CHAPTER

ONE
KIRCHHOFF'S LAWS

As an electrical engineer, one needs to analyze and design circuits. Electric
circuits are present almost everywhere, in home computers, television and hi-fi
sets, electric power networks, transcontinental telecommunication systems,
etc. Circuits in these applications vary a great deal in nature and in the ways
they are analyzed and designed. The purpose of this book is to give an
introductory treatment of circuit theory which covers considerable breadth and
depth. This differs from a traditional introductory course on circuits, which is
restricted to “‘linear” circuits and covers mainly circuits containing the classical
RLC elements,

The first chapter deals with the fundamental postulates of lumped-circuit
theory, namely, Kirchhoff's faws. Naturally, we need to explain the word
“lumped” first. It is also important to understand the concept of “modeling.”
For example, in circuit theory we first model a “physical circuit” made of
electric devices by a “circuit” which is an interconnection of circuit elements.
Since Kirchhoff’s laws hold for any lumped circuit, the discussion can be
dissociated with the electrical properties of circuit elements, which will be
treated in the succeeding chapters.

A key concept introduced in this chapter is the representation of a circuit
by a graph. This allows us to deal with multiterminal devices in the same way
as we would with a conventional two-terminal device. In addition, it enables us
to give a formal treatment of Kirchhoff’s laws and a related fundamental
theorem, Tellegen’s theorem.

1 THE DISCIPLINE OF CIRCUIT THEORY

Circuit theory is the fundamental engineering discipline that pervades all
electrical engineering. For the present, by physical circuit we mean any

1



2 LINEAR AND NONLINEAR CIRCUITS

interconnection of (physical) electric devices. Familiar examples of electric
devices are resistors, coils, condensers, diodes, transistors, operational am-
plifiers (op amps), batteries, transformers, electric motors, electric generators,
ete. :

The goal of circuit theory is to predicr the electrical behavior of physical
circuits. The purpose of these predictions is to improve their design: in
particular, to decrease their cost and improve their performance under all
conditions of operation (e.g., temperature effects, aging effects, possible fault
conditions, etc.),

Circuit theory is an engineering discipline whose domain of application is
extremely broad. For example, the size of the circuits varies enormously: from
large-scale integrated circuits which include hundreds of thousands of com-
ponents and which fit on a fingernail to circuits found in radios, TV sets,
electronic instruments, small and large computers, and finaily, to telecom-
munications circuits and power networks that span continents. The voltages
encountered in the study of circuits vary from the microvolt (uV) [e.g., in noise
studies of precision instruments—to megavolts {MV) of power networks]. The
currents vary from femtoamperes (1fA =10"" A) [e.g., in electrometers—to
megaamperes (MA)] encountered in studies of power networks under fault
conditions. The frequencies encountered in circuit theory vary from zero
frequency [direct current (dc) conditions] to tens of gigahertz (1 GHz = 10° Hz)
encountered in microwave circuits, The power levels vary greatly from 107"
watts (W) for the incoming signal to a sensitive receiver (e.g., faint radio
signals from distant galaxies) to electric generators producing 10° W = 1000
megawatts (MW).

Circuit theory focuses on the electrical behavior of circuits. For example, it
does not concern itself with thermal, mechanical, or chemical effects. Its aim is
to predict and explain the (terminal) voltages and (terminal) currents measured
at the device rerminals. Tt does not concern itself with the physical phenomena
occurring inside the device (e.g., in a transistor or in a motor). These
considerations are covered in device physics courses and in electrical machinery
courses.

The goal of circuit theory is to make quantitative and qualitative predic-
tions on the electrical behavior of circuits; consequently the tools of circuit
theory will be mathematical, and the concepts and resulis pertaining to circuits
will be expressed in terms of circuit equations and circuit variables, each with
an obvious operational interpretation.

2 LUMPED-CIRCUIT APPROXIMATION

Throughout this book we shall consider only lumped circuits. For a physical
circuit to be considered lumped. its physical dimension must be small enough
so that, for the problem at hand, electromagnetic waves propagate across the
circuit virtually instantaneously. Consider the following two examples:
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Example 1 Consider a small computer circuit on a chip whose extent is,
say, 1 millimeter (mm); let the shortest signal time of interest be 0.1
nanosecond [ of a nanosecond (ns) = 107" of a second (s)]. Electromag-
netic waves travel at the velocity of light, i.e., 3 x 10° meters per second
(m/s); to travel 1 mm, the time elapsed is 107" m/(3 x 10° m/s) = 3.3 x
107" s =0.0033 ns. Therefore the propagation time in comparison with
the shortest signal time of interest is negligible. More generally, let d be
the largest dimension of the circuit, Af the shortest time of interest, and ¢
the velocity of light. If 4 < ¢ - Az, then the circuit may be considered to be
lumped.

