EE 43/100
 Pre-Lab: RC Circuits

\qquad
Name:
A:

Please read the lab manual first then show your work here.

$$
\mathrm{V}=\mathrm{Q} / \mathrm{C}=\left[\int \mathrm{i}(\mathrm{t}) \mathrm{dt}\right] / \mathrm{C}
$$

Differentiating this equation, we obtain $\mathrm{i}(\mathrm{t})=\mathrm{C}(\mathrm{dV} / \mathrm{dt})$

1. If a constant current of 1.0 mA were to flow into a $200 \mu \mathrm{~F}$ (microfarad) capacitor, what would be the voltage across the capacitor after 3 seconds?
2. Describe what would happen theoretically if you were to connect an ideal current source to the following circuits. Use time plots to illustrate.
a)

3. An RC (resistor + capacitor) circuit will have an exponential voltage response of the form $v(t)=\mathrm{A}+\mathrm{B} e^{-t / \mathrm{RC}}$ where A and B are constants that express the final voltage and the difference between the initial voltage and the final voltage, respectively.
a. Given $\mathrm{R}=10 \mathrm{k} \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$, a starting voltage of 5 Volts and an ending voltage of 0 Volts, what will the voltage be at $\mathrm{t}=1 \mathrm{~ms}$?
b. At what time will the voltage be 0.5 Volts?
4. Suppose you were given two black boxes, which have either a series or parallel combination of R and C . In the case of the series RC, you would not be able to touch a probe between the R and the C in the black box, so how would you go about determining R and C using the signal generator, the oscilloscope and an external resistance? (Hint: read the lab)
