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if it is voltage-controlled, and by
v = v(g) (1-30)

if it is charge-controlled. For a voltage-controlled capacitor, the
current entering the capacitor can be expressed in a form analo-
gous to Eq. (1-28); thus

() = 949 _ dq(v) dy

da = dv  d
or
i = C(v(t))% (1-3D)
where
= %) ]
Clo) = T (1-32)

is called the incremental capacitance of the capacitor. Notice that
the incremental capacitance is a function of the capacitor voltage
and becomes a constant only in the case of a linear capacitor.

Exercise 1: A typical nonlinear capacitor is characterized by the v-¢ curve
g = k32, where k is a physical parameter. (a) Find the incremental capacitance
C(v}. (b) If the applied voltage is given by o) = Y cos? ¢, find the charge g(r) and
the current i(r) == dg(1)/dt. (c) Calculate i) by using Eq. {1-31).

Exercise 2: An abrupt-junction diode is a semiconductor p-r junction which be-
haves like a capacitor, provided the voltage across the junction is less than
0.5 volt. its incremental capacitance is given by C(t) = k{¢ - v)~1/», where k,
¢, and » are constants which depend upon the parameters of the device. (a) Fiot
the incremental capacitance on logarithmic paper for the range — 100 < v < 0.5
volt. (Assume k = B8O x 10-12, ¢ = 0.5, and » = 2.) (b) What are the maximum
and the minimum values of the capacitance (in picofarads or 10-12 F) within this
range of applied voltage? (¢} Do you have sufficient information to recover the
o-g curve? If not, what additional information do you need?

1.7-3 SOME PRACTICAL APPLICATIONS
OF TWO-TERMINAL NONLINEAR CAPACITORS

What are nonlinear capacitors good for? Can they do useful
things which nonlinear resistors cannot? The answer to the
second question is obviously yes, for otherwise we would not be
studying them. In addition to being able to do a number of things
described earlier for resistors, a nonlinear capacitor can do better
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in certain cases. Although we do not yet have the background
necessary to demonstrate this assertion, suffice it to say that both
nonlinear resistors and capacitors are capable of generating higher
harmonics. However, with an appropriate design, it is possible to
extract more output power in any given harmonic component
from a nonlinear capacitor than from a nonlinear resistor. This
means that a nonlinear-capacitor-frequency multiplier has a higher
efficiency than a nonlinear-resistor-frequency multiplier. In addi-
tion to this application, a few of the many other useful functions
are briefly described as follows.

Frequency division In many practical systems, it is desirable to
convert a given sinusoidal signal of frequency w; into another
sinusoidal signal of a lower frequency wz; namely, wp = wi/n,
where n is an integer. In this case, the lower-frequency output
signal is said to be a subharmonic of the higher-frequency output
signal. It can be shown that a nonlinear resistor cannot generate
subharmonics. To demonstrate that a nonlinear capacitor can
generate a subharmonic signal, consider a nonlinear capacitor
whose incremental capacitance is given by

C) = [1_1——— "1_"2]”2 (133)

201 — 02)

If we apply a voltage v(f} = sin « across this capacitor, the cur-
rent i(f) can be calculated from Eqs. (1-31) and (1-33); thus

i(h = [1 = iyl s mt]m (w cos wi)

2(1 — sin2 wy)

_ (] — COS wf
2 cos? wt

/1 — cos wt LW

Hence, the output current is a sinusoid with frequency equal to
half the original frequency. The phenomenon of subharmonic
generation by a nonlinear capacitor has been utilized in many
practical applications. One application consists of utilizing the two
“distinct” frequencies as the two distinct states in designing a
digital computer. Another interesting application consists of con-
verting the high-frequency output of a laser beam into a lower-

frequency signal.

1/2
) (w cos wr)
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Fig. 1-18. A nonlinear capaci
tor can be used as a tuning
element by varying the dc volt-
age E across the capacitor,
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Parametric amplifier Just as with nonlinear resistors, it is possible
to generate beat-frequency components by applying two sinusoi-
dal signals of frequencies «; and w; in series with a nonlinear
capacitor. It can be shown that if one of the two signals (say
v1 = A sin w?) is very weak while the other signal (say vz =
B sin wqf) is very strong, it is possible to extract (with the help of
filters) the signal with frequency w; and at the same time greatly
amplify its amplitude, say v, = 1,000 4 sin wyz. The result is that
we have an amplifier. For reasons that we are not equipped
to elaborate here, this amplifier is called a parametric amplifier. It
is widely used in artificial satellites because it has some definite
advantages over conventional amplifiers.

