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1 TWO-TERMINAL
NETWORK ELEMENTS

1-1 REVIEW OF BASIC PHYSICAL VARIABLES IN NETWORK THEQRY

The advent of electrical science occurred with the discovery of the
phenomenon that dry substances such as amber or rubber tend to
repel or attract each other upon being rubbed by different mate-
rials such as silk or fur. This phenomenon was first explained by
postulating the existence of a certain basic electrical quantity
called the “electric charge” g, which may be either positive or
negative, and which has the property that like charges exert a force
of repulsion and unlike charges exert a force of attraction between
each other. The quantity “charge” remains the most basic electrical
quantity today, and its existence can now be explained by the
atomic theory: a body is ‘““charged” whenever there is an excess of
the positive charges in the nucleus over the negatively charged elec-
trons and vice versa. The practical unit of charge called the cou-
lomb has been defined to be equivalent to the total charge pos-
sessed by 6.24 x 1018 electrons. The quantity of charge possessed
by a body can be measured by various instruments such as the
electroscope.

Since charged bodies exert forces on one another, energy or
work is involved whenever one charged body is moved in the
vicinity of another charged body. Hence if w is the work done by
moving a charge ¢ from point j to point & (assuming w is inde-
pendent of the path taken),! then the potential difference, or volt-
age, between these points is defined as the work per unit charge;
that is,

(1-1)
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1This assumption is only

approximately satisfied in
practice. The study of the
conditions under which
this assumption is valid
belongs 1o a course in
electromagnetic field the-
ory. However, as far as
network theory is con-
cerned, the above assump-
tion is automatically im-
plied.  Very  roughly
speaking, the above as-
sumption is valid when
the frequency of the signal
is “not too high,” that s,
when the wavelength of the
signals is long compared
with the dimension of the
physical network.
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Observe that the magnitude of the charge is arbitrary; only the
ratio between work and charge is important. Hence, the incremen-
tal work dw required to move an incremental test charge dg from
point j to point k must also satisfy Eq. (1-1); thus

P % (1-2)

When there is no possibility of confusion, we can delete the sub-
scripts j and &k and express the voltage simply as ¢. The practical
unit of voltage is called the volt. The voltage v between two points
can be measured by a voltmeter.

Charges can be caused to flow from one charged body into
another by connecting a conducting wire between the two bodies.
In 1819, Hans Christian Oersted discovered that the flow of charge
through a wire produced a force on a compass needle in the
vicinity of the wire and that force was proportional to the rate of
flow of charge. Since the force on a compass needle can be easily
determined by noting the deflection of the needle, the quantity
“rate of flow of the charge” becomes very useful, and it has been
given the name current, i. By definition,

. dg
=1 1-
b=y (1-3)

The practical unit of current is the ampere; i.e., one ampere repre-
sents a charge flowing at a rate of one coulomb per second. The
current / can be measured by an ammeter.

The deflection of a magnetic compass needle caused by the
flow of charge, or current, in a conductor indicates that current
produces a magnetic effect. This effect can be explained by the
generation of a magnetic flux A by the current. If the conductor is
wound into a coil of » turns, then by defining ¢ = nX to be the
flux linkage, Faraday discovered that the voltage between the two
terminals of the coil is given simply by

dop
=49 -4
v o (1-4)

The practical unit of the flux linkage ¢ is called the weber. Flux
linkage can be measured by a fluxmeter.

If we multiply together the left and right sides of Egs. (1-2)
and (1-3), we obtain
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dw dg _ dw
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Since w represents energy, dw/dt represents the rate of change of
energy, or the power p; hence

P = v()i(r) (1-6)

Summarizing, therefore, we find that the six basic electrical quanti-
ties of interest in network theory are the charge g, the voltage v,
the current /, the flux linkage ¢, the power p, and the energy w.
The universal relationships between these quantities at any time ¢
are

i(t) = 3%—9 (1-7)
or) = 222 (1-8)
PO = v(Dir) = d‘;g’) (1-9)
w) = [ pmydr= [ owicyar (1-10)
q) = f_txf(f) dr (1-11)
o) = f_'x w(t) dr (1-12)

1-2 THE SIMULTANEITY POSTULATE IN LUMPED-NETWORK THEORY

The six basic electrical variables related by Eqgs. (1-7) to (1-12) are
assumed to be functions of only one independent variable, namely,
the time of measurement £. Actually, to be exact, we must intro-
duce another independent variable for specifying the relative
location of the various terminals at which these electrical quanti-
ties are to be measured. This is the variable length, or dimension,
in centimeters. The necessity for introducing this variable is due
to the fact that it takes a finite amount of time for electrons to
move from one point to another. For example, if we apply a
voltage v,(¢) across one end of a 30-cm lossless transmission line
as shown in Fig. 1-14, it will take 1 nsec (30 cm/3 x 0¥ cm/sec =
10~ sec) for the signal to arrive at the other end (x = 30 cm).1 If

1 For simplicity, we assume
the electrons traverse down
the line at the velocity of
light. The actual electron
velocity will, of course, de-
pend on the characteristics
of the transmission line.
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Fig. 1-1. The length of the
transmission line introduces a
time delay which is significant
in (b} but may be neglected
in {c).

iNetworks which do not
satisfy the simultaneity
postulate are said to be
distributed. The study of
distributed networks be-
longs to a course in elec-
tromagnetic field theory.

the duration of time for which the signal level remains relatively
unchanged is of the same order of magnitude (say, 2 nsec), then
the time delay of the transmission line cannot be neglected. This
is easily seen by comparing the signals v,(f) and v,(r) as shown in
Fig. 1-15. On the other hand, if the signal level does not change
rapidly (relative to the time delay) as in Fig. 1-1c, then the time
delay is insignificant and may therefore be neglected. Under this
assumption, the output signal v,(f) may be considered to appear
at the same instant as the input signal v,(?). This is equivalent to
the assumption that the length of the transmission line is insignifi-
cant. In other words, the line can be lumped as one point so that
the current entering one terminal of a terminal pair appears instan-
taneously at the other terminal. We will refer to this assumption as
the simultaneity postulate.

The simultaneity postulate is a fundamental assumption in
lumped-network theory that applies not only to transmission
lines but also to all two-terminal black boxes considered in this
book.1 This postulate is valid whenever the physical dimension of
each device inside the black box is small so that the time delay it
introduces is insignificant compared with the minimum time dura-
tion for which the signals remain relatively constant. For periodic
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signals, the reciprocal of the frequency is a good measure of this
minimum time duration. Hence, roughly speaking, the higher the
operating frequency, the smaller must be the device’s physical
dimension in order for the simultaneity postulate to be satisfied.!
Fortunately, most nonlinear electronic circuits of interest do
satisfy the simultaneity postulate. This is especially true with
integrated circuits where the components are becoming so small
that they can be seen only with the aid of a microscope.

1-3 SIGNIFICANCE OF THE REFERENCE CURRENT
DIRECTION AND THE REFERENCE VOLTAGE POLARITY

One of the most basic concepts in physical science is that any
physical quantity is invariably measured with respect to some
“assumed” frame of reference. In electrical network theory, the
frame of reference takes the form of an assumed reference direc-
tion of the current / and an assumed reference polarity of the
voltage v. A thorough understanding of the concept of reference
current direction and reference voltage polarity is absolutely
essential in the study of nonlinear network theory. It is a fact that
a large percentage of the mistakes committed by students of net-
work theory can be traced to either the students’ underestimation
of the full significance of reference current directions and voltage
polarities or the students’ failure to maintain a consistent set of
references.

Perhaps the simplest way to introduce the concept of assumed
reference direction and polarity is through the following experi-
ment. Suppose we are given a black box with a pair of terminals
a-b and a wire c-d coming out of the box as shown in Fig. 1-2a.
Suppose we are required to measure the voltage between terminals
a-b and the current in the wire ¢-d.

Let us consider first measuring the voltage by connecting
terminals @-b to the vertical input terminals of an oscilloscope.

(¢)

Fig. 1-2. An experiment dem-
onstrating that regardless of
which terminal of the black box
is chosen to be positive, the
actual voltage across terminals
a-b can be unambiguously
specified for all time.

1Tt can be justified on
physical grounds that the
simultaneity postulate is
generally valid if the
largest physical dimension
of the device is much
smaller than the wave-
lfength of the highest an-
ticipated frequency of
operation.
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Since one of the two vertical input terminals of any oscilloscope is
marked with a positive sign while the other is marked with a
negative sign, the question that immediately arises is which of the
two terminals of the black box should we connect to the positive
terminal of the oscilloscope in order to obtain the desired infor-
mation. The answer is that it does not matter. In order to see this,
suppose we arbitrarily assume terminal b to be connected to the
positive terminal as shown in Fig. 1-2b. The assumption that
terminal b is the positive terminal does not mean that the poten-
tial at b is higher than the potential at a. It does mean, however,
that if at any time ¢ = f3, v(#;) > 0, then the potential at b is
higher than the potential at a. On the other hand, if v{t;) <0,
then the potential at b at ¢ = #y is actually lower than the poten-
tial at a. For example, if the voltage v(?) displayed on the oscillo-
scope is given by

(1) = 10 sin =t volts

then terminal b is at a higher potential than terminal a during the
time interval 0 < ¢ < 1 sec. But during the time interval 1 <7 <
2 sec, terminal & is actually at a lower potential than terminal a.

Let us now consider what happens when we assume terminal
a instead of terminal b to be the positive terminal, as shown
in Fig. 1-2¢. Since the connection in Fig. 1-2¢ is opposite to the
connection in Fig. 1-2b, it is clear that the voltage v(7) displayed
on the oscilloscope is now given by

v(f) = —10 sin 7t volts

Since terminal @ is now the assumed positive terminal, and since
o(?) < 0 for 0 < 1 < 1 sec, this means that during this time inter-
val, terminal a is at a lower potential than terminal 5. Similarly,
we found that during the time interval 1 <t <2, terminal b
is actually at a lower potential than terminal a.

In either case we found the final answers to be identical. We
can, therefore, conclude that in order to specify the voltage be-
tween any pair of terminals unambiguously, we may arbitrarily
assume any one of the two possible terminals to be the positive
terminal.

By analogy, we can conclude that in order to specify the cur-
rent in any wire unambiguously, we may arbitrarily assume any
one of the two possible directions to be the positive direction. The
actual direction in which the current i(z) is flowing at any time ¢ = #;
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will be in the assumed positive direction if /{¢;) > 0, and opposite
to the assumed direction if i{#;) < 0.

Let us consider next a two-terminal black box & and assume
a reference direction for the terminal current 7 and a reference
polarity for the terminal voltage v. Since the references for both
f and v are arbitrary, there are four distinct sets of combinations
of references. There is no reason to prefer any one combination
over the others. However, in practice, it is usually convenient to
choose the combination so that positive power

p) = v(i(r) > 0

represents power entering the black box. From basic clectromag-
netic principles, it can be shown that this condition is satisfied
whenever the current is chosen to enter the assumed positive ter-
minal of the black box. From the simultaneity postulate, the same
current must leave the negative terminal. This means that the
allowable reference combination must be either of the form shown
in Fig. 1-3a or b.

In either case, observe that the current arrow either enters
the positive terminal or leaves the negative terminal.

14 INDEPENDENT SOURCES

Electrical energy must be supplied in order to move the charges
which constitute the current . Since energy can be neither created
nor destroyed, it must be transformed from some other forms of
energy. For example, a battery transforms chemical energy into
electrical energy, a generator transforms mechanical energy into
electrical energy. For convenience, we often refer to these energy-
transforming devices, such as batteries or generators, as sources
of electrical energy or simply sources. However, this statement
should not be interpreted as implying that sources can create
energy.

Onmne of the carliest devices which serves as a source of elec-
trical energy is the galvanic voltaic cell. Many other devices have
been invented to function as sources of electrical energy, and, no
doubt, many more will be invented in the future. Perhaps the
simplest source of electrical energy today is the battery, which is
capable of delivering a limited range of direct current to an exter-
nal load connected with it, while maintaining an approximately
constant voltage across its terminals. A less common source of
electrical energy (but one gaining in popularity) is the solar cell,

Fig. 1-3. Two possible sets of
assumed reference direction
and polarity for ensuring that
positive power means power
entering the biack box,
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which develops a limited range of voltage drop across an external
load connected with it, while maintaining an approximately con-
stant current in the load. Observe that in the case of the battery,
the output voltage is independent of the current drawn by the
load (provided the current is not large). In contrast with this, it is
the output current of the solar cell that is independent of the volt-
age drop across the load (provided the voltage drop is not large).
It seems reasonable, therefore, to distinguish the above two types
of electrical sources by calling the former a voltage source and the
latter a current source.

