REVIEW PROBLEMS FOR THE FINAL

I. Introduction

1. There are a total of 14 problems in this review handout. Problems 1 through 3 serve as review of basic material. The final exam is going to concentrate on problems 4 through 14. Some information about the exam:
i. The exam is on Saturday, December $18^{\text {th }} 2004$, from 8:00 AM to 11:00 AM in 234 Hearst Gym.
ii. You may use a calculator.
iii. The exam has 5 questions. They each have different parts. The important concepts covered on each question are:
2. Op-amp analysis
3. Oscillators
4. Flip-flops
5. Op-amp frequency analysis
6. Diode Driving-point characteristics

Understanding the concepts in these review problems should help you do really well on the exam. Please do not waste time trying to memorize these problems - that is not going to help you on the final. You should also understand the flip-flop problem (question 5) in homework 9 (PLEASE DO THIS, I DO NOT HAVE A FLIP-FLOP PROBLEM IN THIS REVIEW PACKET) and the driving point characteristic problem in homework 7 (problem 3). The solutions are available in 140AB Cory (the EE100 lab). You may browse them anytime a TA is in there - BUT, do NOT take them out of the lab. Finally, UNDERSTAND section 9.6 in the book (pp. 495 499), this will help with problem 5 on the final exam.
2. There is a review session scheduled on Saturday, December $11^{\text {th }}$ 2004, 9:00 AM 11:00 AM, location: TBA. I will try to answer any questions you have on these review problems and other material from class. I will hand out solutions to these review problems.
3. Here are my extra office hours for the final: Thursday (12/16): 6:00 pm - 12:00 AM (midnight), Friday (12/17): 3:00 pm -9:00 pm. All office hours are going to be held in the Free Speech Cafe next to the Moffit library since Cory hall is a pain in the $a^{* *}$ to get in after-hours. 204B Cory (the location of my Sunday office hours) is unavailable during those days. I DO NOT have office hours on Sunday and Wednesday anymore.

IN CONCLUSION, ON THE FINAL: READ THE QUESTION, THINK, THEN ANSWER!

Ref.: 1. Nilsson and Riedel, Electric Circuits, $6^{\text {th }}$ Edition, McGraw-Hill.
2. Chua, Desoer and Kuh. Linear and Nonlinear Circuits. McGraw-Hill.
(1) Figure 1 below shows a model for the MOS transistor. Using this model in the circuit below, find v_{0} and V_{DS}.

Figure 1. Transistor model and circuit for problem 1
(2) Find the equivalent resistance as seen at terminals ab in the circuit in figure 2.

Figure 2. Circuit for problem 2
(3) Find the thevenin equivalent at terminals ab in the circuit below.

Figure 3. Circuit for problem 3
(4) In the figure 4 (a), assume the open loop gain of the op-amp is really big (say 10^{6}). Assume $\mathrm{E}_{\text {sat }}=12 \mathrm{~V}$.
i. Sketch the transfer characteristic when $\mathrm{E}=5 \mathrm{~V}$.
ii. Sketch the transfer characteristic when $\mathrm{E}=-5 \mathrm{~V}$.
iii. Sketch $v_{o}(t)$ for the $v_{i n}(t)$ shown in figure $4(b)$. ASSUME: $E=0 \mathrm{~V}$ and the maximum and minimum value of v_{in} is 5 V and -5 V respectively.

Figure 4 (a). The comparator

Figure 4 (b). Sample input voltage for figure 4 (a).
(5) Find v_{o} as a function of v 1 and v 2 in the circuit below. Assume op-amp is operating in the linear region.

Figure 5. Circuit for problem 5.
(6) In the circuit in figure 6, find $\frac{\mathbf{v}_{\mathbf{0}}(\mathbf{j w})}{\mathbf{v}_{\mathbf{i}}(\mathbf{j w})}$. Assume op-amp is operating in the linear region. Give your answer in the form $\frac{\mathbf{a}+\mathbf{j b}}{\mathbf{c}+\mathbf{j d}}=\mathbf{H}(\mathbf{j w})$.

Figure 6. Circuit for problem 6.
(7) In the circuit in figure 7, find $\frac{\mathbf{v}_{\mathbf{0}}(\mathbf{j w})}{\mathbf{v}_{\mathbf{i}}(\mathbf{j w})}$. Assume op-amp is operating in the linear region. Give your answer in the form $\frac{\mathbf{a}+\mathbf{j b}}{\mathbf{c}+\mathbf{j d}}=\mathbf{H}(\mathbf{j w})$.

Figure 7. Circuit for problem 7.
(8) Consider the circuit shown in figure P6.20 (a) where N is described by the i-v characteristic shown in figure P6.20 (b).
i. Indicate the dynamic-route. Label all equilibrium points and state whether they are stable or unstable.
ii. Suppose $v_{c}(0)=15 \mathrm{~V}$. Find and sketch $\mathrm{v}_{\mathrm{c}}(\mathrm{t})$ and $\mathrm{i}_{\mathrm{c}}(\mathrm{t})$ for $\mathrm{t} \geq 0$. Indicate all pertinent information on the sketches.

(a)

(b)

Figure P6.20
(9) Consider the circuit shown in figure P6.21 (a) where N is described by the i-v characteristic shown in figure P6.21 (b).
i. Indicate the dynamic route. Label all equilibrium points and state whether they are stable or unstable.
ii. Suppose $\mathrm{i}_{\mathrm{L}}(0)=-20 \mathrm{~mA}$; calculate and sketch $\mathrm{i}(\mathrm{t})$ and $\mathrm{v}(\mathrm{t})$ for $\mathbf{t} \geq 0$.

Figure P6. 21

(10) For the circuit in figure P6.22 (a) with the nonlinear resistor i-v characteristic as shown in figure P6.22 (b), find all equilibrium states and classify each as stable or unstable:
i. when switch S is in position 1 .
ii. when switch S is in position 2 .

Figure P6.22
(11) Consider the circuit shown in figure P6.23 (a) where N is described by the $\mathrm{i}-\mathrm{v}$ characteristic shown in figure P6.23 (b).
i. Sketch the dynamic route.
ii. If $\mathrm{v}_{\mathrm{c}}(0)=2 \mathrm{~V}$ and $\mathrm{i}_{\mathrm{c}}(0)=-2 \mathrm{~mA}$; calculate and sketch $\mathrm{i}(\mathrm{t})$ and $\mathrm{v}(\mathrm{t})$ for $\mathbf{t} \geq 0$.

Figure P6. 23
(12) Consider the circuit in figure P6.21 (a) along with the i-v characteristic shown in figure P6.24.
i. Sketch the dynamic route.
ii. For what range of initial condition $\mathrm{i}_{\mathrm{L}}(0)$ does this circuit exhibit oscillation?

Figure P6. 24
(13) Consider the circuit shown in figure P6.25 (a) where the one-port is described by the i-v characteristic in figure P6.25 (b).
i. Sketch the dynamic route.
ii. If $i_{L}(0)=-15 \mathrm{~mA}$, find and sketch $i(t)$ and $v(t)$ for $t \geq 0$
iii. Determine all switching times.
iv. Calculate the period of oscillation.

(14) Plot the driving-point characteristics of the one-ports shown in figure P2.4. You can use graphic series and parallel addition or any other method of your choosing. Assume all diodes are ideal.

Figure P2.4

