Equations of motion

Exercise 1. Use the Eufer algeorithm to calculate the approximate solution of
dx/dr = x over the time interval 0 < <7 1. Assume an initial condition x(Q) = 10
and a step size 2 = 0.2, Compare the solution with the exact answer x(f) = 10¢t,

Exercise 2: Specify the Euler algorithm for a2 system of three differential equa-
tions in the normal form.

4-8 PRINCIPLES OF DUALITY

There are many physical phenomena or systems in nature which
have occurred in dual forms. Generally speaking, we say two sys-
tems or phenomena are duals of each other if we can exhibit some
kind of one-to-one correspondence between various quantities or
attributes of the two systems. For example, in mathematics, two
equations which differ only in symbols but are otherwise identical
in form are said to be dual equations. In physics, for each trans-
lational system or problem there ¢xists a corresponding rotational
system or problem, and they are usually referred to as dual systems
or problems. The recognition of dual quantities, attributes, phe-
nomena, properties, or concepts often leads to the discovery and
invention of new ideas. In electrical engineering, the application of
the principle of duality has often led not only to a simplification
of solutions but also to the discovery and invention of new useful
networks,

Before we render the concepts of duality more precise, it is
instructive to consider first the two nonlinear networks shown in
Fig. 4-17a and &. The equations of motion of these two networks
are readily obtained and are tabulated in Table 4-5. A careful
comparison of the expressions in the two columns of this table re-
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‘It is possible to generalize
the definition of dual net-
works to include controlled
sources. However, the pro-
cedure for constructing
such networks is more
complicated.
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TABLE 4-5 Eguations of motion for the networks in Fig. 4-17a and b.

Network of Fig. 4-17a Network of Fig. 4.17b
Laws of Elements Laws of Elements
ny = tanh [} {1 = tanh py?
u-‘;:%z%%zlﬁhgz% . iﬁ:g?—ézg%%;—ézﬂlnﬁ%
i;;:%}?—:%%:kz“w% vé:ﬂg’;l—‘gz%%:2eﬁiﬁ
vs = () i = (1)
Laws of Interconnection Laws of Interconnection
KVL: oy 4+ 0o+ b3 —04=0 KCL:i{i+i+i—i=0
KCL: iy +i3=0 KVL:o{ + v =0
=iz =0 vi —0p =0
in — i3 =10 vh —vs =0

veals a one-to-one correspondence between the equations. As a
matter of fact, except for the symbols, the equations in the two
columns are identical in form. Observe that, had we replaced v; by
i}, i; by v}, @; by ¢j, and g; by g; for the variables in the left column,
the result would be identical with that in the right column, and
therefore the two networks are said to be dual networks, One of
the significant facts about dual networks is that once we know the
solution of one network, the solution of the dual network can be
obtained immediately by simply interchanging the symbols. This
means that as soon as we know the behavior and properties of one
network, we immediately know the behavior and properties of the
dual network. Hence a lot of redundancy is avoided if we can
recognize dual networks. In this book, there will be many occa-
sions when we shall take advantage of the principle of duality. In
view of its importance, we shall now precisely define the concept
of duality.

DEFINITION OF DUAL NETWORKS

Let N and N’ be a pair of networks each containing b two-terminal
network elements which are not controlled sources.! Then N and
N’ are dual networks if the elements in N and N’ can be labeled,
respectively, as by, b2, . . ., by and b, b3, . . ., b such that
the equations of motion of the two networks are identical in form.
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That is, if we replace v) by i, i; by v}, @; by g}, and g; by g in the
equations of motion for network N, we obtain the equations
of motion for network A’, and vice versa.

