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Figure 5.14 (q) A “grounded’” two-port and () its element graph.

5.4 Cut Sets and KCL

A very useful graph-theoretic concept is the cut sct. Given a connected digraph
%, a set of branches € of % is called a cut set iff’ (a) the removal of all the
branches of the cut set results in an unconnected digraph, which means that the
resulting digraph is no longer connected, and (b) the removal of all but any
one branch of € leaves the digraph connected. Stated in another way, ()
implies that if any branch in the set is left intact, the digraph remains
connected.

For the digraph of Fig. 5.15, 4, = {B,, 8.}, €, = {B,, Bs, Bs}, and €, =
{B4s Bs, B,} form cut sets. Here, B, denotes “branch k.”

Exercise Refer to Fig. 5.15.

(@) Is { By, Bs. B, Bs, By} a cut set?
(b) List all cut sets of the digraph shown in Fig. 5.15.

REMARKS

1. Any cut set creates a partition of the set of nodes in the graph into two
subsets.

2. To any cut set corresponds a gaussian surface which cuts precisely the
same branches.

3. Similarly, to any gaussian surface corresponds either one cut set or a
union of cut sets (see ¥, in Fig. 5.15).

4. To each cut set we can define arbitrarily a reference direction, as shown
by the arrows attached to the cut sets in Fig. 5.15.

Figure 5.15 Digraph iltustrating cut sets.

" “iff" means “if and only if."
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KCL (cut-set law) For all lumped circuits, for all time ¢, the
algebraic sum of the currents associated with any cut set is equal
to zero.

Example For the digraph shown in Fig. 5.16, the cut set €=
{B,, B,, B;} is indicated by the dashed line cutting through these
branches. Let us assign a reference direction to € as shown by the
arrow; then the KCL applied to € gives

L)+ ()~ L()=0

The —i, comes about because the reference direction of i, disagrees
with the reference direction of the cut set €.

By now we have learned three forms of KCL, namely, in terms of (1)
gaussian surfaces, (2) nodes, and (3) cut sets.

KCL theorem The three forms of the KCL are equivalent. Symbolically,®

( KCL ) ( KCL ) ( KCL )
. < L=4
gaussian surface node law cut sets

Proor

(1)=(2) Simply use a gaussian surface that surrounds only the node in
question. For example, consider node ® in Fig. 5.15: For
gaussian surface &, KCL applied to &, is identical with KCL
applied to node &, namely,

i =iy =i, —ig— =0
(2)=>(3) Any cut set partitions the set of nodes into two subsets. Writing
the KCL equation for each node in such a subset and adding the

results, we obtain the cut-set equation, except for maybe a —1
factor. For example, consider the cut set €, in Fig. 5.15: If we

@ iq @ is @
Tt "/\f

iy iy rl'3

ig & Figure 5.16 Digraph illustrating the reference
@ @ @ direction of a cut set.

= means “implies”; < means “is implied by"; < means “is equivalent to.”
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add the KCL equations applied to nodes @ and @, we obtain
iy tig+ i, =0

(note that i, cancels out in the addition!), which is the cut-set
equation for %,.

(3)=(1) It is easy to demonstrate that the set of branches cut by a
gaussian surface is either a cut set or a disjoint union of cut sets,
So given any gaussian surface, let us write the KCL equation for
each of these cut sets; then adding or subtracting these equa-
tions, we obtain the KCL equation for the gaussian surface. For
example, consider gaussian surface &, of Fig. 5.15. It is the
union of cut set {B,, 8,} and cut set {8,, B;, Bs} whose equa-
tions are, respectively,

=i, ~i;=0
+i,+ig+i,=0
Subtracting the second equation from the first gives
—iy =iy ~dg= b~ =0

which is the KCL equation for gaussian surface . L

6 MATRIX FORMULATION OF KIRCHHOFF’'S LAWS

6.1 Linear Independence

Consider a set of m linear algebraic equations in n unknowns: For j=
1,2,...,m

fj(xu Xppeo s X,)= ;X tapx,t by, = 0 {6.1)

where the &, ’s are real or complex numbers. It is important to decide whether
or not each equation brings new information not contained in the others;
equivalently, it is important to decide whether the equations are linearly
independent. These m equations are said to be linearly dependent iff there are

constants k., k,, . .., k,, and not all zero such that
> kif(x, %5,...,x,)=0 forall x,x,,...,x, (6.2)
f=1

Clearly if these m equations are linearly dependent, then at least one equation
may be written as a linear combination of the others; in other words, that
equation repeats the information contained in the others!

