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Fig. 1-7. An example illustrat-
ing the characterization of a
mechanical black box. The data
points in the v-vs.-f plane were
found to lie on the harizontal
axis in (b) and on the ellipse
in{c).

(a)
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The choice of the term “black box™ is quite appropriate here
because the box is really black inside in the sense that we cannot see
its contents. As a matter of fact, unless we open the box and peep
inside, there is no way of determining its contents, However, as
engineers, we are not so much interested in the contents of the box
as in knowing what the black box can do and how it behaves ex-
ternally when it is connected with other black boxes into a net-
work. In other words, we are primarily interested in predicting the
external behavior of the black box without having to perform any
tedious experiment. Our first step toward such an analytical ap-
proach is to “characterize™ the black box. The concepts involved
in characterizing a black box are so important that we pause here
to consider a simple but illustrative analogy.

1-5-1 A MECHANICAL BLACK-BOX ANALOGY

Suppose we are given the mechanical black box containing a
“spring” as shown in Fig. 1-7a. Suppose we did not know the con-
tents of this black box and were asked to predict the behavior of
the external terminals when an arbitrary force f(7) is applied to
terminal @ of the black box with terminal b fixed against the wall.
The mechanical variables of interest here are the displacement x
(displacement to the right of the initial position 0 is assumed
positive), the velocity v (of terminal a), and the force f (positive
for tension and negative for compression). Clearly, the only way
we can hope to characterize this black box (other than opening
the box) is to start performing some experiments. Suppose we be-
gin by applying a constant force f = 4 and measure the corre-
sponding velocity of terminal a. This would give us a point in the
velocity-vs.-force plane (f-v plane). By repeating the above experi-
ment with several values of force f, we obtain the data shown in
Fig. 1-7b. We might be tempted to draw a smooth curve through
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Two-terminal network elements

these data points (which in this case happen to be the faxis) and
claim to have characterized the black box in the sense that given
any constant force f, we can analytically predict the associated
velocity. However, a little thought will show that we have not
really characterized the black box yet, for if, instead of applying a
constant force we apply a slowly varying sinusoidal force,
f() = A4 sin 1. The above characteristics would predict that
v{t) = 0. This is of course contrary to what we expect to observe
experimentally; namely, i(f) = (4/k) cos ¢ where & is the “spring
constant.” We might hope that this inconsistency can be resolved
by plotting all points { f,v) satisfying the above equations and ob-
taining an ellipse as shown in Fig. 1-7¢. Observe, however, that
the length of both axes of the ellipse depends on the amplitude 4
of the sinusoidal force, and for each value of A we would obtain
a corresponding ellipse, so that eventually the entire f-v plane
would be filled up with data points. Morcover, even if we can
draw an infinite set of ellipses, we would be able to predict the
velocity only if /(7) is sinusoidal. Using these ellipses to predict v
due to nonsinusoidal f(f) would again yield erronecus answers.
Reluctantly, we must admit that our efforts so far have been in
vain and that just about the only useful information we obtained
from the above experiment is that the black box cannot be char-
acterized by a curve in the f-v plane.

Let us try another set of variables, say the force f and the
displacement x, and repeat the experiments. As before, we begin
by applying a constant force f = 4 and measure the correspond-
ing displacement x. Repeating this for various values of f, we ob-
tain the data points shown in Fig. 1-84. If we draw a smooth
curve through these points, we obtain a single relationship

x = T(f)

Before we try to draw any conclusion, however, our previous ex-
perience suggests that we repeat the experiment with time-varying
forces to see whether the above relationship still holds. Carrying
out the proposed experiment with several low-frequency sinusoidal
waveforms as before, we find that at any time ¢ = 15, the data
point [ f(£0),x(¢0)] always falls on the same curve x = T(f). This
is very encouraging, but to be sure, we maust try some other non-
sinusoidal waveforms for f(7). Again, we find that, provided f{)
does not change very rapidly,! the data point at any time also
agrees with the curve in Fig. 1-8a. Hence, we can now draw the
following conclusion: For any f{t) which does not change rapidly,
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1This condition is actually

equivalent to the state-
ment that the frequency
of the sinusoidal wave-
form is not very high, This
will become obvious after
the reader studies signal
analysis.
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Fig. 1-8. As the frequency of

the forcing function f()) in-  the black box can be characterized by the displacement-vs.-force

creases, the x-vs.-f(fharacter- (f-JC) curve shown in Fig 1-8a.

istic of the mechanical black . . :

box changes from a monotonic After experiencing the length of time needed to carry out the

curve to a hysteresis foop. above experiments, we can now begin to appreciate the utility of
such a conclusion; namely, the characterization of the black box
permits an analytical solution and thereby eliminates the need to
carry out any further experiments.

