Independent Device Currents

Only one independent current can be defined for each 2-terminal device.

Since KCL

 \Rightarrow $-i_{1}+i_{2}+i_{3}=0$Only 2 independent currents can be defined for a 3 -terminal device.

Since KVL $\Rightarrow v_{1}-v_{2}-v_{3}=0$
Only 2 independent voltages can be defined for a 3 -terminal device.

n-port device

There are electrical devices

 having an even number of terminals and constructed in such a way that the terminals can be grouped into pairs, called ports, such that the current entering one terminal of each pair is always equal to the current leaving the other terminal. A device with " n " pairs of such current-following terminals is called an n-port.

A 4-terminal device

Example of a 2-port

In this example, the 2 separate physical windings guarantee that :

$$
i_{1}=i_{2} \text { and } i_{3}=i_{4}
$$

In this case, only 1 current and 1 voltage needs to be defined for each pair of terminals, henceforth called ports.

$$
\mathbf{A} \mathbf{i}=\mathbf{0} \Rightarrow \begin{aligned}
& \text { node } \\
& \text { no. } \\
& \text { (1) } \\
& \text { (2) } \\
& \text { (3) }
\end{aligned}\left[\begin{array}{rrrrrrr}
1 & 2 & 3 & 4 & 5 & 6 \\
-1 & 1 & 0 & 0 & 0 & -1 \\
0 & -1 & 1 & 1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

KCL Equations:
(1) $i_{1}+i_{2}-i_{6}=0$
(2) $-i_{1}-i_{3}+i_{4}=0$
(3) $-i_{2}+i_{3}+i_{5}=0$
node Branch no.
no. $\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
$\mathbf{A} \mathbf{i}=\mathbf{0} \Rightarrow \begin{aligned} & (1) \\ & (2) \\ & (3)\end{aligned}\left[\begin{array}{rrrrrr}1 & 1 & 0 & 0 & 0 & -1 \\ -1 & 0 & -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 & 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
A

A is called the reduced Incidence Matrix
of the diagraph Grelative to datum node (4).
 node No.

These 4 equations are linearly-dependent.
Matrix Formulation:
node
no.
(1)
(2)
(4)
(4) $\left[\begin{array}{rrrrrr}1 & 2 & 3 & 4 & 5 & 6 \\ -1 & 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1\end{array}\right]$

$\underbrace{\left[\begin{array}{l}i_{1} \\ i_{2} \\ i_{3} \\ i_{4} \\ i_{5} \\ i_{6}\end{array}\right]}_{\mathbf{i}}=\underbrace{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]}_{\mathbf{0}}$

1 if branch k leaves node $(j$
$a_{j k}=\{-1$ if branch k enters node $(j$
0 if branch k is not connected to node $(i$
KCL Equations:
(1) $i_{1}+i_{2}-i_{6}=0$
(2) $-i_{1}-i_{3}+i_{4}=0$
(3) $-i_{2}+i_{3}+i_{5}=0$
node Branch no.
no. $\begin{array}{lllllll}1 & 2 & 3 & 4 & 5 & 6\end{array}$
(1) $\left[\begin{array}{cccccc}1 & 1 & 0 & 0 & 0 & -1\end{array}\right]$
$\mathbf{A} \mathbf{i}=0 \Rightarrow$
(2) $\left[\begin{array}{rrrrrr}-1 & 0 & -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 1 & 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

KVL Equations:
$\left\{\begin{array}{l}v_{1}=e_{1}-e_{2} \\ v_{2}=e_{1}-e_{3} \\ v_{3}=e_{3}-e_{2} \\ v_{4}=e_{2} \\ v_{5}=e_{3}\end{array}\right.$
$v_{6}=-e_{1}$
KVL: $\mathbf{v}=\mathbf{A}^{T} \mathbf{e}$

Since v_{j} is present only in the j th equation, these k equations are linearly - independent.

Theorem

gives the maximum possible number of linearly-independent KCL equations for a connected circuit.

