1. a.
Kirchoff’s Current Law at X:
\[
\frac{4-V_x}{4} + \frac{(-2)-V_x}{12} + \frac{V_y-V_x}{2} = 0
\]
Kirchoff’s Current Law at Y:
\[
\frac{V_x-V_y}{2} - \frac{V_y}{5} - 1 + \frac{(-15-V_y)}{20} + 7 = 0
\]

1. b.
Matrix Equation:
\[
\begin{pmatrix}
-5/6 & 1/2 \\
1/2 & -3/4
\end{pmatrix}
\begin{pmatrix}
V_x \\
V_y
\end{pmatrix}
= \begin{pmatrix}
-5/6 \\
-25/4
\end{pmatrix}
\]
Solve by Cramer’s Rule:
\[
\Delta = (-5/6)(-3/4) - (1/2)(1/2) = 3/8
\]
\[
V_x = \frac{1}{\Delta}\det\begin{pmatrix}
5/6 & 1/2 \\
-25/4 & -3/4
\end{pmatrix} = 10
\]
\[
V_y = \frac{1}{\Delta}\det\begin{pmatrix}
-5/6 & -5/6 \\
1/2 & -25/4
\end{pmatrix} = 15
\]
\[
V_x = +10\text{V}, \quad V_y = +15\text{V}
\]
1. c.

Transformations: (Box X):

\[
\begin{align*}
4V & \quad \rightarrow \quad +1\Omega A \\
2V & \quad \rightarrow \quad -1/6A 12\Omega
\end{align*}
\]

Thevenin Equivalent: (Box X):
Transformations: (Box Y):

\[5/6A \quad \frac{3\Omega}{2.5V} \quad 3\Omega \]

\[20\Omega \]

\[-15V \quad \rightarrow \quad -3/4A \]

\[20\Omega \]

\[-3/4A \quad \frac{20\Omega}{5\Omega} \quad 7A \quad \rightarrow \quad 6.25A \quad \frac{4\Omega}{6.25A} \]
Thevenin Equivalent: (Box Y):

\[6.25A \quad 4\Omega \quad 25V \]

Transformed Circuit (with solution):

\[V_X = 2.5 + 3(2.5) = 10 \]
\[V_Y = 25 - 4(2.5) = 15 \]

1. d.

Power is

\[P = (4)^2/13 + 6^2/4 + 12^2/12 + 5^2/2 + 15^2/5 + 30^2/20 + 7^2/37 = 1937.731W \]

2. a.

\[Z_T = 1/(1/(25/4) + 1/(-j25/3)) = 25/(4 + j3) = 4 - j3\Omega \]
2. b.
Optimum load is $Z_{L}^{opt} = (Z_T)^{*} = 4 + j3\Omega$

2. c.
Composite load $Z_L + Z_T = (4 - j3) + (4 + j3) = 8 + j0\Omega$ so $I = 4/(8 + j0) = 0.5$ ARMS. Power dissipated in resistive part of load is $(1/2)^2 \cdot 4 = 1.0 W$.

3. a.
The ideal op-amp rule $V_{in}(+) = V_{in}(-) = V_{out}/2$ by the resistive divider formula for the two $1.0 k\Omega$ resistors. Therefore the overall gain is $V_{out}/V_{in} = +2$. A gain of two is 6 dB and the circuit is NON-INVERTING.

3. b.
The output voltage is independent of a load resistor from V_{out} to ground, as seen by the solution above. Therefore the output voltage is not reduced by any finite load impedance and so the output impedance is 0Ω.

3. c.
No current flows into the terminal $V_{in}(-)$ for an ideal op-amp. Thus the input impedance $= V_{in}/I_{in} = \infty\Omega$.