Observe that our conclusion is based on the assumption that

f(£) does not change rapidly. Let us now repeat our experiment
with higher-frequency sinusoidal waveforms, as well as with non-
sinusoidal waveforms which change rapidly. The experiment
shows that as we increase the frequency of the sinusoidal force
f(#), the data points begin to deviate (rather slowly at first) from
the predicted curve x = T{(f). As we increase the frequency fur-
ther, the data points begin to form a closed loop as shown in
Fig. 1-8b, and the area enclosed by the loop tends to increase with



Two-terminal network elements

frequency. Similarly, we find that if we apply a nonsinusoidal
force which changes rapidly with time, the deviation from the
curve in Fig. 1-8a is even worse. For example, Fig. 1-8¢ shows the
Jx curve corresponding to the high-frequency nonsinusoidal
waveform shown in Fig. 1-84. The above experimental result
shows that our earlier assumption, that f(#) should not change
very rapidly, is indeed necessary. In order to emphasize this re-
striction, it is a common practice to call the relationship obtained
in Fig. 1-8a a static characteristic curve in contrast to the dyramic
characteristic curve which corresponds to measurements at higher
frequencies. Since the deviation of the measured characteristic
curve from the static characteristic increases slowly with fre-
quency, rather than abruptly, it is impossible to pick a definite
frequency above which the static characteristic does not hold.
Neither is it possible to find a single dynamic characteristic curve
which would hold for all high frequencies. Hence, a certain
amount of engineering judgment is involved in deciding whether
a certain static characteristic curve can be used satisfactorily to
solve a given problem. It is encouraging, however, to know that a
large percentage of practical networks can indeed be analyzed by
using only static characteristics. Moreover, even in cases when the
static characteristic fails to give satisfactory solutions, we shall
show in the future that we can often patch up the error by includ-
ing “parasitic elements,” namely, elements which are undesirable
but which are invariably present in the black box in minute
quantities. For the above example, the parasitic element consists
of the mass associated with the spring. At low frequencies, the
mass, being quite small, has relatively no effect on the measured
J-x characteristic. However, as the frequency of the external force
J(7) increases, the acceleration of the spring increases, and the
inertia force due to the mass becomes appreciable and, in fact, in-
creases as acceleration increases. The deviation of the dynamic
characteristic in Fig. 1-85 and 1-8¢ from the static characteristic
in Fig. 1-8a can therefore be attributed to the inertia mass of the
spring.

1-5-2 STATIC CHARACTERISTICS
OF A TWO-TERMINAL BLACK BOX

The above discussion clearly shows the significance of static char-
acteristics of a black box. Since all characteristics to be considered
in this book are assumed to be static characteristics, we shall hence-
forth delete the adjective “static.”

15
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Let us now return to the main theme of this section, namely,
the characterization of a two-terminal black box. Clearly, the only
way we can hope to achieve this is to perform some meaningful
external measurements. The only quantities of interest to us are
those which can be measured externally. For example, the terminal
voltage v and the terminal current i are of primary interest because
they can be readily measured. The charge g and the flux linkage
@ are also of interest because they can be indirectly measured by
integrating the measured current waveform i(f) and the measured
voltage waveform v(?) in accordance with Egs. (1-11) and (1-12),
respectively. From these measurements, we shall then try to estab-
lish a relationship, if there is any, between each pair of independ-
ent variables. Since the members of the pair of variables i and ¢
are related by Eq. (1-7), they are not independent. Similarly, the
variables v and ¢ are related by Eq. (1-8) and are also not inde-
pendent. The only remaining combinations consist, therefore, of a
relationship between the following variables:

1. Relationship between ¢ and {

2. Relationship between v and ¢
3. Relationship between 7 and ¢
4. Relationship between g and ¢

The last relationship does not occur frequently in practice and has
little practical significance. Hence, we shall restrict our attention
throughout this book to only the first three cases. These correspond,
respectively, to three basic types of two-terminal network elements,
namely, a rwo-terminal resistor, a two-terminal capacitor, and a
two-terminal inductor.

Our next step is therefore to plot the data in the v/, v-¢, and
i-p planes, in order to see if the points in any one of these planes
can be connected to form a curve. In general, this may not
be possible. For example, suppose the two-terminal black box
happens to be a capacitance of 1 F. Then from elementary
physics, we know that the relationship between v and i is i =
1(dv/dt). But suppose we did not know that the black box contains
a capacitance and proceeded to plot the data in the v-i plane.
Clearly, it is impossible to expect that a curve can be found which
passes through all data points in the v-i plane; in fact, if we take
enough measurements, the data points will eventually fill the en-
tire v~/ plane. This is easily seen if we apply a voltage source of
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the form v(f) = A sin f; since { = dv/dt, we obtain i(f) = A4 cos 1.
Hence at any time 7 = fp, we obtain a point (4 sin #g, 4 cos fp} i
the v-i plane. Observe next that corresponding to each value of A4,
the above points form a circle of radius 4 since v? + i2 = 42, If
we vary the value of 4 from 0 to oo, we would eventually fill up
the v-i plane with data points, and it would be impossible to find
a curve passing through these points. On the other hand, if
we choose to plot the points in the v-g plane, then these points can
be connected by a smooth curve, namely, the line g = o, Therefore
if a curve can be found which passes through all possible data
points in either the v-i, the v-¢, or the i-p plane, then the two-
terminal element is completely characterized by that curve.