It is crucial to note that the left-hand side of Eq. (6.2) must be zero for all
values of x,,x,,...,x

L
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Example Consider an example where m =3 and n = 4.
X, —Xx,+x;+3x,=0
2x, +3x, —x;—4x, =0
—4x, —11x, +5x;+ 18x, =0

Direct calculation shows that with &k, =2, k,=-3, and k,=—1 the
condition for Eq. (6.2) holds; in other words, these three equations are
linearly dependent.

The set of m linear algebraic equations (6.1) is said to be linearly
independent iff it is not linearly dependent.

In practice, we use gaussian elimination to decide whether or not a given
set of linear equations is linearly dependent.

6.2 Independent KCL Equations

For a given circuit, we can write many KCL equations by the node law, the
cut-set law, or using gaussian surfaces. How many of them are linearly
independent and how to write a complete set that contains all the necessary
information as far as KCL is concerned are the subjects of this subsection. We
will give a systematic treatment by means of the digraph of the circuit under
consideration: in particular, a list of nodes, a list of branches, and for each
branch the specification of the node it leaves and of the node it enters. This is
done by the incidence matrix A, of the digraph.

Let digraph % have n nodes and b branches, then A, has n rows—one row
to each node—and b columns—one column to each branch. To see how the
matrix is built up consider the four-node six-branch digraph shown in Fig. 6.1.
Let us write the KCL equations for each node:

i+ i, —i,=0
(N iyt i, (6.3)
= Iyl + i =0

>

== Lt =0

Figure 6.1 A digraph with four nodes and six hranches.
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In matrix form it reads

-1 1 0 0 0 -174 0
-1 0 -1 1 0 ] [
o “l=]° (6.4)
®>| 0 -1 1 0 1 o] i 0
@=L 0o 0 0 -1 -1 145 0
kN A L
branch 1 branch 6

The 4 X 6 matrix just obtained is called the incidence matrix A, of 4.

Exercise

{@) Demonstrate that the four equations in (6.3) are linearly dependent.

() Demonstrate that any three of the four equations in (6.3) are linearly
independent.

In general, for an s-node b-branch connected digraph 9 which does nof
contain seff-loops” the matrix A, is specified as follows: For i =1,2, ..., n and
k=1,2,...,b

+1 if branch & feaves node (i)
a, = { —1 if branch k enters node (& (6.5)
0 if branch & does not touch node

and the # node equations of % read

Ai=0 (6.6)

. W o ¥ o
where i=(i;,i,,...,1,) is called the branch current vector.

Remark Each column of A, has precisely a single +1 and a single —1;
consequently, if we add together the n equations in {6.6), all the variables
iy, b5, ..., {, cancel out; equivalently the n# KCL equations are linearly
dependent.

Suppose that for the connected digraph % we choose a datum node and we
throw away the corresponding KCL equation, then the remaining n — 1
equations are linearly independent. Since this is important we state it formally:

Independence property of KCL equations For any connected digraph % with n
nodes, the KCL equations for any n — 1 of these nodes form a set of n 1
linearly independent equations.

'The digraph of circuits containing multiterminal elements will contain self-foops whenever
one or more terminais are connected to the datum, as in the last exercise of Sec. 5.2,
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Proor We prove it by contradiction. Suppose that the first £ of these n — 1
equations are linearly dependent. More precisely, there are k real constants

Ys Yau v - - 2 Yoo RO all zero, such that
k
2 Yl iy i) =0 foralli iy, ..., i, (6.7)
i=1
Without loss of generality, we may assume that y, #0 fdrj: 1,2.... .k,

i.e., there are exactly k equations in the sum of Eq. (6.7).