Example 2 Consider an audio circuit: The highest frequency of interest is,
say, f=25kHz. For eclectromagnetic waves, this corresponds to a
wavelength  of . A=c/f=C3x10°m/s)/(25%x10"s ) =12%x10"m=
12 km = 7.5 miles. So even if the circuit is spread across a football stadium,
the size of the circuit is very small compared to the shortest wavelength of
interest A. More generally, if d <€ A, the circuit may be considered to be
lumped.

When these conditions are satisfied, electromagnetic theory proves' and
experiments show that the [umped-circuit approximation holds; namely,
throughout the physical circuit the current i(¢) through any device terminal and
the voltage difference v(¢) across any pair of terminals, at any time ¢, are
well-defined. A circuit that satisfies these conditions is called a lumped circuit.

From an electromagnetic theory point of view, a lumped circuit reduces to
a point since it is based on the approximation that electromagnetic waves
propagate through the circuit instantaneously. For this reason, in lumped-
circuit theory, the respective locations of the elements of the circuit will not
affect the behavior of the circuit. The approximation of a physical circuit by a
lumped circuit is analogous to the modeling of a rigid body as a particle: In
doing so, all the data relating to the extent (shape, size, orientation, etc.) of
the body are ignored by the theory.

Thus, lumped-circuit theory is related to the more general electromagnetic
theory by an approximation (propagation effects are neglected). This is
analogous to the relation of classical mechanics to the more exact relativistic
mechanics: Classical mechanics delivers excellent predictions provided the
velocities are much smaller than the velocity of light. Similarly, when the above
conditions hold, lumped-circuit theory delivers excellent predictions of physical
circuit behavior.

In situations where lumped approximation is not valid, the physical
dimensions of the circuit must be considered. To distinguish such circuits from

"R. M. Fano, L. J. Chu, and R. M. Adler. Electromagnetic Fields, Energy and Forces. John
Wiley and Sons, New York. 1960.
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lumped circuits we call them distributed circuits. Typical examples of distri-
buted circuits are circuits made of waveguides and transmission lines. In
distributed circuits the current and voltage variables would depend not only on
time, but also on space variables such as length and width. We need elec-
tromagnetic theory for predictions of the behavior of distributed circuits and
for analysis and design. In this book we restrict our treatment to lumped
circuits.

3 ELECTRIC CIRCUITS, MODELS, AND CIRCUIT ELEMENTS

By electric device we mean the physical object in the laboratory or in the
factory, for example, the coil, the capacitor, the battery, the diode, the
transistor, the motor, etc. Physical circuits are obtained by connecting electric
devices by wires. Most of the time, these wires will be assumed to be perfectly
conducting. We think of these electric devices in terms of idealized models like
the resistor (v = Ri), the inductor (v = L di/dr), the capacitor (i = C dv/dt),
etc., that you have studied in physics.

Note that these idealized models are precisely defined; to distinguish them
from electric devices we call them circuit elerments. 1t is important to distinguish
between a coil made of a fine wire wrapped around a ferrite torus——an efectric
device—and its model as an inductor, or as a resistor in series with an
inductor—a circuit element, or a combination of circuit elements.

Every model is an approximation. Depending on the application or the
problem under consideration, the same physical device may be approximated
by several different models. Each of these models is an interconnection of
(idealized) circuit elements. For example, we will encounter several different
models for the operational amplifier (op amp).

Any interconnection of circuit elements is called a circuit. Thus a circuit is
an interconnection of (idealized) models of the corresponding physical devices.
The relation between physical circuits and circuits is illustrated in Fig. 3.1. If
the (theoretical) predictions based on analysis of the circuit do not agree with
the measurements, the cause of the disagreement may lie at any step of the
process (e.g., errongous measurement, faulty analysis, etc.). One frequent
cause is a poor choice of model, e.g., using a low-frequency model outside of
its frequency range of validity, or a linear model outside its amplitude range of
validity.

Our subject is circuit theory, consequently we consider the models of the
electric devices constituting the physical circuit as given at the outset; our goal
is to develop methods to predict the behavior of the circuit. Note that we say
“circuit,” not *‘physical circuit”: Past experience, however, does give us the

* Analogously, in classical mechanics a communications satellite circling the earth may be
modeled as a particle, or a rigid body, or an elastic body depending on the problem being studied.
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Figure 3.1 Illustration of the relation between physical circuits and circuits, between physical
devices and circuit elements, and between laboratory measurements and circuit analysis.

confidence that given any physical circuit we can model it by a circuit which
will adequately predict its behavior.

