The solution of differential equation

$$\frac{dx}{dt} = -\frac{x}{\tau} + \frac{x(t_{\infty})}{\tau}$$

with a given **initial condition** $x(t_0)$ at

 $t = t_0$ is a time function $\hat{x}(t)$ (waveform) which satisfies both the differential equation and the initial condition.

$$\frac{dv_C}{dt} = -\frac{v_C}{R_{eq}C} + \frac{V_{oc}}{R_{eq}C}$$

define $x \triangleq v_C$, $x(t_\infty) \triangleq V_{oc}$, $\tau \triangleq R_{eq}C$

$$\frac{dx}{dt} = -\frac{x}{\tau} + \frac{x(t_{\infty})}{\tau}$$

Thevenin's Theorem

We can substitute the 2-terminal box N with an equivalent one-port called the Thevenin Equivalent Circuit made of a linear resistance R_{eq} , called the Thevenin equivalent resistance, in series with an independent voltage source v_{oc} , called the Thevenin open-circuit voltage, without affecting the solutions inside any external circuit N_{ext} connected across

Norton's Theorem

We can substitute the 2-terminal box N with an equivalent one-port called the Norton Equivalent Circuit made of a linear conductance G_{eq} , called the Norton equivalent conductance, in parallel with an independent current source i_{sc} , called the Norton short-circuit current, without affecting the solutions inside any external circuit Next connected across