Consider the two sets of nodes in 4, namely, the set which corresponds
to the k equations and that of the remaining nodes. Since the digraph is
connected, there is at least one branch which connects a node in the first
set to a node in the second set, Clearly the current in that branch appears
only once in the first £ node equations, hence that current cannot cancel
out in the sum of Eq. (6.7). This contradiction shows that forany k=n — 1
it is not the case that a subset of k of the KCL equations is linearly
dependent. That is, these n — 1 equations are linearly independent. L

If in A, the incidence matrix of the connected digraph 4, we delete the
row corresponding to the datum node, we obtain the reduced incidence matrix
A which is of dimension (n — 1) X b. The corresponding KCL equations read

Ai=0 (6.8)

As a consequence of the independence property just proved, we may state that
the (n — 1) X b matrix A is full rank, i.e., its n — I rows are linearly indepen-
dent vectors in the b-dimensional space. Stated in another way, (6.8) consists
of n— 1 linearly independent KCL equations.

6.3 Independent KVL Equations

Similarly, to write a set of complete linearly independent KVL equations in a
systematic way is of crucial importance. Let us write KVL for the four-node
six-branch digraph of Fig. 6.1. Using associated reference directions and
choosing node @ as the datum node, we obtain

v, = el “(’Z
v, = € €
Uy = e, tey
(6.9)
Uy = €:
U, = €,
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or in matrix form

v = Me (6.10)
where v=(v,,v,,...,v,) is the branch voltage vector, e = (e,. e, . . ., e, )
is the node-to-datum voltage vector, and M is a b X (n — 1) matrix. Thinking in
terms of KVL, we see that for k=1,2,...,bandi=1,2,... ,n—1

—1 if branch & enters node &) (6.11)

+1 if branch k leaves node (O
mkr =
0 if branch £ does not touch node ()

Comparing Eq. {6.11) with (6.5), we conclude that
M=A’
and more usefully, KVL is expressed by the equation
v=A'e (6.12)

With a connected digraph % A has n — 1 linearly independent rows, and
consequently A” has n — 1 linearly independent columns.

REMARKS

1. Note that, in the digraph, (a) we choose current reference directions,
(&) we choose a datum node and define the reduced incidence matrix'A,
{c) we write KCL as Ai=0, (d) then we use associated reference
directions to find that KVL reads v= A”e. Thus whenever we invoke
this last equation, we automatically use associated reference directions
for the branch voltages. We also assume the same datum node is used in
writing KCL and KVL.

2. When we deal with digraphs which are not connected, we could either
use the concept of the hinged graph to make the digraph connected or
treat each separate part independently. In the latter, each separate part
will have its own incidence matrix and datum node.

7 TELLEGEN’S THEOREM
Tellegen’s theorem is a very general and very useful theorem. We’ll use it

repeatedly in this text. Tellegen’s theorem is a direct consequence of Kirch-
hotf’s laws.

7.1 Theorem, Proof, and Remarks

Example Consider the digraph shown in Fig. 7.1. Choose arbitrarily the
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@@

4 6

@ Figure 7.1 A digraph with four nodes and six branches.
values of the currents i,, i,, i, and calculate i,, i, ig so that KCL is
satisfied: Let
ih=1 i, =2 iy=3

hence i,=—3 is=-—1 ig=4
Now choose arbitrarily v,, vs, and v, and calculate v,, v,, v; so that KVL is
satisfied (note that we use associated reference directions). Let

v,=4 vg=25 v, =0
hence v, = -2 v, =1 u,=—1

Note that {,,1i,,...,i, obey KCL and v, v,,..., v, obey KVL for the
circuit under consideration. Now it is easy to verify that

6
> i =0
k=1

This result is surprising since the i,’s and the v,’s seem to bear so little
relation to each other.

Tellegen’s theorem Consider an arbitrary circuit. Let the digraph
% have b branches. Let us use associated reference directions. Let i=

(i, iy ..., i,)" be any set of branch currents satisfying KCL for % and let
v={(v,,v,,...,0,)" be any set of branch voltages satisfying KVL for ¥,
then
b .
2 v, =0  orequivalently v'i=0 (7.1)
k=1

Proor For the connected digraph %,'° choose a datum node; hence its
reduced matrix A is defined unambiguously. Since i satisfies KCL., we have

Ai=0 (7.2)

' We again use a hinged graph to take care of graphs which are not connected.
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Since v satisfies KVL and since we use associated reference directions, for
some node-to-datum voltage vector e, we have

v=A"e (7.3)

Using these two equations we obtain successively,
vi=(ATe)i=e (A i=e"(Al)=0 (7.4)
where in the last step we used Eq. (7.2). "

REMARKS

1. The v and the i in the theorem need not bear any relation to each other:
v must only satisfy KVL and i must erly satisfy KCL, and we must use
associated reference directions.