Electronic tuning  Suppose we connect a voltage source vr) and a
battery with terminal voltage E in series with a nonlinear capaci-
tor as shown in Fig. 1-18a. For simplicity, let the v-g curve
be given by ¢ = % v3 as shown in Fig. 1-185. Then its incremental
capacitance is given by C(v) = v?, as shown in Fig. 1-18c. Now in
many electronic systems, such as a radio receiver, the signal us1)
is very small (say, a few millivolts) compared with the value of the
de voltage E. Hence, for most practical purposes, the incremental
capacitance

C(v) = Cusd) + E) = C(E) (1-35)

can be considered to depend only on the value of E. In this case,
Eq. (1-31) becomes

i(f) = C(E)% (1-36)

Since C(£) is no longer a function of time, Eq. (1-36) is identical
with Eq. (1-28) which describes a linear capacitor. The only differ-
ence is that we can change the value of the capacitance by simply
changing the value of E. This observation is of great practical im-
portance. One immediate application is in the area of electronic
tuning. The conventional way to tune a radio receiver from one
station to another is to turn a knob which moves the tuning dial.
Any one who opens up the cover of a radio receiver would recog-
nize that this tuning knob is used to rotate the plates of an
air capacitor, thereby changing the value of its capaciance.
In other words, the standard tuning process consists of adjusting
the value of a capacitor mechanically. This operation can now be
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replaced by a nonlinear capacitor connected as shown in Fig.
1-18a where the tuning is accomplished by adjusting the voltage
E. This method is clearly far superior to the use of bulky air ca-
pacitors. In fact, this technique of electronic tuning is fast becom-
ing a standard method in electronic systems,

Exercise 1: Find the incremental capacitance C(v) required to generate a 30-Hz
subharmaonic sinusoidal current waveform from an input voltage o(t) = 100 cos
1207z, HINT: Make use of the trigonometric identity

s + Cos X
2 2

Exercise 2. A commoen nonlinear capacitor used for electronic tuning is the
varactor diode. It is characterized by a v-g curve g{v) = —(3%)Copo(l — t/ho)l*’3,
where Co and ¢, are constants which vary from device to device. Whenp = 0,
the incremental capacitance was measured to be equal to 60 pF. (a) Derive the
incremental capacitance C(v). (b) If ¢ = 0.35, find the range of the input volt-
age required to tune the capacitance from 5 tc 100 pF. To operate the varactor
as a nonlinear capacitor, the voltage must not exceed 0.35 volt.

1-8 TWO-TERMINAL INDUCTORS

A two-terminal black box which can be characterized by a curve
in the i-p plane is called a two-terminal inductor and will be
denoted by the symbol shown in Fig. 1-194. The darkened edge
of this symbol has the same significance as before.

1-8-1 LINEAR INDUCTORS

An important subclass of inductors can be characterized by a
straight line through the origin of the i-¢ plane as shown in Fig.
1-19b. This subclass is called /inear inductors and will be denoted
by the conventional symbol shown in Fig. 1-19¢. A linear inductor
can be described analytically by

o =Li (1-37)

where the constant L represents the slope of the straight line and
is called the inductance associated with the inductor. The unit of
inductance is the senry and will be denoted by H. To find the volt-
age across a linear inductor, we substitute Eq. (1-37) for ¢ in
Eq. (1-8) and obtain

_ 40 )
o)) = L (1-38)
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Fig. 1-20. The i-p curve of
three practical nonlinear in-
ductors.

1 Actually, this hysteresis
loop is a valid description
only under the assumption
that the current waveform
is sinusoidal. For other
periodic excitations, the
hysteresis loop becomes
much more complicated.
A complete characteriza-
tion of elements described
by hysteresis loops is a
very difficult and still un-
solved problem.
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A linear inductor is therefore completely characterized by one
number, namely, its inductance. Again, we would differentiate be-
tween the terms inductor and inductance.

1.8-2 NONLINEAR INDUCTORS

If an inductor is characterized by an i-¢ curve other than a
straight line through the origin, it is called a nonlinear inductor. In
this case, the inductor can no longer be described by a single
number, and hence the entire i-g curve must be given. For example,
Fig. 1-20a shows the i-g curve of a typical nonlinear inductor.

