rho)$. Then, for $n \geq 0$,

$$Pr[X > n] = Pr[\text{first } n \text{ flips are } T] = (1 - \rho)^n.$$

Theorem

$$Pr[X > n + m|X > n] = Pr[X > m], \; m, n \geq 0.$$

Proof:

$$Pr[X > n + m|X > n] = \frac{Pr[X > n + m \text{ and } X > n]}{Pr[X > n]}$$

$$= \frac{Pr[X > n + m]}{Pr[X > n]}$$

$$= \frac{(1 - \rho)^{n+m}}{(1 - \rho)^n} = (1 - \rho)^m$$

$$= Pr[X > m].$$
The coin is memoryless, therefore, so is \(X \).

\[
Pr[X > n + m | X > n] = Pr[X > m], \ m, n \geq 0.
\]
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m \mid X > n] = Pr[X > m], \quad m, n \geq 0. \]
Geometric Distribution: Memoryless - Interpretation

\[Pr[X > n + m|X > n] = Pr[X > m], m, n \geq 0. \]

The coin is memoryless, therefore, so is \(X \).
Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

\[E[X] = \sum_{i=1}^{\infty} Pr[X \geq i]. \]

[See later for a proof.]
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]

If $X = Geom(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$.
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]

If $X = Geom(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i$$
Geometric Distribution: Yet another look

Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

[See later for a proof.]

If $X = Geom(p)$, then $Pr[X \geq i] = Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,

$$E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i = \frac{1}{1 - (1 - p)} = \frac{1}{p}.$$
Theorem: For a r.v. X that takes the values $\{0, 1, 2, \ldots\}$, one has
\[
E[X] = \sum_{i=1}^{\infty} \Pr[X \geq i].
\]
[See later for a proof.]

If $X = Geom(p)$, then $\Pr[X \geq i] = \Pr[X > i - 1] = (1 - p)^{i-1}$. Hence,
\[
E[X] = \sum_{i=1}^{\infty} (1 - p)^{i-1} = \sum_{i=0}^{\infty} (1 - p)^i = \frac{1}{1 - (1 - p)} = \frac{1}{p}.
\]
A side step: Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$
A side step: Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$
A side step: Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

\[
E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]
\]

\[
= \sum_{i=1}^{\infty} i(Pr[X \geq i] - Pr[X \geq i + 1])
\]
Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i (Pr[X \geq i] - Pr[X \geq i+1])$$

$$= \sum_{i=1}^{\infty} (i \times Pr[X \geq i] - i \times Pr[X \geq i+1])$$
A side step: Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

\[
E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]
\]

\[
= \sum_{i=1}^{\infty} i(Pr[X \geq i] - Pr[X \geq i + 1])
\]

\[
= \sum_{i=1}^{\infty} (i \times Pr[X \geq i] - i \times Pr[X \geq i + 1])
\]

\[
= \sum_{i=1}^{\infty} i \times Pr[X \geq i] - \sum_{i=1}^{\infty} i \times Pr[X \geq i + 1]
\]
A side step: Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i (Pr[X \geq i] - Pr[X \geq i + 1])$$

$$= \sum_{i=1}^{\infty} (i \times Pr[X \geq i] - i \times Pr[X \geq i + 1])$$

$$= \sum_{i=1}^{\infty} i \times Pr[X \geq i] - \sum_{i=1}^{\infty} i \times Pr[X \geq i + 1]$$

$$= \sum_{i=1}^{\infty} i \times Pr[X \geq i] - \sum_{i=1}^{\infty} (i - 1) \times Pr[X \geq i]$$
A side step: Expected Value of Integer RV

Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Proof: One has

$$E[X] = \sum_{i=1}^{\infty} i \times Pr[X = i]$$

$$= \sum_{i=1}^{\infty} i (Pr[X \geq i] - Pr[X \geq i + 1])$$

$$= \sum_{i=1}^{\infty} (i \times Pr[X \geq i] - i \times Pr[X \geq i + 1])$$

$$= \sum_{i=1}^{\infty} i \times Pr[X \geq i] - \sum_{i=1}^{\infty} i \times Pr[X \geq i + 1]$$

$$= \sum_{i=1}^{\infty} i \times Pr[X \geq i] - \sum_{i=1}^{\infty} (i - 1) \times Pr[X \geq i] = \sum_{i=1}^{\infty} Pr[X \geq i].$$
Theorem: For a r.v. X that takes values in $\{0, 1, 2, \ldots\}$, one has

$$E[X] = \sum_{i=1}^{\infty} Pr[X \geq i].$$

Probability mass at i, counted i times.