16 TWO-TERMINAL RESISTORS

A two-terminal black box which can be characterized by a curve
in the -i plane is called a two-terminal resistor and will be denoted
by the symbol shown in Fig. 1-9a. Observe that one edge of the
symbol is darkened in order to distinguish between the two ter-
minals. This is necessary because the v-/ curve measured across
the two terminals of a resistor is generally different from that
measured across the same resistor but with the terminals inter-
changed (see Prob. 1-1).

1-6-1 LINEAR RESISTORS

Among the infinite variety of v-/ curves there is an important sub-
class which consists of straight lines passing through the origin as
shown in Fig. 1-95. Resistors of this subclass are called /inear
resistors and will be denoted by the standard symbol shown in
Fig. 1-9¢. Since the v-i curve of a linear resistor is a straight line
through the origin, it can be described mathematically by { = G,
or v = Ri. The constant G represents the slope of the line and is
called the conductance. The constant R is defined as the reciprocal
of G and is called the resistance. The practical unit of conductance
is the mho. The practical unit of resistance is the oam and will be
denoted by €. A linear resistor is therefore completely character-
ized by one number, its conductance or its resistance. If the value
of the resistance is positive, the linear resistor is said to be a posi-
tive resistor. Otherwise, it is said to be a negative resistor. If R = 0,
the linear resistor is said to be a short circuit. If R = oo, it is said
to be an open circuit.
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Fig. 1-9. Symbols for a two-
terminai resistor.

1ln view of the nonsym-
metrical nature of this
symbol, we may avoid
drawing voltage polarity
and current direction signs
beside the symbol provided
we agree to assume that
the darkened edge is the
negative terminal and that
the current eaters the
positive terminal. This
convention will be fol-
lowed in this book.
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1This subtle difference is
not universally recognized.
In many books, the terms
resistor and resistance are
used synonymously. In this
book, the term resistance
refers only to a linear
resistor.

2 To conform with the IEEE
standard letter symbols for
semiconductor devices
(IEEE Trans. Electron De-
vices, vol. Ed-11, no. 8,
pp- 392-397), we have
chosen the uppercase letters
V and 7 in favor of the
lowercase letters v and i as
used in the context. When-
ever applicable, we shall
also follow the latest [EEE
standards for pgraphic
symbols.

3 In view of its relatively re-
cent origin, the name and
symbol for the consiant-
current diode are not uni-
versally used. The same
device is sometimes re-
ferred to as a current-
limiting diode, a currector,
a field-effect diode, etc. A
further discrepancy may
be found in that portion
of the v-i curve for nega-
tive voltages. Depending
on how the device is made,
the v-i curve for p <0
either approximates an
open circuit (horizontal
line), as will be assumed
throughout this book, or a
short circuit (vertical line).
Fortunately, this discrep-
ancy is usually not impor-
tant because, as will be
shown later, only the por-
tion of the v~/ curve in the
first quadrant is actually
of practical interest. How-
ever, in any case, if the v-/
curve for v < 0 approxi-
mates a short circuit, it
can always be transformed
into the ¢-/ curve shown
in Table 1-1 by connecting
a junction diode in series

Foundations of nonlinear network theory

It is important to differentiate between the terms resistor and
resistance; the former refers to a black box, but the latter refers to
a property associated with the black box.!

Exercise 1: Explain why it is unnecessary to differentiate between the terminals
of the symbeol for a linear resistor.

Exercise 2: A certain -/ curve is described by an equation v = 10/ + 5. Is this
a linear resistor?

