
An Example Illustrating A Non-trivial 
Application of Tellegen’s Theorem

Consider the following 2 circuits  and .ˆN N
Let  and  denote the voltage and current of  j jv i
branch  of Let  and  denote the volta  ˆ geˆ j jv ij . N

1 2 3and current of . The values of ,   an  ˆ d R R RN
are not known in both circuits. But instead,

 and  are given for 1 ˆ 3nd 2 as L si A v vV V= = =N  

is given for The problem is to find the volt ge ˆ aN. 

 of ˆˆLv N. 

 : Although the 2 circuits are different Note
(  is driven by a voltage source, ˆbut  is NN

driven by a current source; the values of aR
and  are also different), they have the bR

digrsame aph.
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Since the 2 digraph G and      are identical, we 
can apply Tellegen’s theorem to either digraph using 
any set of voltages which satisfy KVL for N, and any 
set of currents which satisfy KCL for    , and vice 
versa, paying attention that we must use Associated 
Reference Convention :

N̂

Ĝ

4 4For  : 2 , 1v V i A= = −N

4 4̂
ˆ ˆFor  : 3 , 1v V i A= = −N
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( ) Applying Tellegen's Theorem using the voltage solutions a
 for  (which must satisfy KVL) and the currentjv N

 solutions  (which must satisfy KCL) forˆ  :ˆ
ji N
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Substracting (1) - (2) :
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