In Fig. 3.2a we show a physical circuit made up of electric devices: a
generator, resistor, transistor, battery, transformer, and load. To analyze the
physical circuit, we first model it with the circuit shown in Fig. 3.2b, which is
an interconnection of circuit efements: voltage sources, resistors, a capacitor,
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Figure 3.2 (a2) Physical circuit
made of electric devices and ()
its circuit model made of circuit
elements.
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coupled inductors, and a transistor represented by their usual symbols. The
electrical properties of some of the two-terminal elements (voltage sources and
resistors) will be discussed in Chap. 2, and that of the multiterminal elements
(transistor and ideal transformer) will be treated in Chap. 3.

When electric devices are interconnected, we use conducting wires to tie
the terminals together as shown in Fig. 3.2a. When circuit elements are
interconnected, we delete the conducting wires and merge the terminals to
obtain the circuit in Fig. 3.2b. A node is any junction in a circuit where
terminals are joined together or any isolated terminal of a circuit element,
which is not connected. The circuit in Fig. 3.2b has eight nodes (marked with
heavy dots). With the introduction of the concept of a node, we are ready to
formally treat the subject of interconnection and state the two fundamental
postulates of circuit theory, namely, Kirchhoff's veltage law and Kirchhoff's
current law. '

4 KIRCHHOFF’S LAWS

In lumped circuits, the voltage between any two nodes and the current flowing
into any element through a node are well-defined.’ Since the acrual direction of
current flow and the actual polarity of voltage difference in a circuit can vary
from one instant to another, it is generally impossible to specify in advance the
actuaf current direction and voltage polarity in a given circuit. Just as in
classical mechanics where it is essential to set up a “frame of reference” from
which the actual instantaneous positions of a system of particles can be
uniquely specified, so too must we set up an “electrical frame of reference” in
a circuit in order that currents and voltages may be unambiguously measured.

4.1 Reference Directions

To set up an electrical reference frame, we assign arbitrarily a reference
direction to each current variable by an arrow, and a reference pelarity to each
voltage variable by a pair of plus (+) and minus (—) signs, as illustrated in Fig.
4.1 for two-terminal, three-terminal, and n-terminal elements.”

On each terminal lead we indicate an arrow called the current reference
direction. 1t plays a crucial role. Consider Fig. 4.1a. If at some time ¢,,
i,(t,)=2 A, it means that, at time r,, a current of 2 A flows out of the
two-terminal element of Fig. 4.1a by node @. If, at some later time ¢,,

* We assume that the circuit is connected; the definition of “connectedness™ will be given later.

* An example of a six-terminal element is the filter at the output of an audio amplifier: It
directs the high frequencies to the tweeter and the low frequencies to the woofer. (Later we shall
see that such a filter may also be viewed as a three-port.)
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Figure 4.1 Illustration of reference directions using two-, three-, and n-terminal elements.

i,(t,) = —25mA, it means that, at time t,, a current of 25 mA flows info the
two-terminal element by node @.

The point is that the current reference direction together with the sign of
i{t) determines the actual direction of the flow of electric charges.

On Fig. 4.1 we assign + and — signs to pairs of terminals, e.g., in Fig. 4.1
the pair @, @ and the pair ®, @. These signs indicate the voltage reference
direction. Consider Fig. 4.1a. If, at some time ¢, v,(t,) = 3 millivolts (mV), it
means that, at time #,, the electric potential of terminal @ is 3 mV larger than
the electric potential of terminal &. Similarly, considering Fig. 4.1c, if at time
t,, v, {r,) = =320V, it means that the electric potential of terminal (&) is, at time
t;, 320V smaller than the electric potential of terminal (».

Exercise Write down the physical meaning of the following statements in
Fig, 4.1c: i, (1)) =—-2mA, i,{t;)) =4 A, —v (t;,)=5V.

4.2 Kirchhoff’s Voltage Law (KVL)

Given any connected lumped circuit having # nodes, we may choose (arbitrari-
ly) one of these nodes as a datuin node, i.e., as a reference for measuring
electric potentials. By connected, we mean that any node can be reached from
any other node in the circuit by traversing a path through the circuit elements,
Note that the circuit in Fig. 3.2b is not connected. With respect to the chosen
datum node, we define n —1 node-fo-datum voltages as shown in Fig. 4.2.
Since the circuit is a connected lumped circuit, these n —1 node-to-datum
voltages are well-defined and, in principle, physically measurable quantities.
Henceforth, we shall label them ¢, e,, ..., €,_,, and dispense with the + and
— signs indicating the voltage reference direction. Note that e, = 0 since node
(@) is the chosen datum node.