Another common nonlinear inductor consists of a coil wound
around an iron core. Its i-p curve (obtained by applying a sinusoi-
dal current excitation) is shown in Fig. 1-20b. This curve is a
multivalued function of both i and ¢ and is commonly referred to
as the hysteresis loop.1 Observe that starting at point g with = 0,
the flux linkage ¢ increases with i along the path a-b-. Upon
reaching point ¢ when ¢ attains its maximum value, the flux link-
age ¢ does not retrace the original path. Instead, it decreases with
the current / along the path c-d-e-f Upon reaching point f when i
attains its minimum value, the flux linkage ¢ returns to point g to
complete the Joop. The shape of the hysteresis loop depends on
the type of material used for the core. For certain materials, the
hysteresis loop is almost rectangular, as shown in Fig. 1-20c.

We shall denote the i-g curve of a nonlinear inductor by

o = o(i) (1-39)

if it is current-controlled, and by

i = ip) (1-40)
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if it 1s Aux-controlied. In the case of a current-controlled inductor,
the voltage across the inductor can be expressed in a form analo-
gous to Eq. (1-38); thus

) = SeD). _ de() dit)

dt di dt
e
o) = L) 0 (1-41)
where
L(E)E%Q (1-42)

is called the incremental inductance of the inductor. Notice that for
a linear inductor, the incremental inductance coincides with the
inductance, as it should.

Exercise 1: The i-p curve of a certain nonlinear inductor can be represented ap-
proximately by the cubic equation ¢ = /3. If the inductor is connected across a
current source with terminal current i () = sin ¢, find and sketch the incremen-
tal inductance L{i) and the inductor voltage o(r).

Exercise 2: An inductor is said to be the “‘dua!’" of a capacitor, and vice versa,
because there exists a one-to-one correspondence between the two elements. Ex-
hibit a list of corresponding quantities.

1.8-3 SOME PRACTICAL APPLICATIONS
OF TWO-TERMINAL NONLINEAR INDUCTORS

What are nonlinear inductors good for? Where are they used in
practice? To answer these questions would again require more
background than we have at present. However, it is instructive to
describe a few simple applications.

Frequency conversion Just as is true of capacitors, a nonlinear in-
ductor is capable of generating both harmonics and subharmonics
of a given sinusoidal signal. It can be shown to have the
same efficiency as does a nonlinear capacitor. This property is
widely used in telephone systems.

Memory and storage Consider the rectangular hysteresis curve
shown in Fig. 1-20c. Observe that when / = 0, ¢ may assume
either one of two distinct values (point a or point ) depending
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on the previous history of the excitation current. These two
distinct states can be used to represent the two states (0 and 1) in
a digital computer. When many of these elements are combined
properly, the result is a “memory” or *storage™ device to store
present information for future use. While there are many other
candidates, this memory device has some significant advantages.
One is that in both states / = 0, and hence no power is being con-
sumed. Since hundreds and thousands of these elements are used
in a practical computer, the saving in power cost is enormous.

1.9 ENERGY AND POWER

The energy flow into a two-terminal black box during any time
interval (¢9,f1) is by definition the time integral of power from #p
to {1; namely,

Witody) = L Y w(nide) de (1-43)

(

Since w(to,t1) 15 a relative quantity depending on the time interval
(f0,t1), it is convenient for us to define another related but absofute
quantity by letting #, equal zero and #; approach infinity, and then
take the average of the energy flow over the entire infinite time
interval; namely,

P = lim 2O0) (1-44)
1—o¢ 1

Since the quantity P,, has the dimension of energy per second, it
is called the average power. Substituting Eq. (1-43) into Eq. (1-44),
we obtain the explicit expression

Puy = lim L fu 5 )i(r) di (1-45)

oo Iy

To illustrate the use of this formula, let us calculate the average
power entering a 4-{ linear resistor due to an applied voltage
v(?) = 2 sin «t; thus

TR S ¢ : 2 sin 7t )
Pu = lim [ @sinm (————4 ) di (1-46)
T o Sinz'ﬁ'tl)_t.
Pay = tllgr:]«. (/l 4ty =
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In the case where the voltage v(f) and current i(7) are periodic
functions with commensurate periods T, and T;, respectively, the
power p(f) = v(1)i(1) will also be periodic. However, the period of
p(?) is not necessarily equal to T, or T;. For the example considered
in Eq. (1-46), 7, = T; = 2, but the period of p(1) is 1. If we
denote the minimum period of p(f) by 7, then

plt + nl) = ot + nDi(t + nT) = p(7) (1-47)

In this case, it is more convenient to let t; = n7 and rewrite Eq.
(1-45) in the equivalent form:

