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v-i curve is represented by i = v® — 2 and suppose a constant
voltage v = 1 volt is applied. The instantaneous and average
power, respectively, are given by

Py =11—2)=—1 and pgm:i:.‘%@ = —1 (1-50)

Since the average power is negative, energy is being supplied
(instead of being absorbed) by the nonlinear resistor to the external
circuit. Since energy cannot be created, this nonlinear resistor
must have an external power source (e.g., a battery) associated
with it, and is therefore called an active resistor. Without an
external power source, a nonlinear resistor can only absorb power;
namely, pg(f} > 0. Such a resistor is said to be passive. It is easy to
see that a nonlinear resistor is passive if, and only if, its v-i curve
lies entirely in the first and the third quadrants. This follows from
the fact that the instantaneous power is always nonnegative;
namely,

(D) = v()i(1) 2 0 (1-51)

Clearly, in its original form, a physical resistor must necessarily be
passive. This is true, for example, with the commercial resistors
listed in Table 1-1. Any of these resistors can, of course, be trans-
formed into an active resistor by connecting a battery in series
with it.

Exercise: The v-i curve of a certain nonlinear resistor is given by i = 10(® ~ 3v)ma,
and the voltage excitation is given by () = 10 sin r volts. (g} Find the instantan-
eous power px(r). (b) Find the energy flow wg(0,#;) for all #; > 0. (¢} Find the
average power by using Eq. (1-48) and check by using Eq. (1-45). (d) |s this non-
linear resistor passive or active? Explain why.

Case 2: Two-terminal nonlinear capacitor  Consider the nonlinear
capacitor shown in Fig. 1-22a and the three typical types of v-g
curves shown in Fig. 1-22b to d. The v-g curve can be described in
the functional form by v = u(g) if it is charge-controlled or by
g = g(v) if it is voltage-controlled. A strictly monotonically in-
creasing v-¢ curve can obviously be described by either v = v{g) or
g = q(v). The energy flow we(fo,ty) into a capacitor during the
time interval (fo,11) is given by

weltos) = [ U(:)%d: (1-52)
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In the case where the capacitor v-g curve is either strictly mono-
tonically increasing or charge-controlled, Eq. (1-52) can be written
as

[t dglt) ¥y
welton) = [ ") == di (1-53)
By a standard change of variable, Eq. (1-53) becomes

welto) = [ vlg) dg (1-54)

In the special, but very important, case of a /inear capacitor
[ = Cvorv = (1/C)), Eq. (1-54) can be reduced to

_ few 1 1 e g
wello,h1) = fq(m 194 =3¢ fq(rnl 4P

or

wltoits) = 5= [q3() — ¢¥(to)] (1-55)

Equation (1-55) can also be expressed in terms of v by substituting
g= Cvfor g

welto) = S [on) — v2(w)] (1-56)

Referring to Fig. 1-22, Eq. (1-54) can be interpreted as follows:
The energy flow we(to,f1) from 1o 1o £ into a charge-controlled

Fig. 1-22. The energy flow
weltg.21) from 1 to 1, into 2
nonlinear capacitor is equa
numerically to the shaded area
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nonlinear capacitor is equal numerically to the area under the
v-g curve (bounded by the g axis and the lines g = ¢(fp) and
g = q(t1). This interpretation is significant because it shows that
only three pieces of information are needed to determine we{fo,1),
namely

1. The v-g curve
2. The initial value of the charge at 7 = £
3. The final value of the charge at? = r;

Since no information is required of the waveforms of g(¢) and o(s),
the energy we{to,t1) is said to be independent of the excitation
waveforms. This property is very different from the resistor case
where the complete voltage and current waveforms are required
to compute we(Zo,t1). Observe further from Fig. 1-22 that whenever
the waveform u(f) returns to the same initial point, ie., when
q(t1) = g(ty), the energy welto,1}) = 0. For example, Egs. {1-55)
and (1-56) are both equal to zero under this condition. Hence, un-
like the resistor case, there must be some form of “energy-swapping”
mechanism between a capacitor and the external circuit connected
across it. To investigate this mechanism, let us calculate the average
power using Eq. (1-45); thus