Observe that in the above discussion, we have assumed that
the current in the battery and the voltage drop across the solar
cell are not large. This assumption is necessary because when a
large current is drawn from the battery, its output voltage de-
creases and is no longer independent of the current. Similarly, a
large voltage drop across the solar cell results in a decrease in the
output current. The above phenomenon is a well-known experi-
ence; for example, the light dims whenever an appliance such as
an air conditioner (which draws a large current) is turned on. In
fact, no physical voitage source exists which is capable of develop-
ing a voltage that is entirely independent of its terminal current.
Neither does there exist any physical current source which is
capable of delivering a current that is entirely independent of its
terminal voltage. While no such physical sources really exist, it is,
nevertheless, extremely convenient to postulate the existence of
the above sources as “ideal” sources. In other words, we are trying
to “model” a physical source by an “ideal source” so that a net-
work containing such sources can be conveniently analyzed. Ob-
serve that the above concept of modeling is analogous to that of
the physicist who tries to represent the motion of a physical ob-
ject by the motion of a “point” representing the center of gravity
of the object. The concept of making a model to represent a
physical system is so basic that we shall have many more occa-
sions to use it in the future. With the above clarification, let
us now render the concepts of independent sources more precise
by the following discussions.

independent voltage source An independent voltage source is a
two-terminal device whose terminal voltage v is always equal to
some given function of time v(t), regardless of the value of the cur-
rent flowing through its terminals; for example, v,(f) = 2 sin ¢. In
particular, v,(¢) may be a constant function such as v,(f) = E, in
which case, by analogy with direct current (dc) sources, we shall
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call the voltage source a dc voltage source. We shall use the sym-
bols shown in Fig. 1-4 to denote an independent voltage source.
Observe that a de voltage source is denoted by the standard bat-
tery symbol in order to conform to popular usage.

Independent current source An independent current source is a
two-terminal device whose terminal current { is always equal to
some given function of time i(7), regardless of the value of the
voltage across its terminals. In particular, i,(#) may be a constant
function such as i(f) = 7, in which case we shall call the current
source a dc current source. We shall use the symbols shown
in Fig. 1-5 to denote an independent current source. Observe that
a dc current source is denoted by the same symbol with the ex-
ception that #;(¢) is replaced by a constant, [, independent of time.

Exercise: It is sometimes convenient to define an independent flux-linkage source
and an independent charge source for the remaining two variables ¢ and g. State
an analogous definition for each.

1-5 CHARACTERIZATION OF A TWO-TERMINAL BLACK BOX

Among the many physical devices of various complexities we shall
be concerned in this chapter only with those which possess two
accessible electrical terminals. Actually, the device may contain
more than two terminals but only two of these are accessible to
the external world in the sense that the device may be ex-
cited only through these terminals. For our purpose, it is con-
venient to imagine that the device is enclosed in a box and that the
two accessible terminals are brought out by two connecting wires
as shown in Fig. 1-6a. We shall call the resulting system a
two-terminal black box and shall denote it by the symbol shown
in Fig. 1-6b. It is important to emphasize that the content of the
box may be as simple as a light bulb or as complicated as
an arbitrary interconnection of other black boxes as shown in
Fig, 1-6¢c.

(a) () (e}
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(a) (b}

Fig. 1-4. Symbols for an inde-
pendent voltage source.

(a) (b}

Fig. 1-5. Symbols for an inde-
pendent current source.

Fig. 1-6. Symbalic representa-
tion of a two-terminal black box.



12

Fig. 1-7. An example illustrat-
ing the characterization of a
mechanical black box. The data
points in the v-vs.-f plane were
found to lie on the harizontal
axis in (b) and on the ellipse
in{c).

(a)

Foundations of nonlinear network theory

The choice of the term “black box™ is quite appropriate here
because the box is really black inside in the sense that we cannot see
its contents. As a matter of fact, unless we open the box and peep
inside, there is no way of determining its contents, However, as
engineers, we are not so much interested in the contents of the box
as in knowing what the black box can do and how it behaves ex-
ternally when it is connected with other black boxes into a net-
work. In other words, we are primarily interested in predicting the
external behavior of the black box without having to perform any
tedious experiment. Our first step toward such an analytical ap-
proach is to “characterize™ the black box. The concepts involved
in characterizing a black box are so important that we pause here
to consider a simple but illustrative analogy.

1-5-1 A MECHANICAL BLACK-BOX ANALOGY

Suppose we are given the mechanical black box containing a
“spring” as shown in Fig. 1-7a. Suppose we did not know the con-
tents of this black box and were asked to predict the behavior of
the external terminals when an arbitrary force f(7) is applied to
terminal @ of the black box with terminal b fixed against the wall.
The mechanical variables of interest here are the displacement x
(displacement to the right of the initial position 0 is assumed
positive), the velocity v (of terminal a), and the force f (positive
for tension and negative for compression). Clearly, the only way
we can hope to characterize this black box (other than opening
the box) is to start performing some experiments. Suppose we be-
gin by applying a constant force f = 4 and measure the corre-
sponding velocity of terminal a. This would give us a point in the
velocity-vs.-force plane (f-v plane). By repeating the above experi-
ment with several values of force f, we obtain the data shown in
Fig. 1-7b. We might be tempted to draw a smooth curve through

v v
4,
s Alk
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these data points (which in this case happen to be the faxis) and
claim to have characterized the black box in the sense that given
any constant force f, we can analytically predict the associated
velocity. However, a little thought will show that we have not
really characterized the black box yet, for if, instead of applying a
constant force we apply a slowly varying sinusoidal force,
f() = A4 sin 1. The above characteristics would predict that
v{t) = 0. This is of course contrary to what we expect to observe
experimentally; namely, i(f) = (4/k) cos ¢ where & is the “spring
constant.” We might hope that this inconsistency can be resolved
by plotting all points { f,v) satisfying the above equations and ob-
taining an ellipse as shown in Fig. 1-7¢. Observe, however, that
the length of both axes of the ellipse depends on the amplitude 4
of the sinusoidal force, and for each value of A we would obtain
a corresponding ellipse, so that eventually the entire f-v plane
would be filled up with data points. Morcover, even if we can
draw an infinite set of ellipses, we would be able to predict the
velocity only if /(7) is sinusoidal. Using these ellipses to predict v
due to nonsinusoidal f(f) would again yield erronecus answers.
Reluctantly, we must admit that our efforts so far have been in
vain and that just about the only useful information we obtained
from the above experiment is that the black box cannot be char-
acterized by a curve in the f-v plane.

Let us try another set of variables, say the force f and the
displacement x, and repeat the experiments. As before, we begin
by applying a constant force f = 4 and measure the correspond-
ing displacement x. Repeating this for various values of f, we ob-
tain the data points shown in Fig. 1-84. If we draw a smooth
curve through these points, we obtain a single relationship

x = T(f)

Before we try to draw any conclusion, however, our previous ex-
perience suggests that we repeat the experiment with time-varying
forces to see whether the above relationship still holds. Carrying
out the proposed experiment with several low-frequency sinusoidal
waveforms as before, we find that at any time ¢ = 15, the data
point [ f(£0),x(¢0)] always falls on the same curve x = T(f). This
is very encouraging, but to be sure, we maust try some other non-
sinusoidal waveforms for f(7). Again, we find that, provided f{)
does not change very rapidly,! the data point at any time also
agrees with the curve in Fig. 1-8a. Hence, we can now draw the
following conclusion: For any f{t) which does not change rapidly,

13

1This condition is actually

equivalent to the state-
ment that the frequency
of the sinusoidal wave-
form is not very high, This
will become obvious after
the reader studies signal
analysis.
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Fig. 1-8. As the frequency of

the forcing function f()) in-  the black box can be characterized by the displacement-vs.-force

creases, the x-vs.-f(fharacter- (f-JC) curve shown in Fig 1-8a.

istic of the mechanical black . . :

box changes from a monotonic After experiencing the length of time needed to carry out the

curve to a hysteresis foop. above experiments, we can now begin to appreciate the utility of
such a conclusion; namely, the characterization of the black box
permits an analytical solution and thereby eliminates the need to
carry out any further experiments.

Observe that our conclusion is based on the assumption that

f(£) does not change rapidly. Let us now repeat our experiment
with higher-frequency sinusoidal waveforms, as well as with non-
sinusoidal waveforms which change rapidly. The experiment
shows that as we increase the frequency of the sinusoidal force
f(#), the data points begin to deviate (rather slowly at first) from
the predicted curve x = T{(f). As we increase the frequency fur-
ther, the data points begin to form a closed loop as shown in
Fig. 1-8b, and the area enclosed by the loop tends to increase with
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frequency. Similarly, we find that if we apply a nonsinusoidal
force which changes rapidly with time, the deviation from the
curve in Fig. 1-8a is even worse. For example, Fig. 1-8¢ shows the
Jx curve corresponding to the high-frequency nonsinusoidal
waveform shown in Fig. 1-84. The above experimental result
shows that our earlier assumption, that f(#) should not change
very rapidly, is indeed necessary. In order to emphasize this re-
striction, it is a common practice to call the relationship obtained
in Fig. 1-8a a static characteristic curve in contrast to the dyramic
characteristic curve which corresponds to measurements at higher
frequencies. Since the deviation of the measured characteristic
curve from the static characteristic increases slowly with fre-
quency, rather than abruptly, it is impossible to pick a definite
frequency above which the static characteristic does not hold.
Neither is it possible to find a single dynamic characteristic curve
which would hold for all high frequencies. Hence, a certain
amount of engineering judgment is involved in deciding whether
a certain static characteristic curve can be used satisfactorily to
solve a given problem. It is encouraging, however, to know that a
large percentage of practical networks can indeed be analyzed by
using only static characteristics. Moreover, even in cases when the
static characteristic fails to give satisfactory solutions, we shall
show in the future that we can often patch up the error by includ-
ing “parasitic elements,” namely, elements which are undesirable
but which are invariably present in the black box in minute
quantities. For the above example, the parasitic element consists
of the mass associated with the spring. At low frequencies, the
mass, being quite small, has relatively no effect on the measured
J-x characteristic. However, as the frequency of the external force
J(7) increases, the acceleration of the spring increases, and the
inertia force due to the mass becomes appreciable and, in fact, in-
creases as acceleration increases. The deviation of the dynamic
characteristic in Fig. 1-85 and 1-8¢ from the static characteristic
in Fig. 1-8a can therefore be attributed to the inertia mass of the
spring.

1-5-2 STATIC CHARACTERISTICS
OF A TWO-TERMINAL BLACK BOX

The above discussion clearly shows the significance of static char-
acteristics of a black box. Since all characteristics to be considered
in this book are assumed to be static characteristics, we shall hence-
forth delete the adjective “static.”

15
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Let us now return to the main theme of this section, namely,
the characterization of a two-terminal black box. Clearly, the only
way we can hope to achieve this is to perform some meaningful
external measurements. The only quantities of interest to us are
those which can be measured externally. For example, the terminal
voltage v and the terminal current i are of primary interest because
they can be readily measured. The charge g and the flux linkage
@ are also of interest because they can be indirectly measured by
integrating the measured current waveform i(f) and the measured
voltage waveform v(?) in accordance with Egs. (1-11) and (1-12),
respectively. From these measurements, we shall then try to estab-
lish a relationship, if there is any, between each pair of independ-
ent variables. Since the members of the pair of variables i and ¢
are related by Eq. (1-7), they are not independent. Similarly, the
variables v and ¢ are related by Eq. (1-8) and are also not inde-
pendent. The only remaining combinations consist, therefore, of a
relationship between the following variables:

1. Relationship between ¢ and {

2. Relationship between v and ¢
3. Relationship between 7 and ¢
4. Relationship between g and ¢

The last relationship does not occur frequently in practice and has
little practical significance. Hence, we shall restrict our attention
throughout this book to only the first three cases. These correspond,
respectively, to three basic types of two-terminal network elements,
namely, a rwo-terminal resistor, a two-terminal capacitor, and a
two-terminal inductor.