— lim L [T wni
Py = lim — L WDi(7) dt

n—oo

= lim L[ [Fowityde + [T owicey dr

Tl 3G nT
nT @
T 1) dr]

= lim _n‘?[n INEGLG) d:]

. 1 7 ;
lim fo o(2)i(f) dt

Since the variable n no longer appears in this integral, the limit
operation is superfluous and can be removed. Hence, for periodic
signals, the average power can be written in the following simplified
but equivalent form:

Pyyi= % LT W(Dilt) dit = @ (1-48)

where T'is the minimum period of v(n)i(r). Applying this formula
to the same example considered in Eq. (1-46), we obtain

1 11 : 2 sin ¢ 1
Po=1 ['@sinm) (—4__) ar=1

as we should.

Exercise: The voitage and current wavefarms of a two-terminal black box are
given, respectively, by v = sin (3.14) and i = sin =r. (#) Show that even though
both ©{¢) and i(¢} are periodic, the power p{r) is not periodic. (b) For most practical
purposes, p(s) is said to be “‘almost periodic.'” Explain why.
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Fig. 1-21, The instantaneous
power absorbed by a nonlinear
resistor at any time 1, is equal
numerically to the area of the
rectangle formed by the v,i axes
and a vertex Q with coordinates

(v(ro}.i(to)).
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The three expressions given by Egs. (1-43), (1-45), and (1-48)
are valid for any two-terminal black box. Let us now consider the
special cases where the black box consists of a single nonlinear
resistor, capacitor, or inductor. In so doing, we shall be able to de-
rive a number of useful relationships. We shall also be able to
draw some very important physical interpretations. Let us consider
the three cases one at a time.

Case 1: Two-terminal nonlinear resistor  Consider the nonlinear re-
sistor shown in Fig. 1-2la and the three common types of v-f
curves shown in Fig. 1-21b, ¢, and d. The v-i curve can be described
in the functional form by i = i(v) if it is voltage-controlled, or by
v = v(i) if it is current-controlled. A strictly monotonically in-
creasing v-i curve can obviously be described by either i = i() or
v = v(i). Accordingly, the instantaneous power flow pg(?), energy
flow wg{fo.t1), and average power Pg,, can be determined and are
tabulated in Table 1-2 for these three cases.

Observe that corresponding to any operating point Q at any
time ¢, the instantaneous power px{f) is simply equal to the area of
the shaded rectangles shown in Fig. 1-21. This power must, of
course, come from the energy supplied by the external circuit con-
nected across the resistor, From Table 1-2 we observe that the ex-
pressions for pa(), wr(to,t1), and Pg,, depend on two pieces of in-
formation, namely,

1. The v-i curve

2. The voltage waveform u(t) or the current waveform i(?)

Hence, in order to find out what happens to the power that enters
the resistor, we must be given these two pieces of information. For

i 4i

1
i=i{v)
ve=p (i)
I 4]
I Q
\\3

(a)

(c} (d)
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TABLE 1-2 Instantanecus power, energy, and average power flow in a nonlinear resistor.

Strictly monotonically Voltage-controtled Current-controlled
increasing v-f curve o-f curve v-i curve
Pt Sy = oI = i)
= f(“ o(i(i(1)) dt = J; ' (DY) dr = L : WO di
wg (fo.1) .
= ﬁ " i) dt
, = lim ﬁ Jrewiema = lim L [foieeya = Jin Loy a
Rav

lim % J; " HOuie) dr

L

example, suppose the v-i curve is represented by 7 = ¢3, and the
voltage is given by v(r) = 2 sin #¢. The instantaneous power can
then be calculated; thus

Pr() = (2 sin 71)(2 sin #1)? = 16(sin we)*

Observe that pp(?) has a period T = 1. The energy flow during the

time interval (0,1) and the average power due to the periodic sig-
nal are given, respectively, by

wal0,t1) = 6t — -sin 2mt; — 2 (sin wiq)¥(cos m1)
ri i

and

_we{0.T) _ we(01) 6
Rav T - 1 -

(1-49)

Equation (1-49) shows that even though the voltage v(f) changes
from positive to negative values periodically, there is a net positive
average power flow entering the resistor. Since this power is not
returned to the external circuit whenever the voltage returns to its
initial value during each period, it cannot be recovered and is
therefore said to be “lost™ or “dissipated” in the resistor. Since
energy cannot be destroyed, this loss of electrical energy in the re-
sistor is merely transformed into heat energy.

The average power for the above example is positive, Let us
now consider another example where this is not true. Suppose the



