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Figure 4.4 An op-amp circuit illustrating gaussian surfaces and KCL.,

at nodes @, @, ®. and ®. The properties of the op amp will be treated in
Chap. 4. In the figure we draw six gaussian surfaces: &,, &,, ..., %,. We will
use these surfaces to illustrate Kirchhoff's current law:

KCL For all lumped circuits, for all gaussian surfaces %, for all
times t, the algebraic sum of all the currents leaving the gaussian
surface & at time ¢ is equal to zero.

For &,, KCL states:
i) +i(ty=0  forall ¢

Note that %, contains only node (O in its “inside”; thus a node may be
considered as a special case of a gaussian surface, i.e., the surface is shrunk to
a point.
For &,, KCL states:
—i (B +i(H)=0 or L ()= i,(1)

Note that &, encloses the two-terminal element, namely, the battery. Thus we
make the conclusion that for a mwo-terminal element, the current entering the
element from one node at any time 7 is equal to the current leaving the element
from the other node at ¢.

For &,, KCL states:

L+ i+ +i(=0
For &,, KCL states:
E(f) -+ () H4,(0) + ilt) =i (8 < i (5 — i (t)=10
For &, KCL states:

L) —ip®) —i(t)—i,(e)=0
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Note that these are the four currents pertaining to the op amp. Thus choosing a
gaussian surface which encloses any n-terminal element, we state that the
algebraic sum of the currents leaving or entering the n-terminal element is
equal to zero at all times ¢, This fact will be used in the next section when we
discuss r-terminal elements.

For ¥, we have

—ip() - i3(f) - in(t) = is(f) —i,(1)=0

Note that &, contains only the datum node ®.
We state KCL for nodes:

KCL (node law) For all lumped circuits, for all times ¢, the
algebraic sum of the currents leaving any node is equal to zero.

RemMark Although a node is a special case of a gaussian surface, KCL for
nodes is far more useful than the general statement in terms of gaussian
surfaces. Equations written for nodes from the node law are subsets of the
equations written for gaussian surfaces of a given circuit. Yet as we shall
see in Sec. 6, KCL equations for nodes lead easily to simple analytic
formulation of KCL and are the key idea in the node analysis of Chap. 5.

4.4 Three Important Remarks

1. KVL and KCL are the two fundamental postulates of lumped-circuit theory.

2. KVL and KCL hold irrespective of the nature of the elements constituting
the circuit. Hence, we may say that Kirchhoff’s laws reflect the interconnec-
tion properties of the circuit.

3. KVL and KCL always lead to homogeneous linear algebraic equations with
constant real coefficients, 0, 1, and —1, if written in the fashion given in this
section.

5 FROM CIRCUITS TO GRAPHS

The interconnection properties of a circuit can best be exhibited by way of a
graph, called a circuit graph. In this section, we will demonstrate how a graph
can be obtained from a circait. The graph retains all the interconnection
properties of the circuit but suppresses the information on the circuit elements.
Therefore, as far as KVL and KCL are concerned, the circuit graph is all that

we need.
A graph % is specified by a set of nodes {0, ®, ..., (®} together with a
set of branches {B,, B,,..., B,}. If each branch is given an orientation,

indicated by an arrow on the branch, we call the graph directed, or, simply, a
digraph. In Fig. 5.1, we show a connected digraph with five nodes and seven
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Figure 5.1 A digraph with five nodes and seven
branches.

branches, i.e., n = 5 and & = 7. The arrows on the branches are used to denote
the reference directions of the currents.

5.1 The Element Graph: Branch Currents, Branch Voltages,
and the Associated Reference Directions

A two-terminal element, shown in Fig. 5.2, can be represented by a graph
with two nodes and one branch. This graph is called the element graph of the
two-terminal element. By KCL, the current / flowing from node @ into the
clement is cqual to the current leaving the element by node &. We therefore
represent a two-terminal element by a digraph with the arrow on the branch
indicating the reference direction of the current a shown in Fig. 5.2b. By doing
50 we have suppressed the circuit element; and, as such. the current i is called
the branch current of the two-terminal element.