Our next step is therefore to plot the data in the v/, v-¢, and
i-p planes, in order to see if the points in any one of these planes
can be connected to form a curve. In general, this may not
be possible. For example, suppose the two-terminal black box
happens to be a capacitance of 1 F. Then from elementary
physics, we know that the relationship between v and i is i =
1(dv/dt). But suppose we did not know that the black box contains
a capacitance and proceeded to plot the data in the v-i plane.
Clearly, it is impossible to expect that a curve can be found which
passes through all data points in the v-i plane; in fact, if we take
enough measurements, the data points will eventually fill the en-
tire v~/ plane. This is easily seen if we apply a voltage source of
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the form v(f) = A sin f; since { = dv/dt, we obtain i(f) = A4 cos 1.
Hence at any time 7 = fp, we obtain a point (4 sin #g, 4 cos fp} i
the v-i plane. Observe next that corresponding to each value of A4,
the above points form a circle of radius 4 since v? + i2 = 42, If
we vary the value of 4 from 0 to oo, we would eventually fill up
the v-i plane with data points, and it would be impossible to find
a curve passing through these points. On the other hand, if
we choose to plot the points in the v-g plane, then these points can
be connected by a smooth curve, namely, the line g = o, Therefore
if a curve can be found which passes through all possible data
points in either the v-i, the v-¢, or the i-p plane, then the two-
terminal element is completely characterized by that curve.

16 TWO-TERMINAL RESISTORS

A two-terminal black box which can be characterized by a curve
in the -i plane is called a two-terminal resistor and will be denoted
by the symbol shown in Fig. 1-9a. Observe that one edge of the
symbol is darkened in order to distinguish between the two ter-
minals. This is necessary because the v-/ curve measured across
the two terminals of a resistor is generally different from that
measured across the same resistor but with the terminals inter-
changed (see Prob. 1-1).

1-6-1 LINEAR RESISTORS

Among the infinite variety of v-/ curves there is an important sub-
class which consists of straight lines passing through the origin as
shown in Fig. 1-95. Resistors of this subclass are called /inear
resistors and will be denoted by the standard symbol shown in
Fig. 1-9¢. Since the v-i curve of a linear resistor is a straight line
through the origin, it can be described mathematically by { = G,
or v = Ri. The constant G represents the slope of the line and is
called the conductance. The constant R is defined as the reciprocal
of G and is called the resistance. The practical unit of conductance
is the mho. The practical unit of resistance is the oam and will be
denoted by €. A linear resistor is therefore completely character-
ized by one number, its conductance or its resistance. If the value
of the resistance is positive, the linear resistor is said to be a posi-
tive resistor. Otherwise, it is said to be a negative resistor. If R = 0,
the linear resistor is said to be a short circuit. If R = oo, it is said
to be an open circuit.
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()

Fig. 1-9. Symbols for a two-
terminai resistor.

1ln view of the nonsym-
metrical nature of this
symbol, we may avoid
drawing voltage polarity
and current direction signs
beside the symbol provided
we agree to assume that
the darkened edge is the
negative terminal and that
the current eaters the
positive terminal. This
convention will be fol-
lowed in this book.
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1This subtle difference is
not universally recognized.
In many books, the terms
resistor and resistance are
used synonymously. In this
book, the term resistance
refers only to a linear
resistor.

2 To conform with the IEEE
standard letter symbols for
semiconductor devices
(IEEE Trans. Electron De-
vices, vol. Ed-11, no. 8,
pp- 392-397), we have
chosen the uppercase letters
V and 7 in favor of the
lowercase letters v and i as
used in the context. When-
ever applicable, we shall
also follow the latest [EEE
standards for pgraphic
symbols.

3 In view of its relatively re-
cent origin, the name and
symbol for the consiant-
current diode are not uni-
versally used. The same
device is sometimes re-
ferred to as a current-
limiting diode, a currector,
a field-effect diode, etc. A
further discrepancy may
be found in that portion
of the v-i curve for nega-
tive voltages. Depending
on how the device is made,
the v-i curve for p <0
either approximates an
open circuit (horizontal
line), as will be assumed
throughout this book, or a
short circuit (vertical line).
Fortunately, this discrep-
ancy is usually not impor-
tant because, as will be
shown later, only the por-
tion of the v~/ curve in the
first quadrant is actually
of practical interest. How-
ever, in any case, if the v-/
curve for v < 0 approxi-
mates a short circuit, it
can always be transformed
into the ¢-/ curve shown
in Table 1-1 by connecting
a junction diode in series

Foundations of nonlinear network theory

It is important to differentiate between the terms resistor and
resistance; the former refers to a black box, but the latter refers to
a property associated with the black box.!

Exercise 1: Explain why it is unnecessary to differentiate between the terminals
of the symbeol for a linear resistor.

Exercise 2: A certain -/ curve is described by an equation v = 10/ + 5. Is this
a linear resistor?

1-6-2 NONLINEAR RESISTORS

If a resistor is characterized by a v-i curve other than a straight
line through the origin, it is called a nonlinear resistor. In this case,
the resistor can no longer be described by a single number, and
hence the entire v-i curve must be given. This may be specified
either graphically by a curve or analytically by a mathematical
relationship. For example, consider the set of practical two-
terminal resistors listed in Table 1-1.2 Since these components are
all commercially available, they have been given names and sym-
bols.? Each resistor in this table is characterized graphically by a
typical v-i curve usually supplied by the manufacturer. In some
cases, it may be possible to derive a mathematical relationship
which closely approximates a certain v- curve. For example, from
physical principles one can show that the v-i curve of a vacuum
diode can be represented approximately by a % power law, namely,*

i= ko3 (1-13)

where & is a constant which depends on the physical dimensions
of the internal structure of the diode. Similarly, a semiconductor
junction diode can be represented approximately by an exponen-
tial law, namely,?

i= Iyt — 1) (1-14)

where /g and & are constants which depend on the physical param-
eters of the diode. One can also sometimes derive an equation
which approximates a v- curve by interpolation and approximation
techniques (see Appendix A). For example, the varistor shown in
Table 1-1 can be represented approximately by the equation

v = aif (1-15)
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where a and § are constants which can be determined numerically
from the curve. In all cases, we must remember that any mathe-
matical relationship is at best an approximation to the actual v-i
curve. Moreover, most ¢-i curves cannot be represented by such
simple expressions as those given above. Therefore, the most
general and common method to specify element characteristics is
to describe the curve in graphical form.

1.6-3 CLASSIFICATION OF »-i CURVES

In order to be able to use the nonlinear resistors effectively in a
practical design, it is necessary to classify v-f curves into various
categories. For example, the v-7 curves of the first three resistors
in Table 1-1 have one property in common; namely, for each pair
of points (v4,f;) and (v,i2) on the curve, we observe that whenever
v1 > Ug, then iy > iz. Such elements are said to be strictly mono-
tonically increasing resistors. An examination of the v-i curves of
the zener diode and the constant-current diode shows that they
are not strictly monotonically increasing because if we pick a pair
of points with voltages vy > v, along the horizontal portions of the
v-i curve, then i(vy) 3+ i{v2). However, these v-f curves have another
common property; namely, i(v1) > i(vz) for any vy > vo. Such ele-
ments are said to be monotonically (but not strictly) increasing
resistors. The v-i curves of the tunnel diode and the remaining re-
sistors below it are not monotonically increasing because each v-i
curve has a portion having negative slopes (di/dv < 0). Such ele-
ments are sometimes called negative-resistance elements. Another
common characteristic of a negative-resistance element is that
either the voltage is a multivalued function of current (more than
one voltage corresponds to some given value of current) or the
current is a multivalued function of voltage (more than one cur-
rent corresponds to some given value of voltage). In the first case,
the current is a single-valued function of the voltage (but not vice
versa); that is,
i = i(v) (1-16)
and 1s therefore called a voltage-controlled resistor. In the second
case, it is the voltage which is a single-valued function of current;
that is,

v = v(i) (1-17)
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with the constant-current
diode. For more informa-
tion concerning this device,
the reader is referred to
J. M. Carroll, “Microelec-
tronic Circuits and Appli-
cations,” pp. 234 and 235,
McGraw-Hill Book Com-
pany, New York, 1965;
and J. M. Carroll, “Tunnel-
Diode and Semiconductor
Circuits,”  pp. 122-128,
MeGraw-Hill Book Com-
pany, New York, 1963,

4J. Langmuir, The Effect
of Space Charge and Re-
sidual Gases on Therm-
ionic Currents in High
Vacuum, Phys. Rev., vol. 2,
pp. 450-486, 1913.

5J. F. Gibbons, “Semi-
conductor  Electronics,”
McGraw-Hill Book Com-
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TABLE 1-1 Practical two-terminal resisiors.

Name Symbol v-i characteristic curve
I, ma
I
+
101
Vacuum diode L4
: = V, voits
- —10 0 10
L]
I ma
o--—-{.— 6014
+
401
Selenium diode v Q@ 20
-8 -4
— LA i V, volts
e srmr—arrrar—e 4
I H. ma
4 80+
. 60
Semiconductor v a0
{junction ) diode 20
; ' ; G V, volt
- 08 -04 0O 04 08 S
I 1, ma
g oot
+
20
Zener (avalanche, v v
breakdown ) diode T ; ; V, volts
75[ -4 0o a4 =8
- —40+
I
Tt ey
+
Constant-current v
diode
= - 40
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Name Symbol v-i characteristic curve
I, ma
7 80
+ 40
20
Varistor v = 3 : =V, volts
o 40
-50
I, ma
I 400
) 300
Solion liquid 7 200
diode 1004
06 -04 -02 & oo
- . . 0 o2  oa v vols
- lmd
I, ma
I 0.6
O——
+ 0.4
Tunnel resistor 14 02
_ —04 02 0z o o Y Yol
o 1-02
7 I, ma
e ey
+ 4
2
Back diode 14 s AT
Yy 04 og V.
-2
o -4
I I ma
+ B
H Vv b A 4
Tunnel diode b 4

_160/1 100 200 300V, mv
-4
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TABLE 1-1 (Continued)

Name Symbol v-i characteristic curve
I, ma
30
20
Four-layer diode :
10
-10 -5
+ 5 & e =V, volts
I, ma
1 80
+
404
P — - |
Glow tube 4 200 0 100 200 YRy
-40
80
I I, ma
¢ ]
10 \
: . el ; V. volts
Trigger diode v -20 0 10 20 : Ve
\—10
I, ma
I 4
+
2
Superconducting v ] V, volts

tunnel junction

-06-04-02,/,0 02 04 06
-2

1More generally, any curve
in the x-y plane is said to
be an x-controlled curve
if it is a single-valued
function of x and a
y-controlled curve if it is a
single-valued function of y.

and is therefore called a current-controlled resistor.! For example,
the tunnel diode is a voltage-controlled resistor but the glow tube
is a current-controlled resistor. Observe that a strictly monotoni-
cally increasing resistor is both voltage-controlled and current-
controlied and can therefore be described either in the form
of Egs. (1-16) or (1-17).
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Another important property shared by some v-/ curves is
their symmetry with respect to the origin. Such elements are
called bilateral resistors because in this case the two terminals may
be interchanged without affecting the v-i curve (see Prob. 1-1).
For the resistors listed in Table 1-1, the varistor, the glow tube,
the trigger diode, and the superconducting tunnel junction are the
only bilateral resistors. The rest are nonbilateral.

Exercise 1. It is sometimes convenient to describe a voltage-controlled resistor
by an equation of the form i = G(v)v and a current-controlled resistor in the form
e = R(i. Find the functions G(v) and R()) in terms of i(v) in Eq. (1-16) and (i)
in Eq. (1-17). Give a geometrical interpretation of G(v) and R(J).

Exercise 2: Is a monotonically (but not strictly) increasing resistor both current-
controlled and voltage-controlled? If not, under what condition is it voltage-con-
trolled? When is it current-controlled?

Exercise 3: A resistor which is neither voltage-controiled nor current-controlied
is said to he a multivalued resissor. Give an example of a multivalued resistor. Can
you describe a multivalued resistor in the form of Eq. (1-16) or (1-17)? Explain
why. (See Appendix A.)

