An Example Illustrating A Non-trivial

 Application of Tellegen's TheoremConsider the following 2 circuits N and $\hat{\mathrm{N}}$. Let v_{j} and i_{j} denote the voltage and current of branch j of N. Let \hat{v}_{j} and \hat{i}_{j} denote the voltage and current of \hat{N}. The values of R_{1}, R_{2} and R_{3} are not known in both circuits. But instead, $i_{s}=1 \mathrm{~A}$ and $v_{L}=2 \mathrm{~V}$ are given for N and $\hat{v}_{s}=3 \mathrm{~V}$ is given for \hat{N}. The problem is to find the voltage \hat{v}_{L} of \hat{N}.

Note : Although the 2 circuits are different (N is driven by a voltage source, but $\hat{\mathrm{N}}$ is driven by a current source; the values of R_{a} and R_{b} are also different), they have the same digraph.

Since the 2 digraph G and G are identical, we can apply Tellegen's theorem to either digraph using any set of voltages which satisfy KVL for N, and any set of currents which satisfy KCL for \hat{N}, and vice versa, paying attention that we must use Associated Reference Convention :

For $\mathrm{N}: v_{4}=2 \mathrm{~V}, \quad i_{4}=-1 \mathrm{~A}$
For $\hat{N}: \hat{v}_{4}=3 V, \quad \hat{i}_{4}=-1 A$
(a) Applying Tellegen's Theorem using the voltage solutions v_{j} for N (which must satisfy KVL) and the current solutions \hat{i}_{j} (which must satisfy KCL) for \hat{N} :

$$
\begin{align*}
& \underbrace{\left(v_{1}\right)\left(\hat{i}_{1}\right)+\left(v_{2}\right)\left(\hat{i_{i}}\right)+\left(v_{3}\right)\left(\hat{i}_{3}\right)}+\left(v_{4}\right)\left(\hat{i_{4}}\right)+\left(v_{5}\right)\left(\hat{i}_{5}\right)=0 \\
\Rightarrow \quad & I=\sum_{\mathrm{j}=1}^{3}\left(v_{j}\right)\left(\hat{i}_{j}\right) \quad+(2)(-1)+(2)\left(\frac{\hat{v}_{L}}{2}\right)=0 \tag{1}
\end{align*}
$$

(b) Applying Tellegen's Theorem using the voltage solutions \hat{v}_{j} for \hat{N} (which must satisfy KVL) and the current solutions i_{j} (which must satisfy KCL) for N :

$$
\begin{align*}
& \quad \underbrace{\left(\hat{v}_{1}\right)\left(i_{1}\right)+\left(\hat{v}_{2}\right)\left(i_{2}\right)+\left(\hat{v}_{3}\right)\left(i_{3}\right)}_{\hat{I}=\sum_{\mathrm{j}=1}^{3}\left(\hat{v}_{j}\right)\left(i_{j}\right) \quad}+\left(\hat{v}_{4}\right)\left(i_{4}\right)+\left(\hat{v}_{5}\right)\left(i_{5}\right)=0 \\
& \Rightarrow \quad(-1)+\left(\hat{v}_{L}\right)(2)=0 \tag{2}
\end{align*}
$$

Observe

$$
\begin{align*}
& I=\sum_{\mathrm{j}=1}^{3}\left(v_{j}\right)\left(\hat{i}_{j}\right)=\left(R_{1} i_{1}\right)\left(\hat{i}_{1}\right)+\left(R_{2} i_{2}\right)\left(\hat{i}_{2}\right)+\left(R_{3} i_{3}\right)\left(\hat{i}_{3}\right) \tag{3}\\
& I=\sum_{\mathrm{j}=1}^{3}\left(\hat{v}_{j}\right)\left(i_{j}\right)=\left(R_{1} \hat{i}_{1}\right)\left(i_{1}\right)+\left(R_{2} \hat{i}_{2}\right)\left(i_{2}\right)+\left(R_{3} \hat{i}_{3}\right)\left(i_{3}\right) \tag{4}
\end{align*}
$$

$\Rightarrow \quad I=\hat{I}$

Substracting (1) - (2) :

$$
\begin{aligned}
& {\left[(2)(-1)+(2)\left(\frac{\hat{v}_{L}}{2}\right)\right]-\left[(3)(-1)+\left(\hat{v}_{L}\right)(2)\right]=0} \\
& -2+\hat{v}_{L}+3-2 \hat{v}_{L}=0 \\
& \quad \Rightarrow \hat{v}_{L}=1 V
\end{aligned}
$$