The voltage across the element is the voltage v between the node-pair (D,
@ shown in Fig. 5.2a. The voltage v is called the branch voltage of the
two-terminal element. The reference direction is specified by the + and ~— signs
associated with node-pair 0, @. Thus the branch voltage v(s) > 0 if and only if,
at time ¢, the potential of node @ is larger than that of node @. Similarly, the
branch current i(t) >0 if and only if, at time 7, the current enters the element
by node @ and leaves it by node @. When, for the two-terminal elements
shown, the current and voltage reference directions are chosen as in Fig. 5.2a,
we say that we have choscn associated reference directions for that two-
terminal element,

More precisely, the associated reference directions are defined as follows:
Suppose that the voltage reference direction is chosen; then the current

O+ @
0

- i
@ @ Figure 5.2 («) A two-terminal element and (&) its digraph
() 6] representation.
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reference direction is always selected so that the arrow is directed from the +
sign toward the — sign through the element. Or, if the reference direction for
the current is chosen, the voltage reference direction is specified with the +
sign at the node where the current enters the element. This is the convention
we will follow throughout, giving us the distinct advantage of not having to
mark the signs for the voltage reference direction any more. Therefore in Fig.
5.2b, we show only the arrow on the digraph.

Associated reference directions have a very useful property, namely, they
make the accounting of power flow quite easy. For the two-terminal element of
Fig. 5.2:

A .
p(1) 2 v(n)i(r) (5.1)
= power delivered at time ¢ fo the two-terminal
element by the remainder of the circuit to

which it is connected

If the voltage v(¢) is expressed in volts and the current in amperes, then the
power is expressed in watis.

Three-terminal elements The digraph representation of two-terminal elements
discussed above can be extended to three-terminal elements. For a three-
terminal element as shown in Fig. 5.3, there are three node currents i,, i,, and
i,, and three voltages v, _;, v;_,, and v,_,. However, from KVL we know that
Vy_3+ Vs, + v,_; =0; and therefore only two voltages can be specified inde-
pendently. So let us choose arbitrarily node ® as the datum node and use the
node-to-datum voltages for nodes () and @ as the two independent voltages.
Similarly, from KCL, we know that i, + i, + i, = 0. Therefore, for the datum
node chosen at @, we use i, and i, as the two independent currents.

The digraph representation of a three-terminal element with node @ as
datum is shown in Fig. 5.4. Note that it contains fwo branches and three nodes.
The arrows indicate the current reference directions for i; and i,. The two
currents i, and i, are called the branch currents of the three-terminal element.
Using the associated reference directions for the voltages, we redraw the
three-terminal element as shown in Fig. 5.5 and define v, =v,_;and v, =v,_,

Dy ", D
® ®

Figure 5.3 A three-terminal element. Figure 5.4 The digraph representation of a
three-terminal element with node ® chosen
as datum.
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Figure 5.5 A three-terminal element with branch currents i, i,
@ and branch voltages, v,, v, using associated reference direc-
= tions.

as the two branch voltages of the three-terminal element. Thus by using the
digraph representation, we have extended the circuir variables: branch voltages
and branch currents from two-terminal elements to three-terminal elements.

Obviously, for a three-terminal element, there exist altogether three
possible digraph representations depending on which node is chosen as the
datum node. In addition to the digraph in Fig. 5.4 we have two other digraphs
as shown in Fig. 5.6.

n-Terminal elements We can easily generalize the above to n-terminal ele-
ments as shown in Fig. 5.7. Thus for an n-terminal element, we have an

. ®© 0 ® 0 0@ O

® ® ® @

() h)

Figure 5.6 Other digraph representations of a three-terminal element: (2) Datum node, @; ()]
datum node, ®.

Figure 5.7 An n-terminal element and its element graph with node () as datum node.
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element graph with n —1 branches and n nodes. There are n — 1 branch
currents and # — 1 branch voltages; and we always use the associated reference
directions and choose the current reference directions as shown, i.e., with
arrows entering the element at the nodes. The power delivered to the element
from the outside to the element at time t is therefore

n—1

p(t)= 2 v (£)i (1) (2

k=1

5.2 The Circuit Graph: Digraph

For a given circuit, if we replace each element by its element graph, the result
is a directed circuit graph, or simply a digraph.

