Ideal Circuit Elements

The externally measured behaviors of most physical devices D can be realistically modeled by a circuit made of ideal circuit elements. A model is said to be realistic if the device's behavior predicted from the model agrees, to within some acceptable tolerance, with actual measurements.

Linear Resistor

Ohm's Law

$v=R i$
 The constant R is called the RESISTANCE.

$i=G v$

The constant $G=1 / R$ is called the CONDUCTANCE.

Tetronix Curve Tracer Model 576.

2-terminal Resistor

Definition

A 2-terminal circuit element R whose admissible pairs $\{v(t), i(t)\}$ follow a time-independent loci Γ, henceforth called a constitutive relation of R, in the voltage versus current plane, is called a 2-terminal resistor.

Current Source

${ }_{0}^{0} i_{s}(t)$

A 2-terminal element D is
called a current source with terminal source current $i_{s}(t)$ iff its terminal current is constrained to be $i_{s}(t)$, independent of its terminal voltage v when connected to any external circuit.

When $i_{s}(t)=I$ is constant, we call it a dc current source. or a battery.

Voltage Source

$$
\stackrel{!}{+} v_{s}(t)
$$

A 2-terminal element D is
called a voltage source with terminal source voltage $v_{s}(t)$ iff its terminal voltage is constrained to be $v_{s}(t)$, independent of its terminal current i when connected to any external circuit.

When $v_{s}(t)=E$ is constant, we will it a dc voltage source, or a
battery.

$$
E \frac{\stackrel{i}{\bar{T}}}{\mathrm{~J}}
$$

pn junction diode

approximating equation:

$$
i=I_{0}\left(e^{\frac{\nu}{V_{T}}}-1\right)
$$

where I_{0} and V_{T} are device parameters.

Zener diode

E_{z} is a parameter called the zener voltage.

ideal diode

ideal Zener diode