... Same as $\sum_{i=1}^{\infty} i \times Pr[X = i]$.

| $Pr[X \geq 1]$ | $Pr[X \geq 2]$ | $Pr[X \geq 3]$ | \vdots |
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p.

Thus, $\Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$.

Recall $E[X] = 1/p$.

$E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + \ldots$

$pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + \ldots = 2(p + 2p(1 - p) + 3p(1 - p)^2 + \ldots)$

$\sigma(X) = \sqrt{1 - p/p^2} \approx E[X]$ when p is small(ish).
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1} p$ for $n \geq 1$.

$\sigma(X) = \sqrt{1 - p} p \approx E[X]$ when p is small(ish).
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

$E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... = 1^2$.

$pE[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... = 2$.

$E[X^2] = 2 - (p + 4p(1 - p) + 9p(1 - p)^2 + ...) = 2 - (1/p)$.

$Var(X) = E[X^2] - E[X]^2 = 1 - 1/p^2$.

$\sigma(X) = \sqrt{1 - 1/p^2}$ when p is small(ish).
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...]
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + \ldots
\]
\[
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + \ldots]
\]
\[
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + \ldots
\]

$\sigma(X) = \sqrt{1 - p/p} \approx E[X]$ when p is small(ish).
Variance of geometric distribution.

\(X \) is a geometrically distributed RV with parameter \(p \).
Thus, \(Pr[X = n] = (1 - p)^{n-1} p \) for \(n \geq 1 \). Recall \(E[X] = 1/p \).

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ...) \quad E[X]! \\
-(p + p(1 - p) + p(1 - p)^2 + ...) \quad 1.
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1} p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \quad E[X]^2 \\
-(p + p(1 - p) + p(1 - p)^2 + ...) \quad 1.
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $\Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \quad E[X]! \\
-(p + p(1 - p) + p(1 - p)^2 + ...) \quad 1.
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \quad E[X]! \\
-(p + p(1 - p) + p(1 - p)^2 + ...) \quad 1. \\
pE[X^2] = 2E[X] - 1 \\
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ... \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ... \\
\quad = 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \quad E[X]! \\
\quad = -2(p + p(1 - p) + p(1 - p)^2 + ...) \quad 1. \\
pE[X^2] = 2E[X] - 1 \\
\quad = 2\left(\frac{1}{p}\right) - 1
\]
Variance of geometric distribution.

Let X be a geometrically distributed random variable with parameter p. Thus, $\Pr[X = n] = (1 - p)^{n-1} p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + \ldots
\]

\[-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + \ldots]
\]

\[pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + \ldots
\]

\[= 2(p + 2p(1 - p) + 3p(1 - p)^2 + \ldots) - (p + p(1 - p) + p(1 - p)^2 + \ldots) = E[X]!
\]

\[= 2E[X] - 1
\]

\[= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $\Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
\begin{align*}
E[X^2] &= p + 4p(1 - p) + 9p(1 - p)^2 + \ldots \\
-(1 - p)E[X^2] &= -[p(1 - p) + 4p(1 - p)^2 + \ldots] \\
pE[X^2] &= p + 3p(1 - p) + 5p(1 - p)^2 + \ldots \\
&= 2(p + 2p(1 - p) + 3p(1 - p)^2 + \ldots) \quad E[X]! \\
&= 2(p + p(1 - p) + p(1 - p)^2 + \ldots) \quad 1. \\
pE[X^2] &= 2E[X] - 1 \\
&= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}
\end{align*}
\]

