

Mesh 1: $\quad 6 \hat{i}_{1}-2 \hat{i}_{3}=2$
Mesh 2: $\quad 14 \hat{i}_{2}-8 \hat{i_{3}}=-2$
Mesh 3: $\quad-2 \hat{i}_{1}-8 \hat{i}_{2}+10 \hat{i}_{3}=5$
Solving \hat{i}_{1} from (1) $\Rightarrow \quad \hat{i}_{1}=\frac{1}{3} \hat{i}_{3}-\frac{2}{3}$
Solving \hat{i}_{2} from (2) $\Rightarrow \quad \hat{i}_{2}=\frac{4}{7} \hat{i}_{3}-\frac{1}{7}$
Substituting (4) and (5) into (3) \Rightarrow

$$
\begin{equation*}
\hat{i}_{3}=\frac{19}{12} A \tag{6}
\end{equation*}
$$

(5) and (6) $\Rightarrow \quad \hat{i}_{2}=\frac{8}{20} A$
(4) and (6) $\Rightarrow \quad \hat{i}_{1}=\frac{13}{20} A$

$$
\begin{align*}
& i_{1}=\hat{i}_{3}-\hat{i}_{1} \tag{4}\\
& i_{2}=\hat{i}_{1} \\
& i_{3}=\hat{i}_{1}-\hat{i}_{2} \\
& i_{4}=\hat{i}_{3}-\hat{i}_{2} \\
& i_{5}=\hat{i}_{2} \\
& i_{6}=\hat{i}_{3}
\end{align*}
$$

Loop equation around mesh 1:

$$
\begin{align*}
-v_{1}+v_{2}+v_{3}=0 & \Rightarrow-2\left(\hat{i}_{3}-\hat{i}_{1}\right)+4 \hat{i}_{1}-2=0 \\
& \Rightarrow 6 \hat{i}_{1}-2 \hat{i}_{3}=2 \tag{1}
\end{align*}
$$

Loop equation around mesh 2:

$$
\begin{align*}
-v_{3}+v_{5}-v_{4}=0 & \Rightarrow-(-2)+6 \hat{i}_{2}-8\left(\hat{i}_{3}-\hat{i}_{2}\right)=0 \\
& \Rightarrow 14 \hat{i}_{2}-8 \hat{i}_{3}=-2 \tag{2}
\end{align*}
$$

Loop equation around mesh 3:

$$
\begin{align*}
v_{6}+v_{1}+v_{4}=0 & \Rightarrow-5+2\left(\hat{i}_{3}-\hat{i}_{1}\right)+8\left(\hat{i}_{3}-\hat{i}_{2}\right)=0 \\
& \Rightarrow-2 \hat{i}_{1}-8 \hat{i}_{2}+10 \hat{i}_{3}=5 \tag{3}
\end{align*}
$$

We can redraw this digraph so that there are no intersecting branches.

Hence the above digraph is planar.

Writing Node-Admittance Matrix $\mathbf{Y}_{n} \mathbf{B y}$ Inspection

Node - Votage Equation :

$$
\underbrace{\left[\begin{array}{cccc}
Y_{11} & Y_{12} & \cdots & Y_{1, n-1} \tag{8}\\
Y_{21} & Y_{22} & \cdots & Y_{2, n-1} \\
\vdots & \vdots & \cdots & \vdots \\
Y_{n-1,1} & Y_{n-1,2} & \cdots & Y_{n-1, n-1}
\end{array}\right]}_{\mathbf{Y}_{n}} \underbrace{\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n-1}
\end{array}\right]}_{\mathbf{e}}=\underbrace{\left[\begin{array}{c}
i_{s_{1}} \\
i_{s_{2}} \\
\vdots \\
i_{s_{n-1}}
\end{array}\right]}_{\mathbf{i}_{s}}
$$

where
$i_{s_{j}}=-($ algebraic sum of all current sources leaving node $(j))$

Diagonal Elements of \mathbf{Y}_{n}

$Y_{m m}=$ sum of admittances $Y_{j} \triangleq \frac{1}{R_{j}}$ of all resistors connected to node $m, m=1,2, \ldots, n-1$, where n is the total number of nodes.
\mathbf{Y}_{n} is called the node-admittance matrix.
\mathbf{e} is the node-to-datum voltage vector.
\mathbf{i}_{s} is called the node current source vector.

