Ideal Circuit Elements

The externally measured behaviors of most physical devices D can be realistically modeled by a circuit made of ideal circuit **elements**. A model is said to be realistic if the device's behavior **predicted** from the model agrees, to within some acceptable tolerance, with actual measurements.

Linear Resistor

Ohm's Law

$$v = R i$$

The constant *R* is called the **RESISTANCE**.

$$i = G v$$

The constant G = 1/R is called the **CONDUCTANCE**.

Tetronix Curve Tracer Model 576.

2-terminal Resistor

Definition

A 2-terminal circuit element R whose admissible pairs $\{v(t), i(t)\}$ follow a time-independent **loci** Γ , henceforth called a **constitutive relation** of R, in the voltage versus current plane, is called a **2-terminal resistor**.

Current Source $\bigcup_{s} i_s(t)$

A 2-terminal element D is called a current source with terminal source current $i_s(t)$ iff its terminal current is constrained to be $i_s(t)$, **independent** of its terminal voltage v when connected to any external circuit.

When $i_s(t) = I$ is constant, we call it a dc current source. or a battery.

Voltage Source (t) $v_s(t)$

A 2-terminal element D is called a voltage source with terminal source voltage $v_s(t)$ iff its terminal voltage is constrained to be $v_s(t)$, **independent** of its terminal current i when connected to any external circuit.

When $v_s(t) = E$ is constant, we will it a dc voltage source, or a battery. $E \stackrel{\bullet}{=}$

pn junction diode

approximating equation:

$$i = I_0 \left(e^{\frac{v}{V_T}} - 1 \right)$$

where I_0 and V_T are device parameters.

Zener diode

 E_z is a parameter called the zener voltage.

ideal diode

ideal Zener diode

