SOCCER Ball Circuit

Consider a soccer ball circuit where each edge is a resistor.
number of nodes $=n=60$
number of branches $=b=90$
number of meshes $=m=32$
node-voltage analysis $\Rightarrow n-1=59$
equations involving $\left\{e_{1}, e_{2}, \cdots, e_{59}\right\}$
node-voltage variables.
mesh-current analysis $\Rightarrow m-1=31$
equations involving $\left\{\hat{i}_{1}, \hat{i}_{2}, \cdots, \hat{i}_{31}\right\}$ mesh-current variables.

A SOCCER ball has :

$$
\begin{aligned}
& n=60 \text { vertices } \\
& b=90 \text { edges } \\
& m=32 \text { faces }
\end{aligned}
$$

These numbers must satisfy

Euler's formula

$$
m+n=b+2
$$

Check: $32+60=90+2$

Voltage divider

$$
v_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) v
$$

warning: This formula is valid only if

$$
i_{L}=0 \text { (no loading!) }
$$

How to Construct Dual Circuits

Given a planar circuit N with n nodes and $m-1$ meshes, draw its digraph G. Label all branches, nodes, and meshes and let node (n be the datum node. The dual circuit N^{\prime} is constructed in 2 steps:
Step 1 draw the dual digraph G^{\prime} of G.
(a) For each mesh m_{j} of G draw a node inside mesh m_{j} and label it as node (j^{\prime}, $j=1,2, \cdots, m-1$.
(b) Draw a node outside of G and label it as node m, and choose this exterior node m^{\prime}) as the datum node of G^{\prime}.
(c) For each branch k of G belonging to 2 adjacent meshes m_{j} and m_{k}, draw a dual branch k^{\prime} connecting node m_{j}^{\prime} to node
(d) For each branch k of G belonging to only 1 mesh m_{j}, draw a dual branch k^{\prime} from node m_{j} to the exterior node m^{\prime}.
(e) Draw an arrowhead for each branch k^{\prime} of G^{\prime} as follow:
The arrowhead of each branch k^{\prime} connected to nodes $\left(m_{i}^{\prime}\right)$ and m_{k}^{\prime} is drawn toward node $\left.m_{i}^{\prime}\right)$ if the direction of branch k of G is in a counterclockwise direction relative to node m_{i}^{\prime}.

Step 2 For each branch k^{\prime} in the dual digraph G^{\prime}, draw a circuit element which is dual of the corresponding circuit element from N .

Examples.

1. If element k is a 5Ω linear resistor in N, then its dual is $1 / 5 \Omega$ (or 5 Siemen) linear resistor in N .
2. If element k is a $2 V$ voltage source in N , then its dual is a $2 A$ current source in N .
3. If element k is a $5 A$ current source in N , then its dual is a 5 V voltage source in N .

Mesh-current Equation

$$
5 \hat{i_{1}}=10
$$

$$
\Downarrow
$$

Digraph G

Node-voltage Equation

$$
5 e_{1}^{\prime}=10
$$

\Uparrow
Digraph G^{\prime}

Theorem.

The mesh-current equations $\mathbf{Z}_{m} \hat{\mathbf{i}}=\mathbf{v}_{s}$ for a planar circuit N constitute an independent system of equations whose solution can be used to find all branch voltages and currents of N trivially via Ohm's law.

Proof.

For each planar circuit N , we can always construct its dual circuit N^{\prime}. By the duality principle, the node-voltage equations $\mathbf{Y}_{n} \mathbf{e}^{\prime}=\mathbf{i}_{s}^{\prime}$ of N^{\prime} are identical to the mesh-current equations of N , except for a trivial change of dual symbols

$$
\text { mesh-current } \hat{i}_{j} \rightarrow \text { node-voltage } e_{j}^{\prime}
$$

But we have already proved the node-voltage equations constitute an independent system of equations whose solution can be used to find all branch voltages and currents of N^{\prime} trivially via Ohm's law.