1-6-4 v-i CURVES OF DC SOURCES AND IDEAL DIODES

On many occasions we shall find it convenient to consider a dc
voltage source and a dc current source as nonlinear resistors. This
interpretation is valid because, by definition, a dc voltage source
with terminal voltage £ can be represented by a vertical linev = £
as shown in Fig. 1-10q. Similarly, a dc cusrent source with terminal
current / can be represented by a horizontal line i = /, as shown
in Fig. 1-10b. In the special case where £ = 0, the v-i curve of Fig,
1-10a becomes the v = 0 axis as shown in Fig. 1-10c. Since this
coincides with the v-i curve of a short circuit, a voltage source
with zero terminal voltage is equivalent to a short circuit. Similarly,
when I = 0, the v-i curve of Fig. 1-10b becomes the i = 0 axis, as
shown in Fig. 1-10d. Since this coincides with the v-i curve of an
open circuit, @ current source with zero terminal current is equiva-
lent to an open circuit. Finally, a two-terminal resistor which does
not exist in practice, but which is very useful conceptually, is the
ideal diode whose symbol and v-i curve are shown in Fig. 1-11a
and b, respectively. Analytically, an ideal diode is described by

i=0 forallv <0
V= foralli >0 (1-18)
p=vi=0 forallvandi
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Fig. 1-10. The o-i curves of a
dc-voltage source, a de-current
source, a short circuit, and an
open circuit have one commeon
property: they consist of either
a vertical line or a horizontal
line.
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(a)

(&)

Fig. 1-11. The symbol and v-i
curve of an ideal diode.
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Observe that the last constraint is introduced to eliminate any
point in the fourth quadrant from becoming a part of the v-i curve.
It is also important to observe that an ideal diode becomes an
open circuit for all v <C 0 and a short circuit for all / > 0.

Before we leave this section, we wish to emphasize that the
class of practical nonlinear resistors is not restricted to those
listed in Table 1-1. In fact, when we reach Chap. 6, we shall
be able to synthesize nonlinear resistors with almost any pre-
scribed v-i curve of practical interest.

Exercise 1: Find the v-i curve of the ideal diode but with its terminals inter-
changed. Describe this curve analytically.

Exercise 2: A time-varying independent source may be represented by a family
of v-i curves with the time 7 as a parameter. Sketch the »-i curves of a voltage
source with terminal voltage v,(f) = 2r and a current source with terminal cur-
rent i{¢) = 10 sin 7.

1-6-5 SOME PRACTICAL APPLICATIONS
OF TWO-TERMINAL NONLINEAR RESISTORS

What are nonlinear resistors good for? How do we make use of
their v-i curves to design practical electronic gadgets? Do certain
types of v-i curves seem more appropriate for one application
than another? These are some of the questions that will be an-
swered in the latter part of this book, after we have built up
enough theory to understand the basic principles involved in
a practical design. However, to satisfy the impatient reader, we
shall present in this section a qualitative description of some
typical applications. Needless to say, this oversimplified treatment
will become more quantitative and precise as the reader gains
more ground in the subsequent chapters.

Rectification In many practical applications such as electroplat-
ing, the power supply must be restricted to a single-polarity volt-
age or current source. Since the most economical power source is
60-Hz sinusoidal voltage, it is desirable to transform this alternat-
ing voltage into a single-polarity voltage. This conversion process
is called rectification, and any network that carries out the desired
transformation is called a recrifier. The simplest rectifier consists
of an ideal diede in series with a linear resistor, as shown in Fig,
1-12. When the input voltage vi(?) is positive, the diode becomes a
short circuit and v,(f) = vi(¢). However, when the input voltage
vi(7) is negative, the diode becomes an open circuit and v(f) = 0.
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The result is that the output voltage becomes zero during every
other half cycle and is therefore a single-polarity voltage. Of
course, this rectifier is an idealized circuit since it uses an ideal
diode which does not exist in practice. However, an examination
of Table 1-1 suggests that a practical rectifier may be constructed
by replacing the ideal diode in Fig. 1-12 by a vacuum diode,
a selenium diode, or a semiconductor junction diode.

The above procedure for arriving at a practical design by de-
riving first an idealized network (which is usually much easier to
come by) and then approximating it by a practical circuit is a
universal principle of creative design. This principle is based on the
intuition that if two networks differ from each other only slightly
{e.g., the v-i curves of corresponding resistors differ only slightly),
then the corresponding voltage and current waveforms of the two
networks must also differ only slightly. Mathematically, this is
analogous to the variation of a continuous function; namely, a
small variation in the value of the independent variable produces
a correspondingly small variation in the value of the dependent
variable, Because of its practical importance, we shall call the
above assumption the small-variation postulate.

Frequency multiplication Another very common application of non-
linear resistors is to convert a low-frequency signal into a igh-
frequency signal. The ability to do this is instrumental in virtually
all communication systems ranging from the simplest walkie-
talkie to the most complex telemetry systems between artificial
communication satellites. Amazingly, the principle for obtaining
frequency multiplication is based on a simple observation from
high school trigonometry; namely, the nth power of a sine or
cosine function contains higher-harmonic components. For exam-
ple, sin® x = % sin x — % sin 3x, cos* x =% + % cos 2x +
W cos 4x, etc. Hence, if the v-i curve of a nonlinear resistor is de-
scribed by a polynomial

i=ao+ av + azt? 4+ az0d + -+ - + ap® (1-19)

Fig. 1-12. An idea! rectifier
converts a sinusoidal input vol-
tage into a single-polarity out-
put voltage.



26

LThe design of filters is a
very well-developed sub-
ject and is usually given
in a semior-level course
called network synthesis.
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then upon applying a voltage signal v = A4 sin wt, we obtain, with
the help of various standard trigonometric identities, the expression

i) = ap + a1(4 sin wr) + ao(A4 sin wi)? 4+
ax(d sin w)? + -+ + ay(A sin )"
= by + by sin wt + bo sin 2wt + by sin 3wt + -+ + by sin not
4 01 oS Wt + €2 cOS 2w + €3 €08 3wt + - -+ + & €COS P
(1-20)

Observe that although the voltage consists of a sinusoidal signal of
angular frequency «, the resulting current contains a constant
term by, a component of the same frequency w, and a number of
higher-harmonic components 2w, 3w, . . ., nw. In practice, any of
these harmonic components can be extracted by interposing a net-
work known as a fifter which essentially suppresses all other com-
ponents except the desired one. In fact, we could even avoid the
use of filters if we could obtain nonlinear resistors with suitable
v-i curves. For example, to generate a third-harmonic signal, we
apply a well-known trigonometric identity

cos3x =4cosPx —3cosx (1-21)
to obtain the desired o-i curve,

i= 4% — 3v (1-22)
Hence, if v = cos wf, then

i) = 4 cos3 wt — 3 cos wf = cos Jwr (1-23)
which is the desired third harmonic. The next step then consists of
finding a practical nonlinear resistor with a v-i curve which
approximates Eq. (1-22). Unfortunately, no commercially avail-
able resistor is close enough even as an approximation. Hence, it
would be necessary to synthesize this v-i curve using commercially

available resistors as building blocks. The principles and tech-
niques for synthesizing arbitrary v- curves will be given in Chap. 8.

Exercise 1: Find the values of the coefficients bg, b1, bs, . . .. bpandey, ca, ..., Cn
in Eq. (1-20) in terms of the constant 4 and the coefficients go, @1, @2, - . . . an,
where n = 5.
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Exercise 2: Using Eq. (1-21), find the desired v-i curve for converting a 100-valt,
60-Hz sinusoidal voltage into a 10-amp, 180-Hz sinusoidal current.

Exercise 3: Verify the trigonometric identity cos® x = % cos x + %s cos 3x +
Y16 cos bBx and find the desired v-i curve for converting a 1-ma, 1-kHz sinusoidal
current waveform into a 1-volt, 5-kHz sinuscidal voltage waveform.

Frequency mixing Given two sinusoidal waveforms with commen-
surate angular frequencies wy and ws (that is, the ratio wy/ws is a
rational number), we are frequently interested in generating a new
sinusoidal waveform with a frequency given by (mw; = nws),
where m and » are any integers, including zero. Each new fre-
quency corresponding to a given combination (m,n) is called a
beat frequency and will be denoted by wiymm. One of the most
common requirements in signal processing (e.g., a radio receiver
or an electronic organ) is the generation of appropriate beat fre-
quencies.! We shall now demonstrate that in order to generate
beat frequencies, it is necessary to perform a nonlinear operation.
Apgain, the basis for doing this is given by the well-known trigono-
metric identities:

sin x siny = % {cos (x — y) — cos (x + y)] (1-249)
and
sin xcosy = % [sin (x 4+ y) 4 sin (x — y)] (1-25)

To demonstrate how we generate beat frequencies, consider
applying two voltage sources v; = A sin wyf and vz = B sin wor in
series with a nonlinear resistor with a o-i curve given by i = 15,
The current i(r) is given by

i(#) = (A sin wy? 4 B sin wof)3

= A2 sin3 w1t + 3428 sin? wy? $in wel

+ 3482 sin wyf SIn? wet + B3 5in3 wof

If we now apply Eq. (1-25) and a number of standard trigonomet-
ric identities, we obtain, upon simplification, the expression

) = (a1 51n wyt + by sin wef) + (a2 sin 3wyt + bo sin 3wer)
+ [as sin (w2 — 2wyt + bz sin (we 4 2w )]
+ [@a sin (@01 — 2we)f + by sin(wy + 2w0)]  (1-26)
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1The beat frequency is also
called a sideband frequency
and the collection of all
beat frequencies is usually
called sidebands. The defi-
nitions of beat frequency
and sidebands are mean-
ingful even if w; and wg
are not commensurate
with each other.
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Fig. 1-13. The voltage across
the black box N is constrained
to nonpositive values by con-
necting an ideal diode in par-
allel with N,

Foundations of nonlinear network theory

where the coefficients a;, b; are functions of 4 and B. Observe that
in addition to sinusoidal terms having the same frequencies as the
driving sources, the current i(7) also contains the third-harmonic
terms with frequencies 3w; and 3w, and the beat-frequency terms
with frequencies (w2 = 2w;) and (w; & 2w2). In the more general
case where the v-i curve is described by a polynomial, we can ex-
pect, in general, sinusoidal terms with harmonic frequencies mw;
and nw,, as well as beat frequencies mw; = nw,. In practice, any
one of these beat frequencies may be extracted through a filter.
This principle is widely used in telephone systems.

Exercise 1: Give an example of a pair of sinusoidal waveforms with incommen-
surate (i.e., not commensurate) frequencies. Is the sum of these two waveforms
periodic?

Exercise 2: A speech synthesizer is an electronic system designed to simulate
the human voice. An important component of this system is a mixer for generat-
ing as many beat frequencies as possible. Assuming that the v-i curve of the re-
sistor is described by a polynomial, what must the general form of the polynomialt
be in order to generate beat-frequency terms with » and n equal to 0, =1, =2,
and *=37?

Limiting Any nonlinear resistor R with a v-/ curve containing a
(nearly) vertical segment can be used to /imif the voltage across a
two-terminal black box connected in parallel with R. For example,
we can limit the terminal voltage across the black box N shown
in Fig. 1-13a to nonpositive values by connecting an ideal diode
across N as shown in Fig, 1-135. This is because by definition, the
voltage across an ideal diode is given by v < 0.

Physical
voltage source

o h —  m ——

|
By o

|~
w
-~

Y
-
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A paradoxical situation arises when one questions what hap-
pens if a voltage source with a positive terminal voltage (say v, =
2 volts} is connected across the network shown in Fig. 1-135. By
definition, the terminal voltage of this voltage source must remain
constant regardless of the external network connected across it.
But also by definition, the voltage across an ideal diode cannot be
positive. The basic problem here is that we are connecting two in-
compatible ideal elements in parallel, thereby rendering the
definitions inconsistent. In other words, this paradox arises
because of an overidealization. It is no different from many
paradoxes of a similar nature, most notably among which is the
paradox: “What happens if one connects a short circuit across a
voltage source with a nonzero terminal voltage?” The best way to re-
solve this type of paradox is to exclude all such incompatible con-
nections. But how can we forbid anyone from making an
incompatible connection in practice? The answer is that there is
no such thing as an incompatible connection in practice because
there are no such things as an ideal voltage source and an ideal
diode. Any physical voltage source has a small internal resistance
R, in series with it, as shown in Fig. 1-13¢. Once we introduce R,,
the paradox disappears because whenever vy(f) becomes positive,
the diode becomes a short circuit and the entire voltage appears
across R,. Hence, the voltage across ¥ can never be positive.

The same principle can be applied to limit the voltage across
N from exceeding a prescribed value Eo. For example, if we con-
nect a zener diode with a constant voltage £, = E, across N as
shown in Fig. 1-144, then from the v-i curve of the zener diode
shown in Fig. 1-14b (observe that the reference polarity and direc-
tions are opposite to those shown in Table 1-1) it is clear
that 0 < v < Eg. This circuit is commonly used for overload pro-
tection. For example, in a typical application, the black box
N consists of a sensitive instrument (such as a voltmeter) whose
maximum permissible voltage is equal to Ej.
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Fig- 1-14. The voltage across
N is limited to a maximum
value equal to the constant
voltage Eq of the zener diode.
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Fig. 1-15. The current enter-
ing A is limited to a maximum
value equal to the constant
current I, of the constant-
current diode.

