1. (a) By inspection, the period is \(T = 3 \text{ ms} \).

(b) The DC/average voltage may be found as follows, since the voltage is constant during certain intervals of time:

\[
V_{DC} = \frac{1}{T} \int_0^T V(t)dt
\]

\[
= \frac{1}{3 \text{ ms}} [(1 \text{ V})(1 \text{ ms}) + (2 \text{ V})(1 \text{ ms}) + (0 \text{ V})(1 \text{ ms})]
\]

\[
= 1 \text{ V}
\]

(c) The RMS voltage may be found as follows, since the voltage is constant during certain intervals of time:

\[
V_{rms} = \sqrt{\frac{1}{T} \int_0^T V(t)^2dt}
\]

\[
= \sqrt{\frac{1}{3 \text{ ms}} [(1 \text{ V})^2(1 \text{ ms}) + (2 \text{ V})^2(1 \text{ ms}) + (0 \text{ V})^2(1 \text{ ms})]}
\]

\[
= \sqrt{\frac{5 \text{ V}^2}{3}}
\]

\[
= \sqrt{\frac{5}{3}} \text{ V}
\]

2. (a)

\[5e^{j\pi} \leftrightarrow 5 \cos(\omega t + \frac{\pi}{2})\]

(b)

\[3 + 4j = (3^2 + 4^2)^{\frac{1}{2}}e^{j \tan^{-1}(\frac{4}{3})}
\]

\[\leftrightarrow 5 \cos(\omega t + \tan^{-1}(\frac{4}{3}))\]

(c)

\[3 \cos(\omega t) + 4 \sin(\omega t) \leftrightarrow 3e^{j0} + 4e^{-j\frac{\pi}{2}}
\]

\[= 3 - 4j\]

(d)

\[\sqrt{2} \sin(\omega t - 45^\circ) = \sqrt{2} \cos(\omega t - \frac{3\pi}{4})
\]

\[\leftrightarrow \sqrt{2}e^{-j\frac{3\pi}{4}}\]
3. The internal resistance R of a practical current source is in **parallel** with the source.

For a well-designed circuit with a practical current source, this internal resistance R should be much **larger** than the load resistance.

A circuit element that requires an external power supply is called **passive**.

We **cannot** find the Thevenin equivalent of a circuit containing diodes.

The input resistance of an ammeter is **very small**.

An oscilloscope can easily **not be used** to measure magnetic field strength.

4. (a) The internal resistance of a practical battery model is in **series** with the voltage source. A realistic model of a practical voltmeter has an internal resistance in parallel with an ideal voltmeter. The circuit diagram is given in Figure 1.

\[V = (10 \, \text{V}) \frac{(R_L \parallel R_2)}{R_1 + (R_L \parallel R_2)} \]

\[= \frac{10}{\frac{R_1}{R_L + R_2} + \frac{R_1 R_2}{R_L + R_2}} \, \text{V} \]

\[= \frac{10 R_L R_2}{R_1 R_L + R_1 R_2 + R_L R_2} \, \text{V} \]

(b) The measured voltage can be found by reducing the parallel combination of R_L and R_2 into an equivalent resistance, and then applying the voltage divider formula.

(c) Ideally, you would want $R_1 <<< R_L$ so the load experiences a voltage drop that is close to the open-circuit voltage.

(d) Ideally, you would want $R_2 >> R_L$ so the voltmeter does not perturb the original circuit too much.
Figure 2: Frequency response $H(\omega)$. The asymptotic approximation is in black and the actual plot is in blue.

5. (a) A current of I_{in} flows through the capacitor and the resistance R_2. To find the current I_{out}, we can use the current divider formula, where Z_L is the impedance of the inductor.

$$I_{out} = I_{in} \frac{Z_L}{Z_L + R_1}$$
$$= I_{in} \frac{j\omega L}{j\omega L + R_1}$$

(b) The frequency response function is:

$$H(\omega) = \frac{j\omega L}{R_1 + j\omega L}$$
$$= \frac{j\omega L}{j\omega L \cdot R_1 + 1}$$
$$= \frac{j\omega 10^{-4}}{j\omega 10^{-4} + 1}$$

The voltage gain is given in Figure 2.