PCav = lim i gt}
h—oo §1 J9(0)

v(q) dq (1-57)
Now observe that except when g(f) goes to infinity, a case that
cannot oceur in practice, the value of g(z1) will always be a finite
number. This means that the area under the curve representing the
integral in Eq. (1-57) will always be a finite number. But the value
of 71 in Eq. (1-57) must tend to infinity, therefore

P, =0 (1-58)

Since this equation is derived only under the assumption that the
v-qg curve be charge-controlled (this includes clearly the special
case of a monotonically increasing curve), it is a very general re-
sult. We can, therefore, conclude that the average power entering
a charge-controiled nonlinear capacitor is zero. This condition is
true for any capacitor current and voltage waveforms. In the
special case where g(¢) and o(y) are periodic, Eq. (1-57) can be
simplified to
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q(T)

Pow = .f o D4 (1-59)

But ¢{7") = ¢(0) for a periodic waveform of period T; therefore,
Eq. (1-59) will integrate to zero, as it should.

From the preceding discussion, we can now conclude that a
charge-controlled capacitor does not dissipate energy. Any energy
entering it must be stored inside the capacitor and may eventually
be returned. Because of this interpretation, a capacitor is often re-
ferred to as an energy-storage element. In the case of parallel-plate
capacitors, it is possible to show, by electromagnetic field theory,
that the energy is stored in the electric field between the plates. In
view of this observation, the energy wl#p,5;) in a capacitor is
usually called the electric stored energy.

What happens if the v-g curve is neither monotonically in-
creasing nor charge-controlied? In this case, it is no longer pos-
sible to describe the v-¢ curve by a function of g. It is not possible,
therefore, to specify the area representing vdg uniquely. To
investigate this more general case, a new approach is required.!

Exercise 1: The v-g curve of a certain nonlinear capacitor is given by g = % vd.
Let the termina! voltage be given by «{f) = e~ (@) Find we(0.4) for all £, > O by
determining first i{1) = (dg/dv)(dv/dr) and then using Eq. (1-43). () Repeat (a)
by determining first gz} and then using Eq. {1-53). {¢)} Repeat (a) by usmg
Eq. (1-54). (d) Let o() = E sin wt and verify that P, = Q.

Exercise 2; Prove that the electric stored energy in a voltage-controfled capacitor
is given by

G

weltont) = gUailts) — glioketta) — [ g0) do

HINT: Apply the integration-by-part theorem.

Case 3: Two-terminal nonlinear inductor Consider the nonlinear in-
ductor shown in Fig. 1-23¢ and the three typical types of i
curves shown in Fig. 1-23b to 4. The i-p curve can be described
in the functional form by i = i{g) if it is flux-controlled or by
@ = (i) if it is current-controlled. A strictly monotonically in-
creasing i-g curve can obviously be described by either i = i(g) or
@ = @(i). The energy flow wi{ip.f1) into an inductor during the
time mterval (fo.7;) is given by

wiltoty) = [* i(t)-d(z,—gﬂdt (1-60)
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Fig. 1:23. The energy fiow
wilfo 1) from g to 1 into a
nonlinear inductor is egual nu-
merically to the shaded area.

Applying analogous procedure as in the capacitor case, we find
that when the i-g curve is either strictly monotonically increasing
or flux-controlled, Eq. (1-60) can be written as

wilto,tr) = L " i) dp (1-61)

In the special case where the inductor is linear (g = Li),
Eq. (1-61) can be simplified further to

wilto,h) = e [92(tz) — §(10)] (1-62)
or
willods) = 51 210) — i %(0) (1-63)

Referring to Fig. 1-23, Eq. (1-61) can be interpreted as follows:
The energy flow wy(to,t1) from ¢ to ¢ into a flux-controlled non-
linear inductor is equal numerically to the area under the i
curve [bounded by the ¢ axis and the lines ¢ = ¢(fo) and ¢ =
@(t1)]- This interpretation has the same significance as for the
capacitor; namely, only three pieces of information are needed to
determine wi(to.t1):

1. The i-p curve
2. The initial value of the flux linkage at 1 = £
3. The final value of the flux linkage at t = t;

By a similar procedure, we found the average power in any flux-
controlled inductor is zero; thus

Pp,, =0 (1-64)
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This means that a flux-controlled inductor cannot dissipate energy.
In view of this observation, the inductor is also called an energy-
storage element. In the case where the inductor is made of coils
around an iron core, the energy can be shown, by electromagnetic
principles, to be stored in the magnetic field around the coil.
Hence, the energy stored in an inductor is usually called magneric
stored energy.