Let v,_, denote the voltage difference between node () and node (@ (see
Fig. 4.2). Kirchhoff's voltage law states:
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Figure 4.2 Labeling node-to-datum voltages for a circuit with # nodes,

KVL For all lumped connected circuits, for all choices of datum
node, for all times ¢, for all pairs of nodes &) and (),

ve(8) = e, (1) = e(r)

Remark Clearly,
v (£) = e,(t) — e, (8) = —v,_,(1) (4.1)

Example The connected circuit in Fig. 4.3 is made of five 2-terminal
elements and one 3-terminal element labeled T. There are five nodes,
labeled (O through ®. Choosing (arbitrarily) node & as datum, we define
the four node-to-datum voltages, ¢,. €,, e;, and e,. Therefore by KVL, we
may write the following seven equations"' (for convenience, we drop the
dependence on 1):

Figure 4.3 A connected circuit with five

nodes.

T In view of Eq. (4.1) there are altogether two out of five, ie., €3 = 10 nontrivial equations
which can be written.
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Note that v, ; and v, _, are the voltages across the two-terminal elements
B and A, respectively; v,_,, v,_5, and v,_, are the voltages across the
node pairs @, @; @, ®; and ®, @ of the three-terminal element T,
respectively.

If we add the last three equations in (4.2), we find that

Vyos T Upy T U5.5,=0

Let us consider the closed node sequence ®-@-®-®@. It is closed
because the sequence starts and ends at the same node &@. Thus for this
particular closed node sequence, the sum of the voltages is equal to
Zero.

Let us consider a different closed node sequence O-@-@-®-®-
@©. From the first five equations of (4.2) and using Eq. (4.1), we find
that

Uity st o, o, s+, =0

The closed node sequence O-@-@-@-E-@ is identified as a loop in
the circuit, i.e., it is a closed path starting from any node, traversing
through rwo-terminal elements, and ending at the same node. The closed
node sequence @-@-®-® is not a loop, neither is the closed node

sequence @-@-G-0@.

Exercise Show that for the closed node sequence @—-3®-®-@ the sum
of the voltages, v,_;, v5_,, and v,_, is equal to zero,

We can state KVL in terms of closed node sequences:

KVL (closed node sequences) For all lumped connected circuits,
for alf closed node sequences, for all times ¢, the algebraic sum of
all node-to-node voltages around the chosen closed node se-
quence is equal to zero.
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Theorem KVL in terms of node voltages is equivalent to KVL in terms of
closed node sequences.

PROOF

1. We assume that KVL in terms of node voltages holds. Consider any
closed node sequence, say (@-@&-(©-@-@. and write the algebraic
sum of all voltages around that sequence.

Voo + Ub*c' + Uc—n! + Ud—a
By KVL in terms of node voltages this sum can be expressed as
(ea - eb) + (eh - ec) + (ec - ed) ax (Ed - ea) = 0
so the first statement implies the second.
2. Now assume that KVL in terms of closed node sequences is true.
Consider any closed node sequence, say ®-@~@)-@ then

Woss T e il (4.3)

Choosing (arbitrarily) (9 as the datum node, we have v,_, = e, and
v,_, = —e, by definition of the node-to-datum voltages, Therefore from

Eq. (4.3), we obtain

v €

=¢, —e€
=4 P q
So KVL in terms of closed node sequences implies KVL in terms of
node voltages. L

Remark For any given connected circuit with n nodes, let us choose
(arbitrarily) node (r) as the datum node; then the n — 1 node-to-datum
voltages e, e,, .. ., e,_, specify uniquely and unambiguously the voltage
v;_ from any node () to any other node (&) in the circuit. This fact is of
crucial importance in circuit theory and is the key concept in node analysis
of Chap. 5.

4.3 Kirchhoff’s Current Law (KCL)

A fundamental law of physics asserts that electric charge is conserved: There is
no known experiment in which a net electric charge is either created or
destroyed. Kirchhoff’s current law (KCL) expresses this fundamental law in the
context of lumped circuits.

To express KCL we shall use gaussian surfaces. A gaussian surface is by
definition a two-sided “balloon-like” closed surface. Since it is two-sided, it has
an “inside” and an “outside.” To express the fact that the sum of the charges
inside the gaussian surface & is constant, we shall require that at all times, the
algebraic sum of all the currents leaving the surface & is equal to zero. Let us
choose & so that it cuts only the connecting wires which connect the circuit
elements as shown in Fig. 4.4. In the circuit, we have shown a four-terminal
element: an operational amplifier, which is connected to the rest of the circuit