In view of the above definition, it is clear that the two
networks N and N’ are dual networks if the solution ¢, i, g;, or g;
for element b; in network N is equal to the solution i}, v, ¢j, or ¢;
in element b; of N, and vice versa. Our next task will be to
investigate what classes of networks would satisfy the above
definition. This question is clearly equivalent. to the following
problem: Given a network N containing two-terminal elements,
does there exist another network N” which is the dual of N, and if
s0, how can we find N'? To answer this question, it is necessary to
uncover the duality relationships that must be satisfied by the laws
of elements and the laws of interconnection of the two dual
networks.

4-8-1 DUALITY RELATIONSHIPS FROM THE LAWS OF ELEMENTS

The definition for dual networks tells us that the equation of motion
for element b; is the dual of the equation of motion for element b
if the following one-to-one correspondence exists between the ele-
ments in ¥ and N,

Resistor If element &; is a two-terminal resistor in N character-
ized by a curve T in the v-i plane, then the corresponding dual ele-
ment bj in N’ must be also a two-terminal resistor characterized
by the same curve [ in the i’/ plane, i.e., with the / axis replaced
by the v’ axis and the v axis replaced by the /* axis. For example,
if’ element b; of N is a resistor characterized by i = v® — 3u;,
then the dual resistor in N’ is a resistor characterized by v} =
i7> — 3. In particular, if element b; in NV is a voltage source with
vs(f) = K sin ¢, then the dual element 5} in A" must be a current
source with i{(f) = K sin 7. Observe that the dual of a given resis-
tor is a mew resistor, which may need a new name and a new
symbol. For example, the dual of a zener diode with a v~/ curve as
defined in Table 1-1 is a new resistor whose new symbol and v/~
curve are shown in Fig. 4-18. However, there are some two-
terminal elements which have the interesting property that the
‘dual of the element is the same element with its two terminals in-
terchanged. For such elements, a new symbol is not needed for we
only have to interchange the terminals of the given element to ob-
tain its dual. The simplest example of this type of element is the
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Fig. 4-18. The symbol and the
v-i curve of the dual of a zener

diode.
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Fig. 4-19. The dual of an ideal
diode is also an ideal diode
with its terminals interchanged.

' Review the independent
KVL and KCL equations
criteria in Sec. 4-3.
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ideal diode. Clearly, the dual of an ideal diode is obtained simply
by reversing the two terminals of the diode, as shown in Fig. 4-19.
Observe that in contrast with the new symbol introduced in Fig,
4-18, no new symbol is needed to specify unambiguously the dual
of an ideal diode.

inductor If element b; in NV is a two-terminal inductor character-
ized by a curve I'in the i-@ plane, then the corresponding dual ele-
ment b in N” must be a capacitor characterized by the same curve
I'in the v'-¢' plane; that is, simply change the variables ¢ and i to
¢ and v* while retaining the curve T. For example, the dual of an
inductor characterized by ¢ = log i is a capacitor characterized by

q = logv'.

Capacitor  If element b; in NV is a two-terminal capacitor charac-
terized by a curve I' in the v-g plane, then the corresponding dual
element b} in N” must be an inductor characterized by the same
curve I' in the /-¢" plane; that is, simply change the variables
g and v to ¢’ and /* while retaining the curve I'. For example, the
dual of a capacitor characterized by ¢ = tanh » is an inductor
characterized by ¢’ = tanh 7.

4.8-2 DUALITY RELATIONSHIPS FROM
THE LAWS OF INTERCONNECTION

Since the equations of motion from the laws of interconnection are
independent of the network elements and can be written directly
from the network graph, it is clear that the duality relationships
for these equations can be found directly from the network graphs
of the dual networks. Now, from the definition of dual networks,
each branch voltage v; in ¥ becomes a branch current #; in N, and
each branch current /j in N becomes a branch voltage v in N". It
is clear that the equations of motion due to KVL in N must cor-
respond to the equations of motion due to KCL in N, and vice
versa. This means that if the network N has »n nodes and b branches,
resulting in (# — 1) independent KCL equations and & — (n — 1)
independent KVL equations,! then the dual network N must con-
tain (n — 1) fundamental loops, or meshes, and & — (n — 1) + 1
nodes in order to have correspondingly (n — 1) independent KVL
equations and b — (n — 1) KCL equations. For example, the net-
work N shown in Fig. 4-17a has four nodes and four branches, and
the dual network shown in Fig. 4-17b has, correspondingly, three
meshes, as expected. Given a network graph N with »n nodes and
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b branches, we shall now attempt to find a procedure (if it exists)
to construct a dual network graph N” which we know must con-
sist of (n — 1) fundamental loops, or meshes, and b branches.