Fig. 1-16. Symbols for a two-
terminal capacitor.

ﬁCF

(c)
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By analogous reasoning, any resistor R with a v- curve con-
taining a (nearly) horizontal segment can be used to /imit the cur-
rent entering a black box connected in series with R. For example,
if we connect a constant-current diode with constant current Jy in
series with N as shown in Fig. 1-15a, then from the v-i curve of
the constant-current diode shown in Fig. 1-15b it is clear that
0 < i< Iy (the resistor R, is introduced to avoid a similar
paradox).

Exercise 1: The maximium permissible range of voltages of a hypersensitive
instrument is given by —10 < v < 5. Design an overload protection circuit and
specify the v-i curve of any nonlinear resistor used in the circuit.

Exercise 2. Explain what happens if i,(#} > I, in the circuit shown in Fig. 1-15.
Replace the constant-current diode with an appropriate nonlinear resistor so as
to limit the terminal current entering N to || < 20 ma.

1-7 TWO-TERMINAL CAPACITORS

A two-terminal black box which can be characterized by a curve
in the v-¢ plane is called a two-terminal capacitor and will be de-
noted by the symbol shown in Fig. 1-16a. Observe that one edge
of this symbol is darkened for the same reason as it was for the
resistor.

1-7-1 LINEAR CAPACITORS

An important subclass of capacitors can be characterized by a
straight line through the origin of the v-¢ plane, as shown in
Fig. 1-16b. This subclass is called linear capacitors and will be de-
noted by the conventional symbol shown in Fig. 1-16c. A linear
capacitor can be described analytically by

qg= Cv (1'27)
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where the constant C represents the slope of the straight line and
is called the capacitance associated with the capacitor. The unit of
capacitance is the farad and will be denoted by F. To find the cur-
rent entering a linear capacitor, we substitute Eq. (1-27) for g in
Eq. (1-7) and obtain

NN - ()
A linear capacitor is therefore completely characterized by one
number, namely, its capacitance. Again, we would differentiate
between the terms capacitor and capacitance.

1.7-2  NONLINEAR CAPACITORS

If a capacitor is characterized by a v-g curve other than a straight
line through the origin, it is called a nonlinear capacitor. In this
case, the capacitor can no longer be described by a single number,
and hence the entire v-g curve must be given. An example of
a practical, nonlinear capacitor is the metal-oxide-semiconductor
(MOS) capacitor whose v-¢ curve is shown in Fig. 1-17a. This
nonlinear capacitor is used quite extensively in integrated circuits,
where the conventional linear capacitor becomes impractical to
fabricate. Although there are at present only a few practical non-
linear capacitors available commercially, it is expected that more
will become available in the near future. In fact, as will be shown
in Chap. 3, it is possible to synthesize a capacitor with any pre-
scribed ©-g curve with the help of a new network component
called the muzator.

There are other reasons for studying nonlinear capacitors.
One reason is that components of many physical and biological
systems behave in a manner analogous to that of a nonlinear
capacitor. Hence the study of such systems can often be achieved
by constructing an electrical network model to simulate the be-
havior of these systems. A simple example is the displacement-vs.-
force curve of the nonlinear spring shown in Fig. 1-7a. This
mechanical element is usually modeled by a nonlinear capacitor
with a similar v-q curve, as shown in Fig. 1-175. Another example
is given by the volume-vs.-pressure curve of the ventilatory part of
the human respiratory system. This biological component can be
modeled by an analogous v-g curve as shown in Fig. 1-17c¢.

We shall denote the v-¢ curve of a noniinear capacitor by

g= q() (1-29)
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if it is voltage-controlled, and by
v = v(g) (1-30)

if it is charge-controlled. For a voltage-controlled capacitor, the
current entering the capacitor can be expressed in a form analo-
gous to Eq. (1-28); thus

() = 949 _ dq(v) dy

da = dv  d
or
i = C(v(t))% (1-3D)
where
= %) ]
Clo) = T (1-32)

is called the incremental capacitance of the capacitor. Notice that
the incremental capacitance is a function of the capacitor voltage
and becomes a constant only in the case of a linear capacitor.

Exercise 1: A typical nonlinear capacitor is characterized by the v-¢ curve
g = k32, where k is a physical parameter. (a) Find the incremental capacitance
C(v}. (b) If the applied voltage is given by o) = Y cos? ¢, find the charge g(r) and
the current i(r) == dg(1)/dt. (c) Calculate i) by using Eq. {1-31).

Exercise 2: An abrupt-junction diode is a semiconductor p-r junction which be-
haves like a capacitor, provided the voltage across the junction is less than
0.5 volt. its incremental capacitance is given by C(t) = k{¢ - v)~1/», where k,
¢, and » are constants which depend upon the parameters of the device. (a) Fiot
the incremental capacitance on logarithmic paper for the range — 100 < v < 0.5
volt. (Assume k = B8O x 10-12, ¢ = 0.5, and » = 2.) (b) What are the maximum
and the minimum values of the capacitance (in picofarads or 10-12 F) within this
range of applied voltage? (¢} Do you have sufficient information to recover the
o-g curve? If not, what additional information do you need?

1.7-3 SOME PRACTICAL APPLICATIONS
OF TWO-TERMINAL NONLINEAR CAPACITORS

What are nonlinear capacitors good for? Can they do useful
things which nonlinear resistors cannot? The answer to the
second question is obviously yes, for otherwise we would not be
studying them. In addition to being able to do a number of things
described earlier for resistors, a nonlinear capacitor can do better
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in certain cases. Although we do not yet have the background
necessary to demonstrate this assertion, suffice it to say that both
nonlinear resistors and capacitors are capable of generating higher
harmonics. However, with an appropriate design, it is possible to
extract more output power in any given harmonic component
from a nonlinear capacitor than from a nonlinear resistor. This
means that a nonlinear-capacitor-frequency multiplier has a higher
efficiency than a nonlinear-resistor-frequency multiplier. In addi-
tion to this application, a few of the many other useful functions
are briefly described as follows.

Frequency division In many practical systems, it is desirable to
convert a given sinusoidal signal of frequency w; into another
sinusoidal signal of a lower frequency wz; namely, wp = wi/n,
where n is an integer. In this case, the lower-frequency output
signal is said to be a subharmonic of the higher-frequency output
signal. It can be shown that a nonlinear resistor cannot generate
subharmonics. To demonstrate that a nonlinear capacitor can
generate a subharmonic signal, consider a nonlinear capacitor
whose incremental capacitance is given by

C) = [1_1——— "1_"2]”2 (133)

201 — 02)

If we apply a voltage v(f} = sin « across this capacitor, the cur-
rent i(f) can be calculated from Eqs. (1-31) and (1-33); thus

i(h = [1 = iyl s mt]m (w cos wi)

2(1 — sin2 wy)

_ (] — COS wf
2 cos? wt

/1 — cos wt LW

Hence, the output current is a sinusoid with frequency equal to
half the original frequency. The phenomenon of subharmonic
generation by a nonlinear capacitor has been utilized in many
practical applications. One application consists of utilizing the two
“distinct” frequencies as the two distinct states in designing a
digital computer. Another interesting application consists of con-
verting the high-frequency output of a laser beam into a lower-

frequency signal.

1/2
) (w cos wr)
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tor can be used as a tuning
element by varying the dc volt-
age E across the capacitor,
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Parametric amplifier Just as with nonlinear resistors, it is possible
to generate beat-frequency components by applying two sinusoi-
dal signals of frequencies «; and w; in series with a nonlinear
capacitor. It can be shown that if one of the two signals (say
v1 = A sin w?) is very weak while the other signal (say vz =
B sin wqf) is very strong, it is possible to extract (with the help of
filters) the signal with frequency w; and at the same time greatly
amplify its amplitude, say v, = 1,000 4 sin wyz. The result is that
we have an amplifier. For reasons that we are not equipped
to elaborate here, this amplifier is called a parametric amplifier. It
is widely used in artificial satellites because it has some definite
advantages over conventional amplifiers.

Electronic tuning  Suppose we connect a voltage source vr) and a
battery with terminal voltage E in series with a nonlinear capaci-
tor as shown in Fig. 1-18a. For simplicity, let the v-g curve
be given by ¢ = % v3 as shown in Fig. 1-185. Then its incremental
capacitance is given by C(v) = v?, as shown in Fig. 1-18c. Now in
many electronic systems, such as a radio receiver, the signal us1)
is very small (say, a few millivolts) compared with the value of the
de voltage E. Hence, for most practical purposes, the incremental
capacitance

C(v) = Cusd) + E) = C(E) (1-35)

can be considered to depend only on the value of E. In this case,
Eq. (1-31) becomes

i(f) = C(E)% (1-36)

Since C(£) is no longer a function of time, Eq. (1-36) is identical
with Eq. (1-28) which describes a linear capacitor. The only differ-
ence is that we can change the value of the capacitance by simply
changing the value of E. This observation is of great practical im-
portance. One immediate application is in the area of electronic
tuning. The conventional way to tune a radio receiver from one
station to another is to turn a knob which moves the tuning dial.
Any one who opens up the cover of a radio receiver would recog-
nize that this tuning knob is used to rotate the plates of an
air capacitor, thereby changing the value of its capaciance.
In other words, the standard tuning process consists of adjusting
the value of a capacitor mechanically. This operation can now be
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replaced by a nonlinear capacitor connected as shown in Fig.
1-18a where the tuning is accomplished by adjusting the voltage
E. This method is clearly far superior to the use of bulky air ca-
pacitors. In fact, this technique of electronic tuning is fast becom-
ing a standard method in electronic systems,

Exercise 1: Find the incremental capacitance C(v) required to generate a 30-Hz
subharmaonic sinusoidal current waveform from an input voltage o(t) = 100 cos
1207z, HINT: Make use of the trigonometric identity

s + Cos X
2 2

Exercise 2. A commoen nonlinear capacitor used for electronic tuning is the
varactor diode. It is characterized by a v-g curve g{v) = —(3%)Copo(l — t/ho)l*’3,
where Co and ¢, are constants which vary from device to device. Whenp = 0,
the incremental capacitance was measured to be equal to 60 pF. (a) Derive the
incremental capacitance C(v). (b) If ¢ = 0.35, find the range of the input volt-
age required to tune the capacitance from 5 tc 100 pF. To operate the varactor
as a nonlinear capacitor, the voltage must not exceed 0.35 volt.

1-8 TWO-TERMINAL INDUCTORS

A two-terminal black box which can be characterized by a curve
in the i-p plane is called a two-terminal inductor and will be
denoted by the symbol shown in Fig. 1-194. The darkened edge
of this symbol has the same significance as before.

1-8-1 LINEAR INDUCTORS

An important subclass of inductors can be characterized by a
straight line through the origin of the i-¢ plane as shown in Fig.
1-19b. This subclass is called /inear inductors and will be denoted
by the conventional symbol shown in Fig. 1-19¢. A linear inductor
can be described analytically by

o =Li (1-37)

where the constant L represents the slope of the straight line and
is called the inductance associated with the inductor. The unit of
inductance is the senry and will be denoted by H. To find the volt-
age across a linear inductor, we substitute Eq. (1-37) for ¢ in
Eq. (1-8) and obtain

_ 40 )
o)) = L (1-38)
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Fig. 1-20. The i-p curve of
three practical nonlinear in-
ductors.

1 Actually, this hysteresis
loop is a valid description
only under the assumption
that the current waveform
is sinusoidal. For other
periodic excitations, the
hysteresis loop becomes
much more complicated.
A complete characteriza-
tion of elements described
by hysteresis loops is a
very difficult and still un-
solved problem.
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A linear inductor is therefore completely characterized by one
number, namely, its inductance. Again, we would differentiate be-
tween the terms inductor and inductance.

1.8-2 NONLINEAR INDUCTORS

If an inductor is characterized by an i-¢ curve other than a
straight line through the origin, it is called a nonlinear inductor. In
this case, the inductor can no longer be described by a single
number, and hence the entire i-g curve must be given. For example,
Fig. 1-20a shows the i-g curve of a typical nonlinear inductor.