Exercise 1: Prove that Eq. (1-64) holds for a flux-controlied inductor. Verify this
with (1) = fcos wt and ¢ = 3.

Exercise 2: Prove that the energy stored in a current-controlled inductor is given
by

wilte, 1) = @(i)i(t) — eliodi(to) — i::;llp(!) di

1-10 TIME-VARYING ELEMENTS

So far, the v-i, v-q, and i-p curves characterizing a two-terminal re-
sistor, capacitor, and inductor are assumed to remain unchanged
for all times. These elements are said to be time-invariant. There
exist some practical elements, however, whose v-i, v-q, or i-g
curves vary as functions of time. Such elements are said to be
lime-varying resistors, capacitors, or inductors, respectively.

Time-varying resistor The simplest example of a time-varying re-
sistor is a potentiometer whose arm is being rotated by a motor
as shown in Fig. 1-24a. At any time ¢, the potentiometer is simply
a linear resistor with a straight-line v-/ characteristic as shown in
Fig. 1-24b. Hence, a time-varying linear resistor can be character-
ized by

v = R()i
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Fig. 1.24. An example of a
time-varying linear resistor,
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Fig. 1-25. An example of a
time-varying nonlinear resistor,
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where R(?) is the time-varying resistance representing the reciprocal
of the slope of the straight line at any time ¢. For example, if the
potentiometer has a resistance range of 0 to 1,000 @ uniformly dis-
tributed around its rim and if the arm rotates at a speed of 1 rps,
then the time-varying resistance is as shown in Fig. 1-24c.

A time-varying resistor need not be linear. For example, con-
sider a resistor characterized by

i=13 4 sin¢

The v-i curve of this time-varying nonlinear resistor is shown in
Fig. 1-25a as a function of time. Observe that this resistor can be
constructed in practice by connecting a sinusoidal current source
in parallel with a time-invariant resistor (Fig. 1-25b) with the ¢/~
curve shown in Fig. 1-25¢. In general, a time-varying nonlinear re-
sistor can be characterized by a relationship 7 = ip,0) if it is
voltage-controlled, or v = v(i,#) if it is current-controlled. A review
of the power and energy expressions derived in the preceding sec-
tion would show that these expressions remain valid for the time-
varying case.

What are time-varying resistors good for? To give one simple
application, let us consider the current waveform

i(f) = [1 + f(0)] sin wr (1-65)

Equation (1-65) is called an amplitude-modulated waveform because
the amplitude of the sine wave varies with time. This is the type

t= X 5x ’
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=%, 57w
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of signal that an AM radio transmitter sends out. In practice, f()
represents a slowly changing signal and sin wf represents a rela-
tively high-frequency sine wave known as the “carrier.” We are
not equipped to explain why f(f) cannot be transmitted directly,
and why it must be “carried” by the sine wave. Suffice it to say
that it takes a high-frequency waveform to traverse a long dis-
tance in space. Our objective here is to show how we may recover
the signal f(#) from Eq. (1-65). One possible method consists of
applying this current to a time-varying linear resistor whose re-
sistance changes at the same frequency as the carrier, namely,

R(H) =1 + sin wt
The voltage drop across this resistor is given by

{1} = R()(r)
= (1 + sin w)[1 + f(#)] sin wt

=B+ %+ [1 + f(9)] sin wt — B[] + f(9)] cos 2t
(1-66)

Observe that Eq. (1-66) contains four terms; the first term is the
signal that we would like to recover, the second term is a dc volt-
age, the third term is the carrier-frequency term, and the last term
is at twice the carrier frequency. Through the use of a “filter,” the
last three components can be easily suppressed, thus leaving the
desired signal f(7). This recovering process is known as synchronous
detection because the frequency of the time-varying resistance is
synchronized at the same frequency as the carrier.

Exercise 1: Sketch the amplitude-modulated waveform given by Eq. (1-65) with
Sy = sin t and « = 100. What can you say about the “envelope” of this
waveform?

Exercise 2: It is possible to rectify a sinusoidal current waveform i(r) = I sin ¢ by
applying this current to an appropriate time-varying linear resistance R{s). Find
R(r) so that the resistor voltage is a rectified version of the current waveform;
that is, »{r) = #r) whenever i(z} > 0, and v(z} = 0 whenever {1) < 0.