Off-Diagonal Elements of \mathbf{Y}_{n}

$Y_{j k}=-\left(\right.$ sum of admittances $Y_{j} \triangleq \frac{1}{R_{j}}$ of all resistors connected across node (j) and node (k))

Symmetry Property:

$$
\mathbf{Y}_{n} \text { is a symmetric matrix, i.e., } \quad Y_{j k}=Y_{k j}
$$

Proof :

Since \mathbf{Y}_{b} in (1) is a diagonal matrix,

$$
\mathbf{Y}_{b}=\mathbf{Y}_{b}^{T}
$$

$$
\begin{aligned}
\mathbf{Y}_{n}^{T} & =\left(\mathbf{A} \mathbf{Y}_{b} \mathbf{A}^{T}\right)^{T} \\
& =\mathbf{A} \mathbf{Y}_{b}^{T} \mathbf{A}^{T} \\
& =\mathbf{A} \mathbf{Y}_{b} \mathbf{A}^{T} \\
& =\mathbf{Y}_{n}
\end{aligned}
$$

Writing Mesh-Impedance Matrix \mathbf{Z}_{m} By Inspection

Let m be the total number of meshes of a planar digraph G , including the exterior mesh formed by traversing the outer boundary branches (i.e., those branches having only one circulating current \hat{i}_{j} passing through them). Hence,

$$
m=\text { number of interior meshes (windows) }+1
$$

Mesh-Current Equation :
where

$$
\underbrace{\left[\begin{array}{cccc}
Z_{11} & Z_{12} & \cdots & Z_{1, m-1} \tag{1}\\
Z_{21} & Z_{22} & \cdots & Z_{2, m-1} \\
\vdots & \vdots & \cdots & \vdots \\
Z_{m-1,1} & Z_{m-1,2} & \cdots & Z_{m-1, m-1}
\end{array}\right]}_{\mathbf{Z}_{m}} \underbrace{\left[\begin{array}{c}
\hat{i}_{1} \\
\hat{i}_{2} \\
\vdots \\
\hat{i}_{m-1}
\end{array}\right]}_{\hat{\mathbf{i}}}=\underbrace{\left[\begin{array}{c}
v_{s_{1}} \\
v_{s_{2}} \\
\vdots \\
v_{s_{m-1}}
\end{array}\right]}_{\mathbf{v}_{s}}
$$

Diagonal Elements of \mathbf{Z}_{m}

$Z_{k k}=$ sum of impedances $Z_{j} \triangleq R_{j}$ of all resistors located along mesh " k ", $k=1,2, \cdots, m-1$, where m is the total number of (interior and exterior) meshes.
\mathbf{Z}_{m} is called the mesh-impedance matrix.
$\hat{\mathbf{i}}$ is called the mesh-current vector.
\mathbf{v}_{s} is called the mesh-voltage source vector.

Off-Diagonal Elements of \mathbf{Z}_{m}

$Z_{j k}=-\left(\right.$ sum of impedances $Z_{j} \triangleq R_{j}$ of all resistors along both mesh j and mesh k)

Symmetry Property:

\mathbf{Z}_{m} is a symmetric matrix, i.e., $\quad Z_{j k}=Z_{k j}$

Extended Mesh Current Method

Step 1.

When the circuit contains " β " current sources $i_{s_{1}}, i_{s_{2}}, \cdots, i_{s_{\beta}}$, use their associated voltages $v_{s_{1}}, v_{s_{2}}, \cdots, v_{s_{\beta}}$ when applying KVL.
KVL around mesh 1 :

$$
\begin{equation*}
3\left(\hat{i}_{1}-\hat{i}_{2}\right)+v_{4}=0 \tag{1}
\end{equation*}
$$

KVL around mesh 2:

$$
\begin{equation*}
-3\left(\hat{i}_{1}-\hat{i}_{2}\right)+4 \hat{i}_{2}=-6 \tag{2}
\end{equation*}
$$