Another common nonlinear inductor consists of a coil wound
around an iron core. Its i-p curve (obtained by applying a sinusoi-
dal current excitation) is shown in Fig. 1-20b. This curve is a
multivalued function of both i and ¢ and is commonly referred to
as the hysteresis loop.1 Observe that starting at point g with = 0,
the flux linkage ¢ increases with i along the path a-b-. Upon
reaching point ¢ when ¢ attains its maximum value, the flux link-
age ¢ does not retrace the original path. Instead, it decreases with
the current / along the path c-d-e-f Upon reaching point f when i
attains its minimum value, the flux linkage ¢ returns to point g to
complete the Joop. The shape of the hysteresis loop depends on
the type of material used for the core. For certain materials, the
hysteresis loop is almost rectangular, as shown in Fig. 1-20c.

We shall denote the i-g curve of a nonlinear inductor by

o = o(i) (1-39)

if it is current-controlled, and by

i = ip) (1-40)
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if it 1s Aux-controlied. In the case of a current-controlled inductor,
the voltage across the inductor can be expressed in a form analo-
gous to Eq. (1-38); thus

) = SeD). _ de() dit)

dt di dt
e
o) = L) 0 (1-41)
where
L(E)E%Q (1-42)

is called the incremental inductance of the inductor. Notice that for
a linear inductor, the incremental inductance coincides with the
inductance, as it should.

Exercise 1: The i-p curve of a certain nonlinear inductor can be represented ap-
proximately by the cubic equation ¢ = /3. If the inductor is connected across a
current source with terminal current i () = sin ¢, find and sketch the incremen-
tal inductance L{i) and the inductor voltage o(r).

Exercise 2: An inductor is said to be the “‘dua!’" of a capacitor, and vice versa,
because there exists a one-to-one correspondence between the two elements. Ex-
hibit a list of corresponding quantities.

1.8-3 SOME PRACTICAL APPLICATIONS
OF TWO-TERMINAL NONLINEAR INDUCTORS

What are nonlinear inductors good for? Where are they used in
practice? To answer these questions would again require more
background than we have at present. However, it is instructive to
describe a few simple applications.

Frequency conversion Just as is true of capacitors, a nonlinear in-
ductor is capable of generating both harmonics and subharmonics
of a given sinusoidal signal. It can be shown to have the
same efficiency as does a nonlinear capacitor. This property is
widely used in telephone systems.

Memory and storage Consider the rectangular hysteresis curve
shown in Fig. 1-20c. Observe that when / = 0, ¢ may assume
either one of two distinct values (point a or point ) depending
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on the previous history of the excitation current. These two
distinct states can be used to represent the two states (0 and 1) in
a digital computer. When many of these elements are combined
properly, the result is a “memory” or *storage™ device to store
present information for future use. While there are many other
candidates, this memory device has some significant advantages.
One is that in both states / = 0, and hence no power is being con-
sumed. Since hundreds and thousands of these elements are used
in a practical computer, the saving in power cost is enormous.

1.9 ENERGY AND POWER

The energy flow into a two-terminal black box during any time
interval (¢9,f1) is by definition the time integral of power from #p
to {1; namely,

Witody) = L Y w(nide) de (1-43)

(

Since w(to,t1) 15 a relative quantity depending on the time interval
(f0,t1), it is convenient for us to define another related but absofute
quantity by letting #, equal zero and #; approach infinity, and then
take the average of the energy flow over the entire infinite time
interval; namely,

P = lim 2O0) (1-44)
1—o¢ 1

Since the quantity P,, has the dimension of energy per second, it
is called the average power. Substituting Eq. (1-43) into Eq. (1-44),
we obtain the explicit expression

Puy = lim L fu 5 )i(r) di (1-45)

oo Iy

To illustrate the use of this formula, let us calculate the average
power entering a 4-{ linear resistor due to an applied voltage
v(?) = 2 sin «t; thus

TR S ¢ : 2 sin 7t )
Pu = lim [ @sinm (————4 ) di (1-46)
T o Sinz'ﬁ'tl)_t.
Pay = tllgr:]«. (/l 4ty =
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In the case where the voltage v(f) and current i(7) are periodic
functions with commensurate periods T, and T;, respectively, the
power p(f) = v(1)i(1) will also be periodic. However, the period of
p(?) is not necessarily equal to T, or T;. For the example considered
in Eq. (1-46), 7, = T; = 2, but the period of p(1) is 1. If we
denote the minimum period of p(f) by 7, then

plt + nl) = ot + nDi(t + nT) = p(7) (1-47)

In this case, it is more convenient to let t; = n7 and rewrite Eq.
(1-45) in the equivalent form:

— lim L [T wni
Py = lim — L WDi(7) dt

n—oo

= lim L[ [Fowityde + [T owicey dr

Tl 3G nT
nT @
T 1) dr]

= lim _n‘?[n INEGLG) d:]

. 1 7 ;
lim fo o(2)i(f) dt

Since the variable n no longer appears in this integral, the limit
operation is superfluous and can be removed. Hence, for periodic
signals, the average power can be written in the following simplified
but equivalent form:

Pyyi= % LT W(Dilt) dit = @ (1-48)

where T'is the minimum period of v(n)i(r). Applying this formula
to the same example considered in Eq. (1-46), we obtain

1 11 : 2 sin ¢ 1
Po=1 ['@sinm) (—4__) ar=1

as we should.

Exercise: The voitage and current wavefarms of a two-terminal black box are
given, respectively, by v = sin (3.14) and i = sin =r. (#) Show that even though
both ©{¢) and i(¢} are periodic, the power p{r) is not periodic. (b) For most practical
purposes, p(s) is said to be “‘almost periodic.'” Explain why.
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Fig. 1-21, The instantaneous
power absorbed by a nonlinear
resistor at any time 1, is equal
numerically to the area of the
rectangle formed by the v,i axes
and a vertex Q with coordinates

(v(ro}.i(to)).
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The three expressions given by Egs. (1-43), (1-45), and (1-48)
are valid for any two-terminal black box. Let us now consider the
special cases where the black box consists of a single nonlinear
resistor, capacitor, or inductor. In so doing, we shall be able to de-
rive a number of useful relationships. We shall also be able to
draw some very important physical interpretations. Let us consider
the three cases one at a time.

Case 1: Two-terminal nonlinear resistor  Consider the nonlinear re-
sistor shown in Fig. 1-2la and the three common types of v-f
curves shown in Fig. 1-21b, ¢, and d. The v-i curve can be described
in the functional form by i = i(v) if it is voltage-controlled, or by
v = v(i) if it is current-controlled. A strictly monotonically in-
creasing v-i curve can obviously be described by either i = i() or
v = v(i). Accordingly, the instantaneous power flow pg(?), energy
flow wg{fo.t1), and average power Pg,, can be determined and are
tabulated in Table 1-2 for these three cases.

Observe that corresponding to any operating point Q at any
time ¢, the instantaneous power px{f) is simply equal to the area of
the shaded rectangles shown in Fig. 1-21. This power must, of
course, come from the energy supplied by the external circuit con-
nected across the resistor, From Table 1-2 we observe that the ex-
pressions for pa(), wr(to,t1), and Pg,, depend on two pieces of in-
formation, namely,

1. The v-i curve

2. The voltage waveform u(t) or the current waveform i(?)

Hence, in order to find out what happens to the power that enters
the resistor, we must be given these two pieces of information. For

i 4i

1
i=i{v)
ve=p (i)
I 4]
I Q
\\3

(a)

(c} (d)
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TABLE 1-2 Instantanecus power, energy, and average power flow in a nonlinear resistor.

Strictly monotonically Voltage-controtled Current-controlled
increasing v-f curve o-f curve v-i curve
Pt Sy = oI = i)
= f(“ o(i(i(1)) dt = J; ' (DY) dr = L : WO di
wg (fo.1) .
= ﬁ " i) dt
, = lim ﬁ Jrewiema = lim L [foieeya = Jin Loy a
Rav

lim % J; " HOuie) dr

L

example, suppose the v-i curve is represented by 7 = ¢3, and the
voltage is given by v(r) = 2 sin #¢. The instantaneous power can
then be calculated; thus

Pr() = (2 sin 71)(2 sin #1)? = 16(sin we)*

Observe that pp(?) has a period T = 1. The energy flow during the

time interval (0,1) and the average power due to the periodic sig-
nal are given, respectively, by

wal0,t1) = 6t — -sin 2mt; — 2 (sin wiq)¥(cos m1)
ri i

and

_we{0.T) _ we(01) 6
Rav T - 1 -

(1-49)

Equation (1-49) shows that even though the voltage v(f) changes
from positive to negative values periodically, there is a net positive
average power flow entering the resistor. Since this power is not
returned to the external circuit whenever the voltage returns to its
initial value during each period, it cannot be recovered and is
therefore said to be “lost™ or “dissipated” in the resistor. Since
energy cannot be destroyed, this loss of electrical energy in the re-
sistor is merely transformed into heat energy.

The average power for the above example is positive, Let us
now consider another example where this is not true. Suppose the
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v-i curve is represented by i = v® — 2 and suppose a constant
voltage v = 1 volt is applied. The instantaneous and average
power, respectively, are given by

Py =11—2)=—1 and pgm:i:.‘%@ = —1 (1-50)

Since the average power is negative, energy is being supplied
(instead of being absorbed) by the nonlinear resistor to the external
circuit. Since energy cannot be created, this nonlinear resistor
must have an external power source (e.g., a battery) associated
with it, and is therefore called an active resistor. Without an
external power source, a nonlinear resistor can only absorb power;
namely, pg(f} > 0. Such a resistor is said to be passive. It is easy to
see that a nonlinear resistor is passive if, and only if, its v-i curve
lies entirely in the first and the third quadrants. This follows from
the fact that the instantaneous power is always nonnegative;
namely,

(D) = v()i(1) 2 0 (1-51)

Clearly, in its original form, a physical resistor must necessarily be
passive. This is true, for example, with the commercial resistors
listed in Table 1-1. Any of these resistors can, of course, be trans-
formed into an active resistor by connecting a battery in series
with it.

Exercise: The v-i curve of a certain nonlinear resistor is given by i = 10(® ~ 3v)ma,
and the voltage excitation is given by () = 10 sin r volts. (g} Find the instantan-
eous power px(r). (b) Find the energy flow wg(0,#;) for all #; > 0. (¢} Find the
average power by using Eq. (1-48) and check by using Eq. (1-45). (d) |s this non-
linear resistor passive or active? Explain why.

Case 2: Two-terminal nonlinear capacitor  Consider the nonlinear
capacitor shown in Fig. 1-22a and the three typical types of v-g
curves shown in Fig. 1-22b to d. The v-g curve can be described in
the functional form by v = u(g) if it is charge-controlled or by
g = g(v) if it is voltage-controlled. A strictly monotonically in-
creasing v-¢ curve can obviously be described by either v = v{g) or
g = q(v). The energy flow we(fo,ty) into a capacitor during the
time interval (fo,11) is given by

weltos) = [ U(:)%d: (1-52)
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¥ q 14
;= 94 v=v (g} ve=v{g)
dt ar
R g=q(v)
gt} alty) g(¢)
b 1
Q(tg) q(to) G(tu)
O v O canll 13
-
{a) (») {e)

In the case where the capacitor v-g curve is either strictly mono-
tonically increasing or charge-controlled, Eq. (1-52) can be written
as

[t dglt) ¥y
welton) = [ ") == di (1-53)
By a standard change of variable, Eq. (1-53) becomes

welto) = [ vlg) dg (1-54)

In the special, but very important, case of a /inear capacitor
[ = Cvorv = (1/C)), Eq. (1-54) can be reduced to

_ few 1 1 e g
wello,h1) = fq(m 194 =3¢ fq(rnl 4P

or

wltoits) = 5= [q3() — ¢¥(to)] (1-55)

Equation (1-55) can also be expressed in terms of v by substituting
g= Cvfor g

welto) = S [on) — v2(w)] (1-56)

Referring to Fig. 1-22, Eq. (1-54) can be interpreted as follows:
The energy flow we(to,f1) from 1o 1o £ into a charge-controlled

Fig. 1-22. The energy flow
weltg.21) from 1 to 1, into 2
nonlinear capacitor is equa
numerically to the shaded area
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nonlinear capacitor is equal numerically to the area under the
v-g curve (bounded by the g axis and the lines g = ¢(fp) and
g = q(t1). This interpretation is significant because it shows that
only three pieces of information are needed to determine we{fo,1),
namely

1. The v-g curve
2. The initial value of the charge at 7 = £
3. The final value of the charge at? = r;

Since no information is required of the waveforms of g(¢) and o(s),
the energy we{to,t1) is said to be independent of the excitation
waveforms. This property is very different from the resistor case
where the complete voltage and current waveforms are required
to compute we(Zo,t1). Observe further from Fig. 1-22 that whenever
the waveform u(f) returns to the same initial point, ie., when
q(t1) = g(ty), the energy welto,1}) = 0. For example, Egs. {1-55)
and (1-56) are both equal to zero under this condition. Hence, un-
like the resistor case, there must be some form of “energy-swapping”
mechanism between a capacitor and the external circuit connected
across it. To investigate this mechanism, let us calculate the average
power using Eq. (1-45); thus

PCav = lim i gt}
h—oo §1 J9(0)

v(q) dq (1-57)
Now observe that except when g(f) goes to infinity, a case that
cannot oceur in practice, the value of g(z1) will always be a finite
number. This means that the area under the curve representing the
integral in Eq. (1-57) will always be a finite number. But the value
of 71 in Eq. (1-57) must tend to infinity, therefore

P, =0 (1-58)

Since this equation is derived only under the assumption that the
v-qg curve be charge-controlled (this includes clearly the special
case of a monotonically increasing curve), it is a very general re-
sult. We can, therefore, conclude that the average power entering
a charge-controiled nonlinear capacitor is zero. This condition is
true for any capacitor current and voltage waveforms. In the
special case where g(¢) and o(y) are periodic, Eq. (1-57) can be
simplified to
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q(T)

Pow = .f o D4 (1-59)

But ¢{7") = ¢(0) for a periodic waveform of period T; therefore,
Eq. (1-59) will integrate to zero, as it should.