(c) This is a **high-pass** filter.

6. Assign ground as the node at the bottom of the circuit.

 (a) KCL at node a, using the sum of the currents **into** the node:

$$1 + \frac{0 - V_a}{1} + \frac{V_b - V_a}{1} = 0$$
This can be rewritten as:

\[2V_a - V_b = 1 \]

(b) KCL at node b, using the sum of the currents into the node:

\[-I + \frac{0 - V_b}{1} + \frac{V_a - V_b}{1} = 0\]

This can be rewritten as:

\[-V_a + 2V_b = -I\]

(c) The extra equation that is required is the relationship between the node voltages and the voltage source (recall that we had to introduce an extra unknown \(I \) to account for the current through the voltage source).

\[V_b - 0 = 10 \text{ V} \]
\[V_b = 10 \text{ V} \]

Now we can use the equation from Part (a) to solve for \(V_a \):

\[V_a = \frac{V_b + 1}{2} \text{ V} \]
\[V_a = \frac{11}{2} \text{ V} \]

7. (a) Pulling out the capacitor allows the Thevenin equivalent circuit to be found. The first step is finding \(V_{oc} \), or the open-circuit voltage across the terminals after the capacitor is removed (using the sign convention for \(v_c(t) \)). Noticing that no current flows through \(R_3 \) when the capacitor is removed, the expression for \(V_{oc} \) may be obtained by applying the voltage divider formula:

\[V_{oc} = v_s \frac{R_2}{R_1 + R_2} \]
\[= v_s \frac{2 \text{ k}\Omega}{4 \text{ k}\Omega} \]
\[= \frac{1}{2} v_s \]

Since \(V_{oc} = v_T(t) \), then the Thevenin voltage is:

\[v_T(t) = \begin{cases} -2 \text{ V} & t \leq 0 \\ 3 \text{ V} & t > 0 \end{cases} \]

The Thevenin resistance may be found by finding the short circuit current and then finding \(\frac{V}{I} \). For this problem, it will be easier to find the equivalent resistance looking into the terminals with all of the sources zeroed out.

\[R_T = R_3 + \frac{R_1 R_2}{R_1 + R_2} \]
\[= 3000 \text{ }\Omega + \frac{2000^2 \text{ }\Omega^2}{4000 \text{ }\Omega} \]
\[= 4 \text{ k}\Omega \]
(b) The time constant for the Thevenin equivalent circuit is
\[
\tau = R_T C \\
= (6000)(2.5 \times 10^{-6}) \text{ sec} \\
= 15 \text{ ms}.
\]
The steady state voltage for \(v_c \) is equal to \(v_T \) for \(t > 0 \). The initial voltage across the capacitor is \(v_T \) for \(t \leq 0 \), assuming that the system had sufficient time to equilibrate. This information, along with the time constant, gives the expression for the voltage across the capacitor for \(t > 0 \):
\[
v_C(t) = 5 + (-8)e^{-\frac{t}{\tau}} \\
= 5 - 8e^{-\frac{t}{15}}.
\]
We expect that the solution will reach the steady state in approximately 3 time constants. The graph is given in Figure 3.

![Figure 3: \(v_C(t) \) for Problem 7.](image)

8. There are only four possible resistances that may be constructed from two resistors:
\[
\begin{align*}
R_1 \\
R_2 \\
R_1 + R_2 \\
\frac{R_1R_2}{R_1 + R_2}
\end{align*}
\]
The series combination means that \(R_1 + R_2 = 18 \, \Omega \) since it is the greatest resistance possible. Plugging in the other two choices for combinations of \(R_1 \) and \(R_2 \) leaves the following:

\[
\begin{align*}
R_1 &= 6 \, \Omega \\
R_2 &= 12 \, \Omega
\end{align*}
\]