\[\implies E[X^2] = \frac{(2 - p)}{p^2}\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + \ldots
\]
\[-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + \ldots]
\]
\[pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + \ldots
\]
\[= 2(p + 2p(1 - p) + 3p(1 - p)^2 + \ldots) = 2E[X] - 1
\]
\[\implies E[X^2] = (2 - p)/p^2 \text{ and } var[X] = E[X^2] - E[X]^2
\]
Variances of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

$$E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ...$$

$$-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...]$$

$$pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ...$$

$$= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ...) \quad E[X]!$$

$$= 2(p + p(1 - p) + p(1 - p)^2 + ...) \quad 1.$$

$$pE[X^2] = 2E[X] - 1$$

$$= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}$$

$\Longrightarrow E[X^2] = (2 - p)/p^2$ and $\text{var}[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2}$.
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + \ldots
\]
\[
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + \ldots]
\]
\[
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + \ldots
\]
\[
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + \ldots) = 2E[X]!
\]
\[
-(p + p(1 - p) + p(1 - p)^2 + \ldots) = 1.
\]
\[
pE[X^2] = 2E[X] - 1
\]
\[
= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}
\]

\[
\Rightarrow E[X^2] = (2 - p)/p^2 \text{ and } var[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}.
\]
\[
\sigma(X) = \frac{\sqrt{1-p}}{p}
\]
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

$$E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + ...$$

$$-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + ...]$$

$$pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + ...$$

$$= 2(p + 2p(1 - p) + 3p(1 - p)^2 + ..) \ E[X]!$$

$$-(p + p(1 - p) + p(1 - p)^2 + ...) \ 1.$$

$$pE[X^2] = 2E[X] - 1$$

$$= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}$$

$$\implies E[X^2] = \frac{(2 - p)}{p^2} \text{ and}$$

$$var[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}.$$

$$\sigma(X) = \frac{\sqrt{1-p}}{p} \approx E[X] \text{ when } p \text{ is small(ish)}. $$
Variance of geometric distribution.

X is a geometrically distributed RV with parameter p. Thus, $Pr[X = n] = (1 - p)^{n-1}p$ for $n \geq 1$. Recall $E[X] = 1/p$.

\[
E[X^2] = p + 4p(1 - p) + 9p(1 - p)^2 + \ldots \\
-(1 - p)E[X^2] = -[p(1 - p) + 4p(1 - p)^2 + \ldots] \\
pE[X^2] = p + 3p(1 - p) + 5p(1 - p)^2 + \ldots \\
= 2(p + 2p(1 - p) + 3p(1 - p)^2 + \ldots) \\
= 2E[X] + p(1 - p) + p(1 - p)^2 + \ldots \\
1.
\]

\[
pE[X^2] = 2E[X] - 1 \\
= 2\left(\frac{1}{p}\right) - 1 = \frac{2 - p}{p}
\]

$\Rightarrow E[X^2] = (2 - p)/p^2$ and $var[X] = E[X^2] - E[X]^2 = \frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}$.

$\sigma(X) = \frac{\sqrt{1-p}}{p} \approx E[X]$ when p is small(ish).
Bern \((p) \):

\[
\begin{align*}
\text{Pr} \left[X = 1 \right] &= p; \\
E[X] &= p; \\
\text{Var}[X] &= p \left(1 - p \right); \\
\end{align*}
\]

Bin \((n, p) \):

\[
\begin{align*}
\text{Pr} \left[X = m \right] &= \binom{n}{m} p^m \left(1 - p \right)^{n - m}, \quad m = 0, \ldots, n; \\
E[X] &= np; \\
\text{Var}[X] &= np \left(1 - p \right); \\
\end{align*}
\]

\(U[1, \ldots, n] \):

\[
\begin{align*}
\text{Pr} \left[X = m \right] &= \frac{1}{n}, \quad m = 1, \ldots, n; \\
E[X] &= \frac{n + 1}{2}; \\
\text{Var}[X] &= \frac{n^2 - 1}{12}; \\
\end{align*}
\]