Step 2.
For each current source $i_{s_{j}}$, add an equation $i_{s_{j}}^{+}-i_{s_{j}}^{-}=i_{s_{j}}$.
Step 3.

$$
\begin{equation*}
\hat{i}_{1}=2 \tag{3}
\end{equation*}
$$

Solve the $(m-1)+\beta$ equations for $\hat{i}_{1}, \hat{i}_{2}, \cdots \hat{i}_{m-1}, v_{s_{1}}, v_{s_{2}}, \cdots v_{s_{\beta}}$. Substituting (3) into (2), we obtain :

$$
\begin{equation*}
-3\left(2-\hat{i}_{2}\right)+4 \hat{i}_{2}=-6 \Rightarrow \hat{i}_{2}=0 \tag{4}
\end{equation*}
$$

Substituting (3) and (4) into (1), we obtain :

$$
\begin{equation*}
3(2-0)+v_{4}=0 \Rightarrow v_{4}=-6 V \tag{5}
\end{equation*}
$$

Note:

The unknown variables in the extended mesh current method consist
of
the
usual
$m-1$
mesh
currents, plus the unknown voltages associated with the current sources.

Hence, if there are " β " current sources, the extended mesh current method would consist of $(m-1)+\beta$ independent linear equations involving $(m-1)+\beta$ unknown variables

$$
\{\underbrace{\hat{i}_{1}, \hat{i}_{2}, \cdots, \hat{i}_{m-1},}_{\begin{array}{c}
(m-1) \text { mesh } \\
\text { current variables }
\end{array}}, \underbrace{v_{s_{1}}, v_{s_{2}}, \cdots v_{s_{\beta}}}_{\begin{array}{c}
\beta \text { voltage } \\
\text { variables }
\end{array}}\} .
$$

All branch voltages and currents can be trivially calculated from \hat{i}_{2} and v_{4}.

$$
\begin{array}{ll}
i_{1}=\hat{i}_{2}=0 \mathrm{~A}, & v_{1}=4 i_{1}=0 \mathrm{~V} \\
i_{2}=\hat{i}_{2}-\hat{i}_{1}=2 \mathrm{~A}, & v_{2}=3 i_{2}=6 \mathrm{~V} \\
i_{3}=\hat{i}_{2}=0 \mathrm{~A}, & v_{3}=6 \mathrm{~V} \\
i_{4}=\hat{i}_{1}=2 \mathrm{~A}, & v_{4}=-6 \mathrm{~V}
\end{array}
$$

Verification of Solution by Tellegen's Theorem :

$$
\begin{aligned}
\sum_{j=1}^{4} v_{j} i_{j} & =\left(v_{1} i_{1}\right)+\left(v_{2} i_{2}\right)+\left(v_{3} i_{3}\right)+\left(v_{4} i_{4}\right) \\
& =(0)(0)+(6)(2)+(6)(0)+(-6)(2) \\
& \stackrel{?}{=} 0
\end{aligned}
$$

Extended Node Voltage Method

Step 1.
When the circuit contains " α " voltages $v_{s_{1}}, v_{s_{2}}, \cdots, v_{s_{\alpha}}$, use their associated currents $i_{s_{1}}, i_{s_{2}}, \cdots, i_{s_{\alpha}}$ when applying KCL.

$$
\begin{array}{ll}
\mathrm{KCL} \text { at (1) : } & \frac{e_{1}}{3}+\frac{\left(e_{1}-e_{2}\right)}{4}=2 \\
\mathrm{KCL} \text { at (2) }: & -\frac{\left(e_{1}-e_{2}\right)}{4}+i_{3}=0
\end{array}
$$

Step 2.
For each voltage source $v_{s_{j}}$, add an equation $e_{j}^{+}-e_{j}^{-}=v_{s_{j}}$.
Step 3.

$$
\begin{equation*}
e_{2}=6 \tag{3}
\end{equation*}
$$

Solve the $(n-1)+\alpha$ equations for $e_{1}, e_{2}, \cdots e_{n-1}, i_{s_{1}}, i_{s_{2}}, \cdots i_{s_{\alpha}}$. Substituting (3) into (1), we obtain :

$$
\begin{equation*}
\frac{e_{1}}{3}+\frac{\left(e_{1}-6\right)}{4}=2 \Rightarrow e_{1}=6 \mathrm{~V} \tag{4}
\end{equation*}
$$