If the network is planar, we know from the KVL mesh equa-
tion criteria (Sec. 4-3) that the number of independent KVL
equations is equal to the number of meshes, namely, # — (n — 1).
Hence, the dual network N’ must have b — (# — 1) independent
KCL equations. This means that N must contain b — (n — 1) + 1
nodes. Let us conmsider the typical planar graph shown in Fig.
4-20a. In particular, consider a typical mesh such as mesh &
formed by the branches 1, 2, 3, 4, 5, 6, 7, and 8. The KVL equa-
tion around mesh & is given by!
U1—U2—83+04+U5—|—U(5+U7—U5:0 (4-70)
Now if N is the dual of ¥, then the graph of N must necessarily
contain a corresponding node k£ whose KCL equation is the dual
of Eq. (4-70), namely,

0 —iy — i ia+ 5+ 05+ —ik=0 (4-7h)
We can accomplish the above task if we place node & inside mesh
k and. for each branch b; around mesh &, draw a corresponding
branch bj from node k& to a node placed inside the mesh having
branch b; in common with mesh &, as shown in Fig. 4-205. In view
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Fig. 4-20. A typical mesh k of
a planar network and its duat
branches.

I Recall that when we draw
the network graph, we
automatically assume that
the positive polarity of
each two-terminal element
is located at the tail end of
the current reference direc-
tion, This assumption
must always be kept in
mind. In particular. before
we find the dual of a two-
terminal element, we musi
first see to it that the
characteristic curve of the
element is specified with a
set of references consistent
with the above assump-
tion.
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Fig. 4-21. The procedure for
constructing a dual graph is as
follows: (@) put a node inside
each mesh and a node outside
the network; (b} corresponding
to each branch b; common to
two meshes, connect a branch
b; between the two nodes in
these meshes such that it cuts
the branch b;; and (c) assign a
direction for b; in accordance
with the reference connection.
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of the above construction procedure, each branch b} in the dual
graph must necessarily intersect branch b; of the given graph.
Finally, let us assign reference directions to each branch 4; in the
dual graph according to the following convention,

REFERENCE CONVENTION FOR DUAL GRAPH

Branch &; is assigned a direction toward node & if the correspond-
ing branch b; of the given graph is in a clockwise direction with
respect to node 4. Otherwise, branch b will be assigned a direction
away from node k.

With the branches in Fig. 4-20b directed consistently accord-
ing to the above convention, it is clear that we indeed obtain the
desired Eq. (4-71).

If we repeat the above procedure for each of the b — (n — 1)
meshes, we would eventually end up with a network graph such as
the examples shown in Fig, 4-21a, with branches cutting the outer
boundary of the given graph N, and so far left unconnected. To
complete the dual graph, we observe that KVL must be satisfied
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around the outer boundary of the given graph ¥, and similarly, in
the dual graph, the branches cutting the outer boundary in Fig.
4-21a must satisfy K.CL. This condition can be satisfied by placing
one node outside the dual graph to terminate all branches of the
dual graph which cut the outer boundary of & at the external
node. The resulting network graph shown in Fig, 4-21b is then the
dual of the given network N. This procedure, together with
the principle for drawing dual elements, would enable us to find
the dual of any planar network.
What happens if network A is nonplanar? Since the concept
of a mesh is undefined for nonplanar networks, the dual quantities
for this class of networks are loops and nodes. Moreover, since the
network is nonplanar, there must be at least one closed loop that
is not a mesh (remember that a mesh encloses no branches, a
closed loop does), such as the typical case shown in Fig. 4-224.
Consider first writing KVL around loop abcde consisting of
branches 1, 2, 3, 4, and 5. Using the procedure for a planar
network, we place a node p inside loop abcde with five branches  Fig. 422. The aetwork shown
as shown. This would give us the desired KCL equation at node N (« demonstrates that a nan-
- ptanar network cannot possess
p. However, suppose we repeat the procedure for loop ghijk and  ; gual A network graph is
place a node ¢ inside it. The procedure for drawing a planar nonplanar if, and only if, it