For example, a digraph associated with the circuit in Fig. 4.3 is the one
shown in Fig. 5.1. We may now use the digraph instead of the circuit to write
equations of KVL and KCL. It js interesting to note that since the circuit
contains a three-terminal element, the digraph bears little resemblance to the
circuit. In fact, given the digraph, without specifying which nodes belong to the
three-terminal element, it is not possible to reconstruct the circuit. This
observation is not true if the circuit contains only two-terminal elements.

Exercise 1 Demonstrate that the op-amp circuit in Fig. 4.4 has its as-
sociated digraph shown in Fig. 5.8 if node ® is chosen as the datum node
for the op amp. ‘

Note that in the circuit there are seven two-terminal elements and one
four-terminal element. The total number of branches in the digraph is
equal to 7+(4—1)=10. (Remember for an n-terminal element, the
element graph has n — 1 branches.)

Exercise 2 Choosing note ® as the datum node for the circuit, show by
KVL that one can express all 10 branch voltages v, v, . . . , v, in terms of

Figure 5.8 Digraph associated with the circuit
in Fig. 4.4, The branches are numbered accord-
ing to the corresponding currents in Fig. 4.4.
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the four node-to-datum voltages e, e,, e;, and e, as follows:

v, =e¢

v,=e — e,

v, =e,

v, =e,

vs=e,—e,

s = B (5.3)
v,=e,

v, = e,

v, =€,

Vg = €3

Exercise 3 Show that KCL equations written for the four nodes @ to @) are
i +i,=0

—iy+ it i i =0 )
i+ i, =0 '

—ig— gt iyt ity =0

Exercise 4 Express Eqs. (5.3) and (5.4) in matrix form using the vectors v,
e, and i, e.g., v={v,,v,,...,v,,|’, where the superscript 7 denotes
matrix transposition.

Remark The fundamental concept of using a circuit graph instead of the
circuit itself in writing KVL and KCL equations is the following:

1. We convert circuit elements whether two-terminal, three-terminal, or
n-terminal into branches, thus we were able to define branch voltuges
and branch currents for any element in a circuit.

2. With a circuit graph we can define precisely the interconnection proper-
ties of a circuit using the branch-node incidence relation of a graph to
be discussed in Sec. 6.

Exercise 5 Show that if branch 3 in Fig. 4.4 is replaced by a short circuit
thereby coalescing nodes @ and ® into one node, then the digraph in Fig.
5.8 will contain a self-loop, i.e., a loop made of one branch and one
node.
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5.3 Two-Ports, Multiports, and Hinged Graphs

Up to now we have assumed that the circuit is connected. In Fig. 3.2b the
circuit, because of the presence of a two-winding transformer, is not connect-
ed. It turns out that we can easily take care of the situation; but before we do
so, we need to introduce a special class of four-terminal elements called
two-ports. A two-port is a circuit element or a circuit with two pairs of
accessible terminals. Thus a two-port may contain many circuit elements.

Two-ports In many engineering situations the terminals of a multiterminal
device are naturally associated in pairs: For example, in a hi-fi chain the input
pair is connected, say, to a microphone and the output pair to a loudspeaker
system. These pairs of associated terminals are calied ports. Another example
is a two-winding transformer: The two input terminals constitute a natural
input port and the two output terminals constitute a natural output port. In
either case, the typical connections to the four-terminal element have the form
shown in Fig. 5.9. Note the labeling of the nodes and the currents: the input
pair is @, ® and the output pair is @, @.

When we view the four-terminal element of Fig. 5.9 as a two-port, we
consider only the voltages v, and v, and the four terminal currents i,, |, i,, i5.
Naturally, v, is called the port voltage at port ®, k=1, 2. Now the gaussian
surfaces ¥, and ¥, shown in Fig. 5.9 and KCL impose the two current
constraints:

i =i and i, =1,
The point is that these two port constraints reduce the number of current
variables from four to two: i, and i,. The current i, is called the port current at
port ®.