Geom \((p) \):

\[
\begin{align*}
\text{Pr} \left[X = n \right] &= \left(1 - p \right)^{n-1} p, \quad n = 1, 2, \ldots; \\
E[X] &= \frac{1}{p}; \\
\text{Var}[X] &= \frac{1}{p^2}; \\
\end{align*}
\]
Review: Distributions

- $Bern(p)$: $Pr[X = 1] = p$;
Review: Distributions

- $Bern(p) : Pr[X = 1] = p$;
 $E[X] = p$;
 $Var[X] = p(1 - p)$;
Review: Distributions

- **Bern**\((p)\): \(\Pr[X = 1] = p\);
 \(E[X] = p\);
 \(Var[X] = p(1 - p)\);

- **Bin**\((n, p)\): \(\Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n\);
Review: Distributions

- **Bern(p)**: $Pr[X = 1] = p$;
 $E[X] = p$;
 $Var[X] = p(1 - p)$;

- **Bin(n, p)**: $Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;
 $E[X] = np$;
 $Var[X] = np(1 - p)$;
Review: Distributions

- **Bern\((p)\):** \(Pr[X = 1] = p;\)
 \(E[X] = p;\)
 \(Var[X] = p(1 − p);\)

- **Bin\((n, p)\):** \(Pr[X = m] = \binom{n}{m} p^m (1 − p)^{n−m}, m = 0, \ldots, n;\)
 \(E[X] = np;\)
 \(Var[X] = np(1 − p);\)

- **U\([1, \ldots, n]\):** \(Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n;\)
Review: Distributions

- **Bern(p)**: \(\Pr[X = 1] = p \);
 \[E[X] = p \]
 \[\text{Var}[X] = p(1 - p) \]

- **Bin(n, p)**: \(\Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n \);
 \[E[X] = np \]
 \[\text{Var}[X] = np(1 - p) \]

- **U[1, \ldots, n]**: \(\Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n \);
 \[E[X] = \frac{n+1}{2} \]
 \[\text{Var}[X] = \frac{n^2 - 1}{12} \]
Review: Distributions

- **Bern(p)**: $Pr[X = 1] = p$;

 $E[X] = p$;

 $Var[X] = p(1 - p)$;

- **Bin(n, p)**: $Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;

 $E[X] = np$;

 $Var[X] = np(1 - p)$;

- **U[1, ..., n]**: $Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;

 $E[X] = \frac{n+1}{2}$;

 $Var[X] = \frac{n^2-1}{12}$;

- **Geom(p)**: $Pr[X = n] = $
Review: Distributions

- **Bern**(p) : $\Pr[X = 1] = p$;
 $E[X] = p$;
 $\text{Var}[X] = p(1 - p)$;

- **Bin**(n, p) : $\Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}$, $m = 0, \ldots, n$;
 $E[X] = np$;
 $\text{Var}[X] = np(1 - p)$;

- **$U[1, \ldots, n]$** : $\Pr[X = m] = \frac{1}{n}$, $m = 1, \ldots, n$;
 $E[X] = \frac{n+1}{2}$;
 $\text{Var}[X] = \frac{n^2-1}{12}$;

- **Geom**(p) : $\Pr[X = n] = (1 - p)^{n-1} p$, $n = 1, 2, \ldots$;
Review: Distributions

- **Bern**(p) : \(Pr[X = 1] = p; \)
 \[E[X] = p; \]
 \[Var[X] = p(1 - p); \]

- **Bin**(n, p) : \(Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n; \)
 \[E[X] = np; \]
 \[Var[X] = np(1 - p); \]

- **U**$[1, \ldots, n]$: \(Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n; \)
 \[E[X] = \frac{n+1}{2}; \]
 \[Var[X] = \frac{n^2-1}{12}; \]

- **Geom**(p) : \(Pr[X = n] = (1 - p)^{n-1} p, n = 1, 2, \ldots; \)
 \[E[X] = \frac{1}{p}; \]
 \[Var[X] = \frac{1-p}{p^2}; \]
Review: Distributions