From the preceding discussion, we can now conclude that a
charge-controlled capacitor does not dissipate energy. Any energy
entering it must be stored inside the capacitor and may eventually
be returned. Because of this interpretation, a capacitor is often re-
ferred to as an energy-storage element. In the case of parallel-plate
capacitors, it is possible to show, by electromagnetic field theory,
that the energy is stored in the electric field between the plates. In
view of this observation, the energy wl#p,5;) in a capacitor is
usually called the electric stored energy.

What happens if the v-g curve is neither monotonically in-
creasing nor charge-controlied? In this case, it is no longer pos-
sible to describe the v-¢ curve by a function of g. It is not possible,
therefore, to specify the area representing vdg uniquely. To
investigate this more general case, a new approach is required.!

Exercise 1: The v-g curve of a certain nonlinear capacitor is given by g = % vd.
Let the termina! voltage be given by «{f) = e~ (@) Find we(0.4) for all £, > O by
determining first i{1) = (dg/dv)(dv/dr) and then using Eq. (1-43). () Repeat (a)
by determining first gz} and then using Eq. {1-53). {¢)} Repeat (a) by usmg
Eq. (1-54). (d) Let o() = E sin wt and verify that P, = Q.

Exercise 2; Prove that the electric stored energy in a voltage-controfled capacitor
is given by

G

weltont) = gUailts) — glioketta) — [ g0) do

HINT: Apply the integration-by-part theorem.

Case 3: Two-terminal nonlinear inductor Consider the nonlinear in-
ductor shown in Fig. 1-23¢ and the three typical types of i
curves shown in Fig. 1-23b to 4. The i-p curve can be described
in the functional form by i = i{g) if it is flux-controlled or by
@ = (i) if it is current-controlled. A strictly monotonically in-
creasing i-g curve can obviously be described by either i = i(g) or
@ = @(i). The energy flow wi{ip.f1) into an inductor during the
time mterval (fo.7;) is given by

wiltoty) = [* i(t)-d(z,—gﬂdt (1-60)
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1This approach is calied
the parametric approach
and is discussed in Appen-
dix A. See also L, O. Chea
and R. A. Rohrer, On the
Dynamic Equations of a
Class of Nonlinear RLC
Networks, IEEE Trans.
Circuit Theory, vol. CT-12,
no. 4, pp. 475-489, Decem-
ber, 1965.
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Fig. 1:23. The energy fiow
wilfo 1) from g to 1 into a
nonlinear inductor is egual nu-
merically to the shaded area.

Applying analogous procedure as in the capacitor case, we find
that when the i-g curve is either strictly monotonically increasing
or flux-controlled, Eq. (1-60) can be written as

wilto,tr) = L " i) dp (1-61)

In the special case where the inductor is linear (g = Li),
Eq. (1-61) can be simplified further to

wilto,h) = e [92(tz) — §(10)] (1-62)
or
willods) = 51 210) — i %(0) (1-63)

Referring to Fig. 1-23, Eq. (1-61) can be interpreted as follows:
The energy flow wy(to,t1) from ¢ to ¢ into a flux-controlled non-
linear inductor is equal numerically to the area under the i
curve [bounded by the ¢ axis and the lines ¢ = ¢(fo) and ¢ =
@(t1)]- This interpretation has the same significance as for the
capacitor; namely, only three pieces of information are needed to
determine wi(to.t1):

1. The i-p curve
2. The initial value of the flux linkage at 1 = £
3. The final value of the flux linkage at t = t;

By a similar procedure, we found the average power in any flux-
controlled inductor is zero; thus

Pp,, =0 (1-64)
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This means that a flux-controlled inductor cannot dissipate energy.
In view of this observation, the inductor is also called an energy-
storage element. In the case where the inductor is made of coils
around an iron core, the energy can be shown, by electromagnetic
principles, to be stored in the magnetic field around the coil.
Hence, the energy stored in an inductor is usually called magneric
stored energy.

Exercise 1: Prove that Eq. (1-64) holds for a flux-controlied inductor. Verify this
with (1) = fcos wt and ¢ = 3.

Exercise 2: Prove that the energy stored in a current-controlled inductor is given
by

wilte, 1) = @(i)i(t) — eliodi(to) — i::;llp(!) di

1-10 TIME-VARYING ELEMENTS

So far, the v-i, v-q, and i-p curves characterizing a two-terminal re-
sistor, capacitor, and inductor are assumed to remain unchanged
for all times. These elements are said to be time-invariant. There
exist some practical elements, however, whose v-i, v-q, or i-g
curves vary as functions of time. Such elements are said to be
lime-varying resistors, capacitors, or inductors, respectively.

Time-varying resistor The simplest example of a time-varying re-
sistor is a potentiometer whose arm is being rotated by a motor
as shown in Fig. 1-24a. At any time ¢, the potentiometer is simply
a linear resistor with a straight-line v-/ characteristic as shown in
Fig. 1-24b. Hence, a time-varying linear resistor can be character-
ized by

v = R()i
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Fig. 1.24. An example of a
time-varying linear resistor,

(a) (&)

R{t)
1,000
500
0 1 2

(c)
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Fig. 1-25. An example of a
time-varying nonlinear resistor,

Foundations of nonlinear network theory

where R(?) is the time-varying resistance representing the reciprocal
of the slope of the straight line at any time ¢. For example, if the
potentiometer has a resistance range of 0 to 1,000 @ uniformly dis-
tributed around its rim and if the arm rotates at a speed of 1 rps,
then the time-varying resistance is as shown in Fig. 1-24c.

A time-varying resistor need not be linear. For example, con-
sider a resistor characterized by

i=13 4 sin¢

The v-i curve of this time-varying nonlinear resistor is shown in
Fig. 1-25a as a function of time. Observe that this resistor can be
constructed in practice by connecting a sinusoidal current source
in parallel with a time-invariant resistor (Fig. 1-25b) with the ¢/~
curve shown in Fig. 1-25¢. In general, a time-varying nonlinear re-
sistor can be characterized by a relationship 7 = ip,0) if it is
voltage-controlled, or v = v(i,#) if it is current-controlled. A review
of the power and energy expressions derived in the preceding sec-
tion would show that these expressions remain valid for the time-
varying case.

What are time-varying resistors good for? To give one simple
application, let us consider the current waveform

i(f) = [1 + f(0)] sin wr (1-65)

Equation (1-65) is called an amplitude-modulated waveform because
the amplitude of the sine wave varies with time. This is the type

t= X 5x ’
z' 2" hi
=%, 57w
6 &'
=0 o 410
¢=Ir, lr
) 7’6 +0.5 = pf3

5

/ 7
_17 . /

i 1
i _ -10 -03, 0 05 10

+ ]
v v GDSII‘I t 1_10
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of signal that an AM radio transmitter sends out. In practice, f()
represents a slowly changing signal and sin wf represents a rela-
tively high-frequency sine wave known as the “carrier.” We are
not equipped to explain why f(f) cannot be transmitted directly,
and why it must be “carried” by the sine wave. Suffice it to say
that it takes a high-frequency waveform to traverse a long dis-
tance in space. Our objective here is to show how we may recover
the signal f(#) from Eq. (1-65). One possible method consists of
applying this current to a time-varying linear resistor whose re-
sistance changes at the same frequency as the carrier, namely,

R(H) =1 + sin wt
The voltage drop across this resistor is given by

{1} = R()(r)
= (1 + sin w)[1 + f(#)] sin wt

=B+ %+ [1 + f(9)] sin wt — B[] + f(9)] cos 2t
(1-66)

Observe that Eq. (1-66) contains four terms; the first term is the
signal that we would like to recover, the second term is a dc volt-
age, the third term is the carrier-frequency term, and the last term
is at twice the carrier frequency. Through the use of a “filter,” the
last three components can be easily suppressed, thus leaving the
desired signal f(7). This recovering process is known as synchronous
detection because the frequency of the time-varying resistance is
synchronized at the same frequency as the carrier.

Exercise 1: Sketch the amplitude-modulated waveform given by Eq. (1-65) with
Sy = sin t and « = 100. What can you say about the “envelope” of this
waveform?

Exercise 2: It is possible to rectify a sinusoidal current waveform i(r) = I sin ¢ by
applying this current to an appropriate time-varying linear resistance R{s). Find
R(r) so that the resistor voltage is a rectified version of the current waveform;
that is, »{r) = #r) whenever i(z} > 0, and v(z} = 0 whenever {1) < 0.

Time-varying capacitor The simplest example of a time-varying lin-
ear capacitor is the air capacitor consisting of a fixed set of plates
in mesh with a movable set of plates which is being rotated by a

motor. A time-varying linear capacitor is therefore characterized
by

q(1) = C(O(t) (1-67)
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where C(2) is the time-varying capacitance. Unlike the resistor
case, the expressions previously derived for the nonlinear capaci-
tors do not apply in the time-varying case because when we
differentiate g(#) with respect to time, we obtain an additional
term, namely,

du(t) dC(:)

() = —- = QO —+~ + ) — = (1-68)

Since C(f) is not a constant, the expressions given by Egs. (1-55)
and (1-56) are no longer applicable. Hence, to calculate the power
or energy flow, we must resort to the original definitions.

Just as for the resistor, a time-varying capacitor may be non-
linear; in this case it is characterized by g = g(v.f) if it is voltage-
controlled or o = v(g.) if it is charge-controlled. Time-varying ca-
pacitors are useful in the study of parametric amplifiers. They are
also useful in the modeling of many time-varying physical and
biological systems. For example, the mass of a rocket during lift-
off decreases rapidly with time as the rocket fuel is burned. This
time-varying mass can be modeled by a time-varying capacitor.

Exercise 1: Find the average power Pg,, entering a time-varying capacitor
C{) = 2 — cos wi and a terminal voltage (¢} = E sin «t. Interpret whether this
energy is being absorbed, delivered, or stored.

Exercise 2: Give an example for each of the following: () A time-varying linear
capacitor, {b) a time-varying charge-controlied capacitor, and (c) a time-varying
voltage-controlled capacitor.

Time-varying inductor By exact analogy to the capacitor, a time-
varying linear inductor is characterized by

o(t) = LD (1-69)

where L(7) is the time-varying inductance. Since L() is no Jonger
a constant, the expressions derived previously in the preceding
sections are no longer valid. In particular, the inductor voltage is
now given by

oty =20 = 1 ED 4 i

A time-varying inductor may be nonlinear; in this case it is
characterized by ¢ = (i,f) if it is current-controlled and i = (g,
if it is flux-controlled.
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The analysis of a nonlinear network containing time-varying
elements is a very difficult problem requiring advanced mathe-
matics. Hence, we shall not consider any time-varying elements in
the rest of this book. The above discussion is included mainly to
emphasize the fact that most of the equations we derived in the
previous sections are not valid for time-varying elements.

Exercise 1: Give an example for each of the following: (@) A time-varying linear
inductor, (b)) a time-varying flux-contralled inductor, and () a time.varying
current-controlled inductor.