2, Suppose that for the given connected digraph %, let v' and v" satisfy
KVL, and let i and i¥ satisfy KCL. Then Tellegen's theorem usserts that

vii=0 vTir=0 v'ir=0 v7Ti"'=0 (7.5)

H

Equation (7.5) is of particular interest. Note that v, ¥*, i, and i" are not
related other than by the fact that they pertain to the same digraph and that
they each independently satisfy Kirchhoff's faws. Clearly, Tellegen’s theorem
depicts only the interconnection properties of the circuit or the fopology of the
digraph. We will demonstrate later that this general form of Tellegen’s theorem
can be used to prove some general results in circuit theory.

7.2 Tellegen’s Theorem and Conservation of Energy

Consider a lumped connected circuit and let us measure, at some time ¢, all its
branch voltages v,(¢) and all its branch currents i (¢), k=1,2,..., b. Obvi-
ously v(r) and i(t) satisfy KVL and KCL, hence, by Tellegen's theorem

4]

vi) iD= 2 v ()i (=0 (7.6)

k=1

Now, since we use associated reference directions, w ()i, (¢) is the power
delivered, at time ¢, fo branch k by the remainder of the circuit; equivalently,
v, ()i, (1) is the rate at which energy is delivered, at time ¢, fo branch k by the
remainder of the circuit. Hence Eq. (7.6) asserts that the encrgy is conserved.
Thus, for lumped circuits, conservation of energy is a consequence of Kirch-
hotf’s laws.

To appreciate the fact that Tellegen’s theorem is far more general than
conservation of energy, work out the following exercise:
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Exercise Consider an arbitrary circuit with digraph %. Suppose that, for all
=0, v(t) satisfies KVL for % and i(?) satisfies KCL for %. Show that for ali

1, =0
b b
2 0 t)in(R) =0 X u(6)i(t) =0 (7.74)
b - ]
21 vt (22) =0 Fund 0p(t)iy (1) =0 (Z-1h}
2 o)) =0 X 8()ix(n)=0 (7.7¢)

where 3,(f) denotes dv,/di(t) and 7,(¢) denotes di,/dt(t).

7.3 The Relation between Kirchhoff’s Laws and Tellegen’s Theorem

In circuit theory there are two fundamental postulates: KCL and KVL. We
have proved that KCL and KVL imply Tellegen’s theorem. It is interesting to
note that any one of Kirchhoff’s laws together with Tellegen’s theorem implies
the other. More precisely we have the following properties:

Properties
1. If, for all v satisfying KVL, v'i=0 then i satisfies KCL.
2. If, for all i satisfying KCL, v’i=0, then v satisfies KVL.

ProOF
1. For all e let v= ATe, and thus v satisfies KVL. By assumption,

0=v'i=e"Ai

Now since e is an arbitrary node-to-datum voltage vector, the last
equality implies Ai=0, i.c., i satisfies KCL.

2. Let £ be an arbitrary loop in the graph 4. Consider the i obtained by
assigning zero current to all branches of % except for those of loop ¢;
depending on whether the reference direction of branch j in loop ¢
agrees with that of loop £, we assign i, to be 1 A or —1 A. The resulting
i satisfies KCL at all nodes of ¥. Tellegen’s theorem gives

b
Yui= 2 *uy=0
j=1

br;’r‘:zlzes

in loop £
thus the algebraic sum of the branch voltages around loop £ is zero, i.e.,
KVL holds for loop ¢. Since ¢ is arbitrary, we have shown that KVL
holds for all loops of 4. m
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7.4 Geometric Interpretation'’

In this section we shalt use linear vector space to interpret the significance of
Kirchhoff's laws and Tellegen’s theorem. We will use the standard notations.
For example, “R®" means “a b-dimensional vector space,” ‘€ means ‘“is a
member of,” etc.