network would now require a branch connecting nodes p and g, contains either one of the twa
Kuratowski subgraphs shown

in (k) and (c).

b

A loop which is
not a mesh

e d
(b) Kuratowski subgraph 1

f e
(a) (c) Kuratowski subgraph 2
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1This theorem implicitly
assumes that whenever
two or more branches are
connected in series or in
parallel, they are inter-
preted as only one branch,
Hence, before one applies
the test, it is convenieat to
replace all branches which
are in series or in paralic
by a single branch.
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thus adding one more branch to node p. But this would violate
the desired KCL equation at node p. Hence the procedure would
not work for a nonplanar network. Since the above argument is
valid in general, it is impossible to find a network graph which is
the dual of a nonplanar network. This result is important enough
to be stated as a theorem.

DUAL NETWORK EXISTENCE THEOREM

A network N has a dual if, and only if, N is a planar network,

Itis clear from this theorem that before we attempt to find the
dual of a given network, we must determine whether it is planar,
For simple networks, this can be readily determined by inspection.
For more complicated networks, however, it is sometimes not
easy to distinguish a planar from a nonplanar network. Kuratowski’s
theorem applies to this situation, but because it is extremely
difficult to prove, it is only stated here.

KURATOWSKI'S THECREM

The necessary and sufficient condition that a network N be
planar is that the network graph contain neither the subgraph
(ie., part of the graph obtained by removing some branches and
nodes) shown in Fig. 4-22a nor the subgraph shown in Fig. 4-225.1

As a consequence of Kuratowski’s theorem, it is clear that
any network with less than five nodes is necessarily planar. Hence,
without having to redraw the network in Fig. 4-4a, we can
conclude that it is planar because it contains only four nodes.
When a network contains more than five nodes, we can apply
Kuratowski’s theorem by searching for the existence of a set of
five nodes with each node having a branch connected to each of
the other nedes, as in Fig. 4-22b. Or we can look for the existence
of a set of six nodes with branches connected in the form of
Fig. 4-22¢. For example, the network shown earlier in Fig. 4-5 is
nonplanar because it contains a Kuratowski subgraph of the form
shown in Fig. 4-225.

It is easier to prove that a network is nonplanar because we
need only exhibit one of the two Kuratowski subgraphs. To prove
that a network is planar, we must examine all possible groups of
branches and nodes to ascertain that the network does not contain
cither of the two Kuratowski subgraphs.
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4-8-3 ALGORITHM FOR DRAWING
THE DUAL OF A PLANAR NETWORK

Given a planar network N, we can now draw its dual by the fol-
lowing procedure:

1. Check first that all element-characteristic curves are specified
with a set of reference directions and polarities consistent with
the assumption that the positive terminal of each element is at
the tail end of the current reference arrow. If not, redefine the
references and the characteristic curves accordingly.

2. Draw the graph of N. Place a node inside each mesh in ¥ and
one node outside of N. Corresponding to each branch b;in N
which 18 common to meshes & and 8, draw a branch #} from
the node inside mesh « to the node inside mesh f. The reference
direction for b; is then directed toward the node inside mesh a,
if the reference direction of branch b, in mesh a is in the clock-
wise direction (with respect to the node inside mesh «). Other-
wise, the reference direction of b; is directed away from the
node inside mesh o,

3. The branches b; in N are then replaced by the corresponding
network elements dual to branch ;. For convenience, Table
4-6 tabulates the dual quantities useful for drawing dual
networks.