Exercise 2: Prove or disprove the assertion that if the current into a time-varying
current-controlled inductor is periodic, then the instantaneous power P.{1) is
also periadic,

1-11 CONCEPTS OF MODELING

One of the most basic principles in scientific analysis is that
of modeling. Engineers and scientists seldom analyze a physical
system in its original form. Instead, they construct a model which
approximates the behavior of the system. By analyzing the be-
havior of the model, they hope te predict the behavior of the
actual system. The primary reason for constructing models is that
physical systems are usually too complex to be amenable to a
practical analysis. In most cases, the complexity of a system is due
in part to the presence of many nonessential factors. One basic
principle of modeling consists, therefore, of extracting only the
essential factors.

To illustrate the process of modeling, let us consider the prob-
lem of predicting the trajectory of a ballistic missile. This problem
cannot be analyzed exactly because an exact analysis would re-
quire inclusion of all possible factors that may affect the trajectory.
Some of these factors may be the weight and shape of the missile,
the amount of thrust, the atmospheric drag, the deformation of
the missile during flight, the distribution of weights of the internal
components, the wind velocity, the impurity of the fuel, and the
color of the missile. From experience, we know that the first three
factors have a more significant influence on the trajectory than the
remaining factors. This leads us to replace the missile by a model
which includes only the first three factors. Obviously, the pre-
dicted trajectory based on this model is not going to be identical
with that of the actual system. But as engineers, we are interested
only in an “accurate” solution, not the exact solution. Hence, as
long as the discrepancy between the predicted and the actual
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Fig. 1-26. The static model of
a tunnel diode must be refined
for high-frequency analysis by
the inclusion of appropriate
parasitic inductances and ca-
pacitances at appropriate loca-
tions.

Refined tunnei

diode model

ol

Foundations of nonlinear network theory

trajectories is tolerable, the model serves the purpose. Of course,
in their desire to simplify analysis, engineers are often tempted
to overidealize the model by stripping away some essential factors.
In this case, the predicted solution may not be satisfactory.

The point we are driving at is that as engineers, we analyze
the model which approximates an actual system. A model is al-
ways an idealization of a physical system. The more complex the
model, the more accurate will the predicted solution be. Un-
fortunately, the analysis will also become more complicated.
Hence, a model is always a compromise between reality and simplicity.

In the light of the above discussion, our definitions of a re-
sistor, capacitor, and inductor must also be interpreted as models
representing a physical device. For example, the v-i curve of the
tunnel diode shown in Table 1-1 is a good model of a physical
tunnel diede so long as the frequency at which we are operating
is not very high. However, as the frequency increases, the static
characteristic becomes less accurate, and a more realistic model
must be found. For example, at very high frequencies, the con-
necting wires begin to behave like an inductance, and the capaci-
tance between the wires gradually becomes significant. These ele-
ments are called “parasitic” or *“stray” e¢lements because they are
invariably present, even though they are undesirable. A more
realistic tunnel diode model must therefore include the parasitic
elements such as the refined model shown in Fig. 1-26a. As the
frequency gets higher, a still more complicated model such as
shown in Fig. 1-26b may be chosen.

In this book, we shall be primarily interested in low-frequency
models. In Chap. 11 we shall learn some basic techniques for con-
structing models of three-terminal devices in terms of two-terminal
models. These low-frequency models can usually be refined for
high-frequency analysis upon inclusion of appropriate parasitic
clements.

More refined tunne!
/ diode model
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Two-terminal network elements

It stores electric energy and may be returned to its external circuit
(Pea, = 0). A flux-controlled inductor does not dissipate energy. It
stores magnetic energy and may be returned to its external circuit
(Pry, = 0).

Basic two-terminal elements (See Fig. 1-27.)

PROBLEMS

1.1 In order to demonstrate the importance of reference direction and
polarity, consider the following: '

(8) Sketch the p-f curve of each of the two-terminal black boxes
shown in Fig. Pl-1a to e. (The element inside the black box
is a tunnel diode whose V-I curve is given in Table 1-1.)

(b) Give a simple rule for sketching the v~/ curve of a resistor
whose terminals have been reversed as in Fig. Pl-le.

(c) There exists a certain class of nonlinear elements in which it
is unnecessary to distinguish between the two terminals. Such
elements are called bilareral elements. All other elements are
said to be rnonbilateral. Give an example of a bilateral and a
nonbilateral resistor, inductor, and capacitor.

{d) Find the necessary and sufficient condition for a nonlinear re-
sistor, capacitor, or inductor to be bilateral.

i i £ i
— ot O e
+ + — =
v @[u v 679 v @!u v G‘VE
-~ - + +
o o O o
(a) (b) (e) (d)

1-2  Sketch the v-i curve of each of the two-terminal black boxes shown
in Fig. P1-2a to A. Refer to Table 1-1 for the V-J curves of the
corresponding elements.

f
‘[.—-.

e

+0
+9

-y
o+
g1

(a) (b) (c)

Fig. P1-1.

Fig. P1-2.
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Fig. P1-2 (Continued).
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P i—.‘s— Pa———
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n (g} (h)
1-3 The most accurate method for determining the v-i curve of a non-

linear resistor in the laboratory is the point-by-point method. Each

point (E,I) on the curve is obtained by applying a vollage v = E

across the resistor and measuring the resulting current / = /. How-

ever, this method is rather tedious, and for most practical purposes
it is desirable to design a v-f “‘curve tracer” that can display the

v-i curve directly on an oscilloscope.

(a) Devise a simple circuit to carry out the above task using the
ordinary 60-Hz ac line voltage and a Variac (variable voltage
transformer) to provide the desired range of input voltage re-
quired by the given resistor. You may use a linear resistor
whose voltage drop can be used to sense the magnitude of the
current in the nonlinear resistor. To avoid grounding problems,
you may use a 1:1 isolation transformer.

(b) Suppose that instead of ns.~~ the line voltage as the energy
source, we use the output voltage from a certain signal genera-
tor whose frequency can be changed from 10 Hz to 100 MHz.
Do you expect the same v-i curve to be traced on the scope
at all frequencies? If not, what frequency range must be
chosen so that the v-i curve will agree approximately with the
static curves supplied by the manufacturer?

It is sometimes convenient to define the dc resistance Ry and the
ac resistance Rq. at each point P of a v-i curve by

Rdc=—u.‘
Elp

_d
RM_ di. P

(a) Show that R4 = cot a, where a is the angle between the
v axis and the straight line from the origin to point P.

(b) Show that R.. = cot B, where B is the angle between the
v axis and the straight line tangent at point P.

{c) Verify that for a passive resistor, the value of Rg. is always
positive.

(d)} Verify that the value of R, may be either negative, zero, posi-
tive, or even infinite for a passive resistor,



1-5

1-6

1.7

1.8

Two-terminal network elements

(e) Sketch the relationships Rq, versus v and Rg. versus v for the
varistor type 1NXX3, the zener diode type INXX3, and the
tunnel diode type INXX6. See Appendix D for the v curve
of these elements.

(f) Repeat (e) for the relationships Ra. versus i and Ry, versus i,

Consider the definitions of the dc resistance R4, and ac resistance

Rac given in Problem 1-4.

{a) If the resistor v-i curve is strictly monotonically increasing,
what can you say about the corves Rq. versus v, Ry versus i,
R, versus v, and R, versus i? Are they monotonic, single-
valued, or multivalued?

(b) Repeat {a) for a voltage-controlled resistor.

(c} Repeat (a) for a current-controlled resistor.

It is sometimes convenient to define the dc conductance Gy, and
the ac conductance G, at each point P of a v-i curve by

G'dcz'L
Uip
di

Gy = —

ac dv | »

{a) Show that Ga. = tan a, where « is the angle between the
v axis and the straight line from the origin to point P.

{b) Show that Ga. = tan B, where § is the angle between the
v axis and the straight line tangent at peint P.

{c) Verify that for a passive resistor, the value of G4 is always a
finite, positive number.

(d) Verify that the value of G.. may be either negative, zero,
positive, or even infinite for a passive resistor.

(e) Sketch the relationships Gy, versus i and G, versus # for the
varistor type INXXS5, the zener diode type INXX3, and the
tunnel diode type INXX6. See Appendix D for the v-i curve
of these elements.

(f) Repeat (e) for the relationships Gy versus v and Gae versus o,

Consider the definitions of the d¢ conductance Gy, and ac conduct-

ance Gy given in Prob. 1-6.

(a) 1If the resistor v-i curve is strictly monotonically increasing,
what can you say about the curves G, versus i, Gy Versus v,
G, versus i, and G, versus ©? Are they monotonic, single-
valued, or multivalued?

(b} Repeat (a) for a voltage-controlled resistor.

{c) Repeat (@) for a current-controlled resistor,

If a sinusoidal voltage waveform v = A sin wf is applied across a
nonlinear resistor characterized by a polynomial

i=ag+ aitr + a2 + - 4 qgu°
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Fig. P1-10.
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the resulting current will contain, in addition to the fundamental
frequency term ¢{ = B sin w¢, other higher harmonic terms. In
many practical applications, these harmonic terms are usually
filtered out, in which case it becomes meaningful to define the
ratio between the amplitudes of the fundamental voltage and cur-
rent componeats to be the average resistance Ra,.

{a) Find the average resistance R,, with n = 3,

(b} Assuming @p = a1 = a2 = a3 = 1, plot Ry versus the ampli-

tude A.
{c) What is the significance of the R,y-vs.-4 curve obtained in (4)?

1-9 If a sinusoidal voltage waveform v = A4 cos wf is applied across a

voltage-controlled capacitor characterized by

g = ag + a1 + asv® + .- 4 gpt®

the resulting current will contain, in addition to the fundamental

frequency term § = B sin wit, other higher harmonic terms. In

many practical applications these harmonic terms are filtered out,
in which case the ratio between the amplitudes of the fundamental
voltage and current components is usually called the describing

Sunction Ze.

(a) Find the describing function Zp with n = 3.

(b) Observe that unlike the average resistance in Prob. 1-8, the
describing function Z¢ of a capacitor is a function of the fre-
quency «. Assuming gp = g1 = 4z = @3 = 4 = 1, plot the
curve Zg VETSUS w.

{c) What is the significance of the Z¢-vs.-w curve?

1-10 The v-g curve of a practical, nonlinear capacitor with a barium

titanate dielectric is shown in Fig. P1-10a. If the triangular voltage
signal shown in Fig. P1-10b is applied across this capacitor, find
the current waveform #(f). Assume that the capacitor is operating
initially at point a of the hystercsis curve. Assume also that the
locus must follow the arrow directions.

v{z), volts

v, valts
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where sin «f and cos wr are very high-frequency (say 10 MHz) sine

waves. This is the signal that will be received in Paris. Our prob-

lem is to recover f1(r) and f3(s)} at the receiving end.

(a) Show that fi(r) can be recovered by applying #¥) to a time-
varying linear resistor with R{(:) = 1 + sin «/ and then sup-
pressing the components with a frequency higher than o by
means of a filter,

(b) By a similar procedure, fa(f} can be recovered. Find the
appropriate time-varying resistance R(r) for accomplishing
this.

One method for transmitting a telegraph signal over long distances
is to modulate the “phase”™ of a high-frequency sinusoidal signal
called the carrier. To be specific, suppose we wish to transmit the
letter A in morse code by closing and opening the telegraph key
at appropriate intervals. Corresponding to this code, the output
voltage v,(f) shown in Fig. P1-14a will be generated. In order to
transmit this waveform over long distances, an apparatus can be
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designed to change the phase of the carrier signal i(r) shown
in Fig. P1-145 abruptly by 180" each time v,(¢} changes its ampli-
tude. For example, the resulting current waveform #(1) is shown
in Fig. Pl-14c. This is the signal being transmitted and received, as
shown in Fig. P1-144 and e. Our problem is to decode the received
current waveform (1} so as to recover the message A. This can be
accomplished by applying i{f) (as a current source) to the time-
varying circuit shown in Fig. P1-14g so as to produce the output
voltage v.{f) shown in Fig. P1-14f. Observe that even though v.?)
is not identical with v,(#), the nature of the waveform is unmistak-
ably similar to that of Fig. P1-14g. Hence the above decoding
scheme would accomplish our objective.
(a) Specify the time-varying resistance R{r) for accomplishing
this task.
(b} What can you say about the frequency of R(f) in comparison
with that of the carrier signal i(r)?
{c) The above scheme for decoding the signal is known as the
synchronous phase detection. Explain why.
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