## UNIVERSITY OF CALIFORNIA, BERKELEY Department of Electrical Engineering and Computer Sciences

EE100

Intro. to Electronics Engineering

Fall 2004 Bharath Muthuswamy (mbharat@cory.eecs)

## MIDTERM REVIEW PROBLEMS

### Note(s):

- 1. The midterm is CLOSED BOOK/CLOSED NOTES. You may use a calculator. The midterm is on Monday, October 18<sup>th</sup> 2004 from 4:00 5:30 pm in 4 LeConte Hall (note the room change).
- 2. There are 6 questions on the exam, they are NOT equally weighted. Concepts covered are:
  - i. Ideal diode model
  - ii. Op-amp model
  - iii. Digraphs, Reduced Incidence Matrix and obtaining KCL/KVL equations from the Reduced Incidence Matrix by inspection.
  - iv. Tellegen's theorem
  - v. Superposition, Thevenin/Norton (including dependent sources).
- 3. If you UNDERSTAND and SOLVE the problems in this review packet, you should do well on the midterm. DO NOT WASTE YOUR TIME MEMORIZING THESE PROBLEMS AND/OR SOLUTIONS. Rather, understand the concepts behind them.
- 4. The TAs will be holding office hours instead of lab next week. Make judicious use of their time.

### PROBLEM 1

Determine whether the **IDEAL DIODE** in the following two circuits is "ON" or "OFF". You **MUST** show  $i_D > 0$  if diode is "ON", and  $v_D < 0$  if diode is "OFF". (a)



#### PROBLEM 2

In the circuit below:

(a) draw the digraph and obtain the reduced incidence matrix from the digraph.

(b) Write 2 KCL equations and 5 KVL equations from the reduced incidence matrix. Label the bottom node as ground and the nodes on the top (starting on the leftmost node, moving clockwise) as nodes 1, 2 and 3.



## PROBLEM 3

Consider the circuit in problem 2 (reproduced below for convenience).

- (a) Using superposition, find  $v_3$ .
- (b) From (a), obtain  $v_1$ ,  $v_2$ ,  $v_3$ ,  $v_4$ ,  $v_5$ ;  $i_1$ ,  $i_2$ ,  $i_3$ ,  $i_4$  and  $i_5$  by inspection.
- (c) Verify your answer to part (b) using Tellegen's Theorem.



### PROBLEM 4

In the circuit below, find  $v_o(t)$ . DO NOT IGNORE THE EFFECTS OF THE RAIL VOLTAGES. You don't need to mathematically show what happens, just write a couple of sentences (NOT a paragraph) in English.



# PROBLEM 5

For the circuit below, find the Thevenin and Norton equivalent.



# PROBLEM 6

In the circuit below:

- (a) Find voc, the open circuit voltage when i = 0.
- (b) Find isc, the short circuit current when v = 0.
- (c) From (a) and (b), find the Thevenin equivalent.