1-6-2 NONLINEAR RESISTORS

If a resistor is characterized by a v-i curve other than a straight
line through the origin, it is called a nonlinear resistor. In this case,
the resistor can no longer be described by a single number, and
hence the entire v-i curve must be given. This may be specified
either graphically by a curve or analytically by a mathematical
relationship. For example, consider the set of practical two-
terminal resistors listed in Table 1-1.2 Since these components are
all commercially available, they have been given names and sym-
bols.? Each resistor in this table is characterized graphically by a
typical v-i curve usually supplied by the manufacturer. In some
cases, it may be possible to derive a mathematical relationship
which closely approximates a certain v- curve. For example, from
physical principles one can show that the v-i curve of a vacuum
diode can be represented approximately by a % power law, namely,*

i= ko3 (1-13)

where & is a constant which depends on the physical dimensions
of the internal structure of the diode. Similarly, a semiconductor
junction diode can be represented approximately by an exponen-
tial law, namely,?

i= Iyt — 1) (1-14)

where /g and & are constants which depend on the physical param-
eters of the diode. One can also sometimes derive an equation
which approximates a v- curve by interpolation and approximation
techniques (see Appendix A). For example, the varistor shown in
Table 1-1 can be represented approximately by the equation

v = aif (1-15)
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where a and § are constants which can be determined numerically
from the curve. In all cases, we must remember that any mathe-
matical relationship is at best an approximation to the actual v-i
curve. Moreover, most ¢-i curves cannot be represented by such
simple expressions as those given above. Therefore, the most
general and common method to specify element characteristics is
to describe the curve in graphical form.

1.6-3 CLASSIFICATION OF »-i CURVES

In order to be able to use the nonlinear resistors effectively in a
practical design, it is necessary to classify v-f curves into various
categories. For example, the v-7 curves of the first three resistors
in Table 1-1 have one property in common; namely, for each pair
of points (v4,f;) and (v,i2) on the curve, we observe that whenever
v1 > Ug, then iy > iz. Such elements are said to be strictly mono-
tonically increasing resistors. An examination of the v-i curves of
the zener diode and the constant-current diode shows that they
are not strictly monotonically increasing because if we pick a pair
of points with voltages vy > v, along the horizontal portions of the
v-i curve, then i(vy) 3+ i{v2). However, these v-f curves have another
common property; namely, i(v1) > i(vz) for any vy > vo. Such ele-
ments are said to be monotonically (but not strictly) increasing
resistors. The v-i curves of the tunnel diode and the remaining re-
sistors below it are not monotonically increasing because each v-i
curve has a portion having negative slopes (di/dv < 0). Such ele-
ments are sometimes called negative-resistance elements. Another
common characteristic of a negative-resistance element is that
either the voltage is a multivalued function of current (more than
one voltage corresponds to some given value of current) or the
current is a multivalued function of voltage (more than one cur-
rent corresponds to some given value of voltage). In the first case,
the current is a single-valued function of the voltage (but not vice
versa); that is,
i = i(v) (1-16)
and 1s therefore called a voltage-controlled resistor. In the second
case, it is the voltage which is a single-valued function of current;
that is,

v = v(i) (1-17)
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with the constant-current
diode. For more informa-
tion concerning this device,
the reader is referred to
J. M. Carroll, “Microelec-
tronic Circuits and Appli-
cations,” pp. 234 and 235,
McGraw-Hill Book Com-
pany, New York, 1965;
and J. M. Carroll, “Tunnel-
Diode and Semiconductor
Circuits,”  pp. 122-128,
MeGraw-Hill Book Com-
pany, New York, 1963,

4J. Langmuir, The Effect
of Space Charge and Re-
sidual Gases on Therm-
ionic Currents in High
Vacuum, Phys. Rev., vol. 2,
pp. 450-486, 1913.

5J. F. Gibbons, “Semi-
conductor  Electronics,”
McGraw-Hill Book Com-
pany, New York, 1966.



TABLE 1-1 Practical two-terminal resisiors.

Name Symbol v-i characteristic curve
I, ma
I
+
101
Vacuum diode L4
: = V, voits
- —10 0 10
L]
I ma
o--—-{.— 6014
+
401
Selenium diode v Q@ 20
-8 -4
— LA i V, volts
e srmr—arrrar—e 4
I H. ma
4 80+
. 60
Semiconductor v a0
{junction ) diode 20
; ' ; G V, volt
- 08 -04 0O 04 08 S
I 1, ma
g oot
+
20
Zener (avalanche, v v
breakdown ) diode T ; ; V, volts
75[ -4 0o a4 =8
- —40+
I
Tt ey
+
Constant-current v
diode
= - 40
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Name Symbol v-i characteristic curve
I, ma
7 80
+ 40
20
Varistor v = 3 : =V, volts
o 40
-50
I, ma
I 400
) 300
Solion liquid 7 200
diode 1004
06 -04 -02 & oo
- . . 0 o2  oa v vols
- lmd
I, ma
I 0.6
O——
+ 0.4
Tunnel resistor 14 02
_ —04 02 0z o o Y Yol
o 1-02
7 I, ma
e ey
+ 4
2
Back diode 14 s AT
Yy 04 og V.
-2
o -4
I I ma
+ B
H Vv b A 4
Tunnel diode b 4

_160/1 100 200 300V, mv
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