Time-varying capacitor The simplest example of a time-varying lin-
ear capacitor is the air capacitor consisting of a fixed set of plates
in mesh with a movable set of plates which is being rotated by a

motor. A time-varying linear capacitor is therefore characterized
by

q(1) = C(O(t) (1-67)
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where C(2) is the time-varying capacitance. Unlike the resistor
case, the expressions previously derived for the nonlinear capaci-
tors do not apply in the time-varying case because when we
differentiate g(#) with respect to time, we obtain an additional
term, namely,

du(t) dC(:)

() = —- = QO —+~ + ) — = (1-68)

Since C(f) is not a constant, the expressions given by Egs. (1-55)
and (1-56) are no longer applicable. Hence, to calculate the power
or energy flow, we must resort to the original definitions.

Just as for the resistor, a time-varying capacitor may be non-
linear; in this case it is characterized by g = g(v.f) if it is voltage-
controlled or o = v(g.) if it is charge-controlled. Time-varying ca-
pacitors are useful in the study of parametric amplifiers. They are
also useful in the modeling of many time-varying physical and
biological systems. For example, the mass of a rocket during lift-
off decreases rapidly with time as the rocket fuel is burned. This
time-varying mass can be modeled by a time-varying capacitor.

Exercise 1: Find the average power Pg,, entering a time-varying capacitor
C{) = 2 — cos wi and a terminal voltage (¢} = E sin «t. Interpret whether this
energy is being absorbed, delivered, or stored.

Exercise 2: Give an example for each of the following: () A time-varying linear
capacitor, {b) a time-varying charge-controlied capacitor, and (c) a time-varying
voltage-controlled capacitor.

Time-varying inductor By exact analogy to the capacitor, a time-
varying linear inductor is characterized by

o(t) = LD (1-69)

where L(7) is the time-varying inductance. Since L() is no Jonger
a constant, the expressions derived previously in the preceding
sections are no longer valid. In particular, the inductor voltage is
now given by

oty =20 = 1 ED 4 i

A time-varying inductor may be nonlinear; in this case it is
characterized by ¢ = (i,f) if it is current-controlled and i = (g,
if it is flux-controlled.
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The analysis of a nonlinear network containing time-varying
elements is a very difficult problem requiring advanced mathe-
matics. Hence, we shall not consider any time-varying elements in
the rest of this book. The above discussion is included mainly to
emphasize the fact that most of the equations we derived in the
previous sections are not valid for time-varying elements.

Exercise 1: Give an example for each of the following: (@) A time-varying linear
inductor, (b)) a time-varying flux-contralled inductor, and () a time.varying
current-controlled inductor.

Exercise 2: Prove or disprove the assertion that if the current into a time-varying
current-controlled inductor is periodic, then the instantaneous power P.{1) is
also periadic,

1-11 CONCEPTS OF MODELING

One of the most basic principles in scientific analysis is that
of modeling. Engineers and scientists seldom analyze a physical
system in its original form. Instead, they construct a model which
approximates the behavior of the system. By analyzing the be-
havior of the model, they hope te predict the behavior of the
actual system. The primary reason for constructing models is that
physical systems are usually too complex to be amenable to a
practical analysis. In most cases, the complexity of a system is due
in part to the presence of many nonessential factors. One basic
principle of modeling consists, therefore, of extracting only the
essential factors.

To illustrate the process of modeling, let us consider the prob-
lem of predicting the trajectory of a ballistic missile. This problem
cannot be analyzed exactly because an exact analysis would re-
quire inclusion of all possible factors that may affect the trajectory.
Some of these factors may be the weight and shape of the missile,
the amount of thrust, the atmospheric drag, the deformation of
the missile during flight, the distribution of weights of the internal
components, the wind velocity, the impurity of the fuel, and the
color of the missile. From experience, we know that the first three
factors have a more significant influence on the trajectory than the
remaining factors. This leads us to replace the missile by a model
which includes only the first three factors. Obviously, the pre-
dicted trajectory based on this model is not going to be identical
with that of the actual system. But as engineers, we are interested
only in an “accurate” solution, not the exact solution. Hence, as
long as the discrepancy between the predicted and the actual
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