- **Bern(p):** $Pr[X = 1] = p$;
 $E[X] = p$;
 $Var[X] = p(1 - p)$;

- **Bin(n, p):** $Pr[X = m] = \binom{n}{m} p^m (1 - p)^{n-m}, m = 0, \ldots, n$;
 $E[X] = np$;
 $Var[X] = np(1 - p)$;

- **U[$1, \ldots, n$]:** $Pr[X = m] = \frac{1}{n}, m = 1, \ldots, n$;
 $E[X] = \frac{n+1}{2}$;
 $Var[X] = \frac{n^2 - 1}{12}$;

- **Geom(p):** $Pr[X = n] = (1 - p)^{n-1} p, n = 1, 2, \ldots$;
 $E[X] = \frac{1}{p}$;
 $Var[X] = \frac{1-p}{p^2}$;
Today’s gig: Two envelopes problem.
Today’s gig: Two envelopes problem.

Gigs so far:
1. How to tell random from human.
2. Monty Hall.
5. Simpson’s paradox.

Today:
Gigs so far:

1. How to tell random from human.
2. Monty Hall.
5. Simpson’s paradox.

Today: Two envelopes problem.
Two envelopes

I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don't know which).

Before you open it you think:

What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either $2y$ or $y/2$.

In the first case, I win y.

In the second case, I lose $y/2$.

Therefore, in expectation, my net gain is:

$$\frac{1}{2}y - \frac{1}{2}y/2 = \frac{y}{2}.$$

Therefore, I should switch.

Before you open the new envelope you think:

What will happen if I switch?
Two envelopes

I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).
I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think:
Two envelopes

I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think: What will happen if I switch?
I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think: What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either $2y$ or $\frac{y}{2}$.
I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think: What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either $2y$ or $\frac{y}{2}$.

In the first case, I win y.
I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think: What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either $2y$ or $\frac{y}{2}$.

In the first case, I win y. In the second case, I lose $\frac{y}{2}$.

Therefore, I should switch.
Two envelopes

I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think: What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either $2y$ or $\frac{y}{2}$.

In the first case, I win y. In the second case, I lose $\frac{y}{2}$.

Therefore, in expectation, my net gain is:
Two envelopes

I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think: What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either $2y$ or $\frac{y}{2}$.

In the first case, I win y. In the second case, I lose $\frac{y}{2}$.

Therefore, in expectation, my net gain is: $\frac{1}{2}y - \frac{1}{2} \frac{y}{2} = \frac{y}{2}$.
Two envelopes

I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think: What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either $2y$ or $\frac{y}{2}$.

In the first case, I win y. In the second case, I lose $\frac{y}{2}$.

Therefore, in expectation, my net gain is: $\frac{1}{2}y - \frac{1}{2} \cdot \frac{y}{2} = \frac{y}{2}$.

Therefore, I should switch.
Two envelopes

I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think: What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either $2y$ or $\frac{y}{2}$.

In the first case, I win y. In the second case, I lose $\frac{y}{2}$.

Therefore, in expectation, my net gain is: $\frac{1}{2}y - \frac{1}{2} \frac{y}{2} = \frac{y}{2}$.

Therefore, I should switch.

Before you open the new envelope you think:
I put x dollars in an envelope, and $2x$ dollars in another envelope, and seal both envelopes.

You pick one at random (you don’t know which is which).

Before you open it you think: What will happen if I switch?

Well, if I picked the one I picked has y dollars, then the other either $2y$ or $\frac{y}{2}$.

In the first case, I win y. In the second case, I lose $\frac{y}{2}$.

Therefore, in expectation, my net gain is: $\frac{1}{2}y - \frac{1}{2} \frac{y}{2} = \frac{y}{2}$.

Therefore, I should switch.

Before you open the new envelope you think: What will happen if I switch?
Summary

Random Variables
Summary

Random Variables

- Variance.
- Distributions.