EXAMPLE

Consider the nonlinear bridge network shown in Fig. 4-23a. The
elements consist of an ideal diode (element 1), a nonlinear resistor
(element 2) whose vq-iz curve is shown in Fig. 4-23b, a current
source /) = 5e™! (element 3), a nonlinear capacitor (element 4)
whose v4-g4 curve is shown in Fig. 4-23¢, a 5-Q linear resistor (ele-
ment 3), a nonlinear inductor (element 6) characterized by g =
1 +is — 3ig® + 5ig3, a 3-F linear capacitor (element 7), a 2-H
linear inductor {element 8), a tunnel diode (element 9) whose vg-ig
curve s given in Table 1-1, and a voltage source v(f) = 2 cos 1.
The units of all voltages, currents, charges, and flux linkages are
assumed to be volts, amperes, coutombs, and webers. We draw the
dual following the three steps outlined in the above algorithm:

1. A check of the reference directions and polarities of the ele-
ments in Fig. 4-23a shows that the references for elements 2, 3,
6, and 10 are not consistent with convention. Hence we must
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TABLE 4-6 Common dual quantities.
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Network N Network N
Current j; Voltage v
Voltage v; Current fj
Flux linkage o; Charge g;

Charge ¢;

Nonlinear resistor (characterized
by a curve T in the v-i plane)

Linear resistor with a resistance
of R Q

Nonlinear inductor (characterized
by a curve " in the i-g plane)

Linear inductor with an
inductance of X H

Nonlinear capacitor (characterized
by a curve T in the v-¢ plane)

Linear capacitor with a “capaci-
tance” of K F

Voltage source, v; = f(1)
Current source 5 = g(?)
Short circuit

Open circuit

Parallel branches
Series branches

Link

Tree branch
Fundamental loop
Fundamental cut set
Ideal diode

Flux linkage ¢}

Nonlinear resistor (characterized
by the same curve T in the '-v/
plane, i.e., with v and 7 axes
interchanged)

Linear resistor with a conductance
of R mhosor 1/R

Nonlinear capacitor (characterized
by a curve I in the v'-¢" plane)

Linear capacitor with a capaci-
tance of K F

Nonlinear inductor {(characterized
by a curve I in the i"-¢’ plane)

Linear inductor with an “induct-
ance” of K H

Current source i = f(f)
Voltage source vj = g(f)
Open circuit

Short circuit

Series branches
Parallel branches

Trec branch

Link

Fundamental cut set
Fundamental loop

Ideal diode with its two terminals
interchanged

redefine the references of these elements as shown in Fig. 4-24a.
The v-i curve of element 2 must be changed accordingly, as
shown in Fig. 4-24b. The i-g curve of element 6 must also be
changed to ¢ = 1 — ig — 3ig2 — 5iy3, since ig has become — ig.
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The voltage source and the current source remain unchanged,
since the terminal voltage of a voltage source is independent of
its terminal current, and the terminal current of a current
source is independent of its terminal voltage.

2. The graph of the modified network in Fig. 4-24a is drawn
in Fig, 4-24c, together with its dual graph.

3. The completed dual graph is redrawn as in Fig. 4-24d. It re-
mains to replace each branch by its corresponding dual ele-
ments. Therefore, element 1 is an ideal diode with its ter-
minals interchanged; element 2 is a nonlinear resistor with its
vg-iz curve shown in Fig. 4-24f; element 3 is a voltage source
with terminal voltage vi(7) = Se™%; element 4 is a nonlinear in-
ductor with its if-¢4 curve shown in Fig. 4-24g; element 5 is
a 1/5-8 linear resistor; element 6 is a nonlinear capacitor
characterized by g5 = 1 — vg — 3vi2 — 50§3; element 7is a 3-H
linear inductor; element 8 is a 2-F linear capacitor; element 9
is a nonlinear resistor with its v§-ig curve shown in Fig, 4-24h;
and element 10 is a current source with terminal current
f10(f) = 2 cos 1.

