UNIVERSITY OF CALIFORNIA, BERKELEY

Department of Electrical Engineering and Computer Sciences

MIDTERM REVIEW PROBLEMS

Note(s):

1. The midterm is CLOSED BOOK/CLOSED NOTES. You may use a calculator. The midterm is on Monday, October 18 ${ }^{\text {th }} 2004$ from 4:00-5:30 pm in 4 LeConte Hall (note the room change).
2. There are 6 questions on the exam, they are NOT equally weighted. Concepts covered are:
i. Ideal diode model
ii. Op-amp model
iii. Digraphs, Reduced Incidence Matrix and obtaining KCL/KVL equations from the Reduced Incidence Matrix by inspection.
iv. Tellegen's theorem
v. Superposition, Thevenin/Norton (including dependent sources).
3. If you UNDERSTAND and SOLVE the problems in this review packet, you should do well on the midterm. DO NOT WASTE YOUR TIME MEMORIZING THESE PROBLEMS AND/OR
SOLUTIONS. Rather, understand the concepts behind them.
4. The TAs will be holding office hours instead of lab next week. Make judicious use of their time.

PROBLEM 1

Determine whether the IDEAL DIODE in the following two circuits is "ON" or "OFF". You MUST show $\mathrm{i}_{\mathrm{D}}>0$ if diode is "ON", and $\mathrm{v}_{\mathrm{D}}<0$ if diode is "OFF".
(a)

(b)

PROBLEM 2

In the circuit below:
(a) draw the digraph and obtain the reduced incidence matrix from the digraph.
(b) Write 2 KCL equations and 5 KVL equations from the reduced incidence matrix. Label the bottom node as ground and the nodes on the top (starting on the leftmost node, moving clockwise) as nodes 1,2 and 3.

PROBLEM 3

Consider the circuit in problem 2 (reproduced below for convenience).
(a) Using superposition, find v_{3}.
(b) From (a), obtain $v_{1}, v_{2}, v_{3}, v_{4}, v_{5} ; i_{1}, i_{2}, i_{3}, i_{4}$ and i_{5} by inspection.
(c) Verify your answer to part (b) using Tellegen's Theorem.

PROBLEM 4

In the circuit below, find $v_{0}(t)$. DO NOT IGNORE THE EFFECTS OF THE RAIL VOLTAGES. You don't need to mathematically show what happens, just write a couple of sentences (NOT a paragraph) in English.

PROBLEM 5
For the circuit below, find the Thevenin and Norton equivalent.

PROBLEM 6
In the circuit below:
(a) Find voc, the open circuit voltage when $\mathrm{i}=0$.
(b) Find inc, the short circuit current when $v=0$.
(c) From (a) and (b), find the Thevenin equivalent.