Reduced Incidence Matrix

Let G be a connected

 digraph with " n " nodes and " b " branches. Let \mathbf{A}_{a} be the Incidence Matrix of G. The $(n-1) \times b$ matrixA obtained by deleting any one row of \mathbf{A}_{a} is called a ReducedIncidence Matrix of G.

Observation : The 4 KCL node equations are not linearly independent.

Adding the left side of the 4 KCL node equations, we obtain:

$$
+(\underbrace{-i_{4}-i_{5}+i_{6}}_{4}) \equiv 0
$$

This means we can derive any one of these 4 equations from the other 3.
Example: Derive KCL equations at node (4):

Adding the first 3 node equations gives:

$$
=\underbrace{i_{4}+i_{5}-i_{6}}_{(4)}
$$

Reduced Incidence Matrix

 ALet G be a connected digraph
with " n " nodes and " b " branches, the reduced incidence matrix \mathbf{A} relative to datum node (n is an ($n-1$) $\times b$ matrix whose coefficients $a_{j k}$ are obtained from the ($n-1$) KCL equations written at the $n-1$ non-datum nodes:

$$
a_{j k}=\left\{\begin{array}{l}
1 \text { if branch } k \text { leaves node }(j \\
-1 \text { if branch } k \text { enters node }(j \\
0 \quad \text { if branch } k \text { is not connected to node }(i
\end{array}\right.
$$

By applying the various versions of KCL, we can write many different KCL equations for each circuit. However, these equations are usually not linearly
independent in the sense that each equation can be derived by a linear combination of the others.

How can we write a maximum set of linearly-independent KCL equations?

Simplest Method

to write linearly-Independent

 KCL Equations.Given a connected circuit with " n " nodes, choose an arbitrary node as datum. Write a KCL equation at each of the remaining ($n-1$) nodes.

Relationship between \mathbf{A} and \mathbf{A}_{a}

Let \mathbf{A}_{a} be the $n \times b$ Incidence

 matrix of a connected digraph G with" n " nodes and " b " branches.
By deleting any row
corresponding to node $\left(m\right.$ from \mathbf{A}_{a}, we obtain the reduced incidence matrix A of Grelative to the datum node (m).

disconnected diagraph
KCL at (2): $\quad i_{3}+i_{4}=0$
KCL at (4): $\quad i_{5}+i_{6}=0$
KVL around (2)-(3)-2): $v_{4}-v_{3}=0$
KVL around (4)-(5)-(4): $v_{6}-v_{5}=0$

Adding a wire connecting one node from each separate component does not change KVL or KCL equations.

Adding a wire connecting one node from each separate component does not change KVL or KCL equations.

Adding a wire connecting one node from each separate component does not change KVL or KCL equations.

$$
\{7\} \text { is a cut set } \Rightarrow i_{7}=0
$$

Associated Reference Convention :

2-port Device

n-port Device

Device Graph

KCL at (1): $i_{1}+i_{2}-i_{6}=0$
KVL around (1)-(3)-(4)-(2):

$$
v_{2}+v_{5}-v_{4}-v_{1}=0
$$

Associated Reference Convention :

A current direction is chosen

entering each positively-referenced terminal.

Device Graph : DIGRAPH (Directed Graph)

$$
\begin{aligned}
& v_{1}=e_{6}-e_{5}=-e_{5}, \quad v_{4}=e_{2}-e_{5} \\
& v_{2}=e_{1}-e_{5} \\
& v_{3}=e_{6}-e_{1}=-e_{1}, \quad e_{6}=e_{3}-e_{4}
\end{aligned}
$$

KCL

Gaussian Surface 3:

$$
i_{1}-i_{3}+i_{4}-i_{6}+i_{8}=0
$$

This KCL equation can be decomposed into the sum of two KCL cut set equations:
cut set $\{4,6\} \Rightarrow i_{4}-i_{6}=0$
cut set $\{1,3,8\} \Rightarrow i_{1}-i_{3}+i_{8}=0$