Tellegen’s theorem requires that v satisfy KVL and i satisfy KCL for the
given digraph 4. Let % be connected and have b branches and n nodes. From
Sec. 6.3, we have

KCL: Ai=0 (7.8)
KVL: v=A"e (7.9)

We state the following properties based on the discussion of linear indepen-
dence of equations,

KCL properties
1. The (n ~ 1} x b matrix A is full rank, i.e., its 1 — 1 Tows are
linearly independent vectors in the b-dimensional space R". (7.10)
2. Ai(t) = 0 the b-dimensional current vector i(f) satisfies KCL. (7.11)
3. The set of all branch current vectors i that satisfy KCL form a
subspace, called the KCL solution space, and we label it K,. (7.12)
4. Since K; is obtained by imposing n 1 linearly independent
constraints on the b-dimensional current vector i, the dimension
of K;isb—n+1. (7.13)

The above implies

ieR’
satisfies | (Ai=0)S(iEK)) (7.14)
KCL

KVL properties
1. A" has full column rank, i.e., its # —1 columns are linearly

independent vectors in the b-dimensional space R, (7.15)
2. For some (n — 1)-dimensional vector e(?), v(¢) = A’e(r) & the
b-dimensional vector v(¢) satisfies KVL. (7.16)
3. The set of all v's satisfying KVL form a (n - 1)-dimensional
subspace which we call the KVL solution space K,. (7.17)
4, Since the subspace K, is spanned by n — 1 linearly independent
vectors, the dimension of K, is n— 1. (7.18)

! Advanced topic, may be omitted without loss of continuity.
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The above implies

vER" v=Ae
satisfies | < | forsomee | &S (veE K,) (7.19)
KVL in R""'

Now Tellegen’s theorem says that for any such v &€ R’ and any such i€ R”,
v'i=0, i.e., the vectors v and i are orthogonal.

So viewing the subspaces K, and K; as subspaces of the same vector space
R®, Tellegen’s theorem asserts that every vector in K, is orthogonal to every
vector of K,. This is denoted by

K, LK, (7.20)

i.e., the subspaces K, and K, are orthogonal. The orthogonality of K, and K, is
illustrated in Fig. 7.2.

Recalling that the dimension of K, is b — n + 1 and that of K is n — 1, the
sum of their dimensions is b. “onsequently the subspaces K, and K, are not
only orthogonal, but also have their direct sum equal to R”. In other words,
any vector in R” can be written uniquely as the sum of a vector in K; and a
vector in K.

To illustrate the equivalences in Eqgs. (7.14) and (7.19) we consider two
simple examples.

Example 1 ¥ is the digraph of a two-node three-branch circuit shown in
Fig. 7.3; we see that A is a 1 X 3 matrix, namely,

A=[111]
So Ai=00 +i,+i,=0 (7.21)

1 2 3
0
Figure 7.2 Figure illustrating the orthogon- Figure 7.3 A digraph with twoe nodes and
ality of the subspaces K, and K, where K is three branches.

the set of all i’'s satisfying KCL and K, is the
set of all v's satisfying KVL.

®
4

®
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U, 1
v=ATes| v, [=|1 e (7.22)
Uy 1

K, is a two-dimensional subspace; i, i,, i, are constrained by one equation,
the KCL at node @, Eq. (7.21). K, is shown in Fig. 7.4.

K, is a one-dimensional subspace: There is only one degree of
freedom, namely, the node voltage e,. [See Eq. (7.22).] K, is shown in
Fig. 7.5. Note that the vector (1, 1, 1)" which spans K, is orthogonal to K,
as required by Tellegen’s theorem.

Example 2 % is the digraph of a three-node four-branch circuit shown in
Fig. 7.6. Now A is a 2 % 4 matrix, namely

o1 0 1 1]
A—[O 1 —1 -1 (7.23)
KCL, namely Ai=0, reads

i, +i,+i,=0

iy—iy—i, =0

(7.24)

f)
/\j Figure 7.4 The two-dimensional KCL solution space

of Example 1.

B
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3 ®
vz / =
Figure 7.5 The one-dimensional KVL solut- Figure 7.6 A digraph with three modes and

ion space of Example 1. four branches considered in Example 2.