Observe that the dual of a voltage-controlled v-i curve is
current-controlled, and vice versa. In particular, the dual v-f curve
can be obtained by reflecting the original curve with respect to the
45° line through the origin. In practice, this operation can be
simulated by a 45° reflector (more commonly known as a gyrator).
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Fig. 4-23. A typicai naonlinaar
bridge network.
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Fig. 4-24. The step-by-step procedure for constructing the dual of the nonlinear bridge network of Fig, 4.23.
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Similarly, the type 1 C-L mutator presented in Sec. 3-8-3 (also
known as a gyrator) can be used to simulate the dual of a
nonlinear capacitor and a nonlinear inductor. In other words, the
dual of any nonlinear network can be synthesized with the help of
a gyrator.

Exercise 1: («) Construct the dual of the network shown in Fig. 4-174 by the pro-
cedure described in this section. (b) Repeat (a) for the network shown in Fig.
4.176. (¢) Show that a planar network can have only one dual.

Exercise 2: Identify the Kuratowski subgraph for the nonplanar network shown
in Fig. 4-5.

Exercise 3: Prove that a gyrator can be used to obtain the dual of any nonlinear
resistar, inductor, or capacitor.

49 SUMMARY

Classification of networks

1. Resistive networks do not contain capacitors or inductors.
a. Resistive linear networks contain only linear resistors and
SOUrCes.
b. Resistive nonlinear networks contain at least one nonlinear
resistor.

2. Dynamic networks contain at least one capacitor or inductor.

a. Dynamic linear networks contain only linear elements and
sources.

b. Dynamic nonlinear networks contain at least one nonlinear
element.

Equations of motion

1. Equations from the laws of elements representing the charac-
teristic curves of the elements are always independent.

2. Equations from the laws of interconnection representing equa-
tions from KVL and KCL may not be independent.

Network topology

Network topology provides the systematic techniques for obtaining
independent equations from the laws of interconnection. Some
basic terminologies are as follows:

1. Tree: a set of branches, called tree branches, connecting all
nodes but not forming closed loops.
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2. Cotree: the set of all branches, called links, not belonging to a
tree.

3. Cut set: a set of branches which, if cut, would separate the net-
work into two parts.

4. Fundamental loop: given a tree 7, a loop formed by a link of
T and one or more tree branches is called a fundamental loop
with respect to T.

5. Fundamental cut set: given a tree 7, a cut set formed by a tree
branch of 7" and one-or more links is called a fundamental cut
set with respect to T.

Independent KVL equation criteria  The maximum number of inde-
pendent KVL equations is equal to » — (r — 1), where b is the
total number of branches and » is the total number of nodes.
These equations can always be written around the b — (n — 1)
fundamental loops with respect to a tree 7. (These criteria are
valid only for networks containing two-terminal elements.)

Generalized KCL  The algebraic sum of all branch currents belong-
ing to a cut set is zero.

Independent KCL equation criteria  The maximum number of inde-
pendent KCL equations is equal to n — 1 where # is the total
number of nodes. These equations can always be written across
the fundamental cut sets with respect to a tree 7. (These criteria
are valid only for networks containing two-terminal elements.)

Ground rule for networks with muititerminal efements If each KVL or
KCL equation contains at least one branch variable which did not
appear in the preceding equations, then the equations are in-
dependent.

Nature of equations of motion

1. Resistive Nonlinear Networks: a system of nonlinear functional
equations.

2. Dynamic Nonlinear Networks: a system of nonlinear functional-
differential equations. These equations must be recast into the
normal form before they are amenable to existing solution
techniques. The dependent variables in the normal form are
called state variables.