Note that at each port the port voltage v, and the port current i, have
associated reference directions: Hence v, ()i, (¢) is the power entering port k at
time ¢. For example, the power delivered at time ¢, by the remainder of the
circuit fo the two-port of Fig. 5.9 is given by

v, ()i (1) + v, (0)iy(1)

Naturally, a two-terminal element may be viewed as a one-port. Thus, in
generalizing the digraph representation from a one-port to a two-port, we use
two branches and four nodes for its element graph as shown in Fig. 5.10.

——— % P
-~ —~ // ¥, ~
£ : N 2 @/ \\
/ + Hi-fi chain e \
{ i or |
vy | o 5 va |
i two-winding |
1 — 1 transformer = 3 /

NI O

Figure 5.9 Example of a two-port,
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O, @

@ @ Figure 5.10 The element graph of a two-part.

Therefore the port voltages v, and v, are also referred to as the branch voltages
of the two-port. Similarly, we can also call the port currents i, and i, the
branch currents of the two-port. This is in contrast to a four-terminal element
where there are three branches in its element graph, thus three branch voltages
and three branch currents.

Multiports We can generalize the concept of two-ports to multiperts. For
example, a three-winding transformer is a three-port as shown in Fig. 5.11. Its
element graph has three branches and six nodes as shown in Fig. 5.11c. The
three branch voltages and three branch currents are the port voltages and port
currents, respectively, for the three-port.

Hinged graphs The element graph of a two-port consists of two branches which
are not connected. It signifies that the port voltages or port currents at
different ports are not related because of connections but rather are coupled
because of physical phenomena within the element. For example, the trans-

iy g

@ Three-port 2\—-—;
O —® )® C@

® ® O P C

@ — () ®

(a) &)

©

Figure 5.11 (a) A three-winding transformer. (b) the corresponding three-port, and (c) its element
graph.

.

L | Figure 5.12 A model of a physical transformer which includes two parasitic
s | capacitors,
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former port voltages are coupled magnetically via the flux linkages among the
various windings. Therefore circuits containing two-ports or multiports have
circuit graphs which are often unconnected.’

To avoid an “unconnected” circuit graph, we can tie together the two
separate ports of a circuit graph at two arbitrary nodes by a branch. This is
illustrated in Fig. 5.13a, where nodes ® and (® are tied together by a branch k.
This connection does not change any branch voltage or current in the original
circuit. This is easily seen because, by using KCL with a gaussian surface which
encloses one of the separate parts of the graph and which cuts branch k, the
current i, is zero. If i, = 0, it amounts to an open circuit or no connection; thus
we have not changed the behavior of the circuit. Next, since voltages are
measured between nodes, we choose a datum node for each separate part. If
we choose nodes @ and & as the datum nodes for the separate parts, we may
“solder” together node @ and node ® as shown in Fig. 5.13b to make them
the common datum. The graph so obtained is called a hinged graph. With the
introduction of the concept of a hinged graph, we have generalized our
treatment so far to include two-ports and multiports, that is, we can always
assume without loss of generality that any lumped circuit and its circuit graph
are connected.

“Grounded” two-ports If a common connection exists between nodes @ and
@ of a two-port as shown by the low-pass filter in Fig. 5.14a, we call it, by
tradition, a “grounded” two-port. The word “grounded” does not necessarily
mean that the node is always set to zero potential. Rather, a “grounded”
two-port is essentially a three-terminal element with its datum node specified as
the common node of the two-port. Obviously, the element graph for a
“grounded” two-port consists of two branches which are tied together at the
common node shown in Fig. 5.14b.

Similarly, an n-terminal element can be viewed as a “grounded” (n —1)-
port if the datum is specified.

® : O 6

VA

{a} (b)

Figure 5.13 {a) Connecting nodes @ and ® by a branch k. (b) Soldering together nodes @ and ®
to obtain a hinged graph.

 An exception 1o this is, for example, in modeling a physical transformer; we may need to use
additional elements to tie the windings together as shown in Fig. 5.12.