Substituting (4) into (2), we obtain :

$$
\begin{equation*}
i_{3}=0 \tag{5}
\end{equation*}
$$

Note:

The unknown variables in the

 extended node voltage method consist of the usual $n-1$ node-to-datum voltages, plus the unknown currents associated with the voltage sources.
Hence, if there are " α " voltage

 sources, the modified node voltage method would consist of $(n-1)+\alpha$ independent linear equations involving $(n-1)+\alpha$ unknown variables$$
\{\underbrace{e_{1}, e_{2}, \cdots, e_{n-1}}, \underbrace{i_{s_{1}}, i_{s_{2}}, \cdots i_{s_{\alpha}}}\} .
$$

$$
(n-1) \text { node-to-datum } \quad \alpha \text { current }
$$ voltage variables variables

Sufficient Condition for G to be Planar

If \mathbf{G} has less than 9

branches, it is planar.

Proof.
The 2 basic nonplanar
graphs have 9 and 10
branches, respectively.

Mapping a planar digraph on a sphere

A digraph G is planar if,

 and only if, it can be drawn on the surface of a sphere such that Gcan be partitioned into contiguous regions and colored (as in a map of countries) such that no two regions have overlapping colors.
Mapping a planar digraph on a sphere

m_{1}, m_{2}, and m_{3} are interior clockwise meshes.
We can always redraw a planar digraph on the surface of a sphere without interior branches and vice-versa, as illustrated below.

- Although mesh m_{3} (formed by tracing along branches $\{1,4,6\}$ in the above planar digraph in a clockwise direction) appears to be counterclockwise on the sphere, it actually moves in a clockwise direction when viewed from behind.
- Although the counterclockwise loop m_{4} formed by exterior branches (i.e, boundary branches with only 1 circulating current) $\{6,5,2\}$ does not look like a mesh on the planar digraph, it is in fact a clockwise mesh when the digraph is mapped on the surface of a sphere.

Just as all countries on a globe can be mapped onto a flat plane of paper, any planar digraph drawn on a sphere can always be redrawn as a planar digraph on a plane.

Mapping a planar digraph on a sphere

Duality Principle

There are many physical variables, concepts, properties, and theorems in electrical circuit theory which appear in pairs, henceforth called dual pairs, such that for each circuit theorem, property, concept, etc., there is a dual theorem, dual property, and dual concept, respectively. This duality principle is extremely useful since we only need to learn and memorize half of them!

Variable, concept, property	Dual variable, concept, property
KVL	KCL
KCL	KVL
Voltage	Current
Current	Voltage
Series	Parallel
Parallel	Series
Resistance (Ohms)	Conductance (Siemens)
Impedance	Admittance
Admittance	Impedance
Node (non-datum)	Mesh (interior)
Node voltage	Mesh current
Datum node	Exterior mesh

Example of Duality

series circuit

KVL: $\left(R_{1}+R_{2}\right) \hat{i}=v_{s}$
voltage divider:

$$
v_{2}=\left(\frac{R_{2}}{R_{1}+R_{2}}\right) v_{s}
$$

parallel circuit
$\mathrm{KCL}:\left(G_{1}+G_{2}\right) e=i_{s}$
current divider:

$$
i_{2}=\left(\frac{G_{2}}{G_{1}+G_{2}}\right) i_{s}
$$

Duality Theorem

For planar circuits, the node-voltage method and the mesh-current method, as well as their extended versions, are dual sets of equations which can be derived from each other via their dual variables.

Node-voltage Equation

$$
\mathbf{Y}_{n} \mathbf{e}=\mathbf{i}_{s}
$$

Mesh-current equation

$$
\mathbf{Z}_{m} \hat{\mathbf{i}}=\mathbf{v}_{s}
$$

Node-Admittance matrix

$$
\mathbf{Y}_{n}
$$

Mesh-Impedance matrix

