EE100 Lecture 2 - Part II (After break)

(2) Independent Current Source:

Note: Current sources are a little weird!

Loop must be complete

0 = 2 A, not possible
This brings up open circuits & short-circuits.

Warning: Watch out for these concepts = potential pitfalls.

\[\text{V}_{AB} - 12 = 0 \]
\[\Rightarrow \text{V}_{AB} = 12 \text{ V} \]

\[\text{I}_{\text{curr}} \text{ V}_{AB} = 12 \Rightarrow i = \frac{12}{R} \text{ A} \]

Short circuit

Open circuit
Again, watch out for open circuit & short circuit questions = tricky!

\[\text{(a) Find } V_{AB} \]

\[V_{AB} = 3 \text{ V} \]

Note: \[V_{AB} = V_A - V_B \]

i.e., in the question above \[V_{AB} = V_A - V_B \]

KVL around loop 2: \[V_B + 6 = 0 \Rightarrow V_B = -6 \text{ V} \]
KVL around loop 1: \(12 - 3 - V_A = 0 \Rightarrow V_A = 9 \text{ V} \)

\[
V_{AG} = U_A - V_B = 15 \text{ V}
\]

Summary:
- **Open Circuit**
- \(V_A = ? \)
- \(j = 0 \)
- \(v = ? \)
- \(\text{Short circuit} \)
- \(v_{AG} = 0 \)
- \(i = 0 \)
Dependent sources: Sources (voltage or current) whose output depends on a current or voltage elsewhere in the circuit. For type:

\[v_o = \alpha v_i \]
\[v_i = \beta i_2 \]
\[i_i = \gamma i_3 \]
\[i_3 = \Delta V_4 \]

Voltage controlled voltage source (VCVS)
(A) \[i_4 = 5 v_i \]
\[V_4 = 65 \text{ A} \]

\[10 + 3 - v_i = 0 \Rightarrow v_i = 13 \text{ V} \]

Resistor:
\[v = i R \Rightarrow v = -i R \]

Kirchhoff's Loop Law:
\[0 = \sum v = v_1 + v_2 + v_3 + v_4 \]

\[V = i R \]

Ohm's Law:
\[V = i R \]
Notice: Resistors always absorb energy!

\[e = \frac{dQ}{dt}, \quad V = 1 \, V, \quad i = 1 \, A, \quad R = 1 \, \Omega \]

\[V = 1 \, V \]

\[i = 1 \, A \]

\[V = 1 \, V \]

\[R \quad \begin{cases} \frac{i}{i} = 1, \quad V = 1 \, V = (-1 \, V) = (-1 \, A) \, R \\ R = 1 \, \Omega \end{cases} \]
\[v = -iR \]

Physically:

\[R = \frac{\rho L}{A} \]

\[P = \sqrt{\rho \cdot 20} = \sqrt{R = 1 \Omega} \]

Note: Power can be expressed in terms of \(R \) for a resistor: \(P = vi \)

\[V + \frac{1}{i} R = \rho \cdot (1R) = i^2 R \]
Now we will do circuit, circuit, circuit...

\[e_8^2 \text{(p. 50)} \] p. 43 Find \(V_x \)

Use KVL, KCL & Ohm's law to find \(V_x \).
(Don't use resistors in parallel and/or series)
Step 1: Use Ohm's law on rightmost resistor.

\[V_y = \frac{1A \times 5 \Omega}{1A} = 5 \text{ V} \]

Step 2: Use parallel element idea to set voltage across 10 \(\Omega \) as 5 V.

Step 3: KVL around loop 1: \(V_1 + V_2 - 5 = 0 \)

We still need \(V_2 \) using Ohm's law.
Step 4:
Use KCL at node A: \(i + i_3 + i_2 + i = 0 \)

\[i_2 = \frac{5V}{6\Omega} = \frac{5}{6} A = 1A \]

\[i_3 = \frac{5V}{10\Omega} = 0.5A \]

\[i = -(1 + 1 + 0.5) = -2.5A \]
\[V_2 = IR \quad \text{(Ohm's law)} \]
\[= (-2.5) (5) = -12.5 \, V \]

\[\text{Note:} \quad 5^\circ \quad -2.5 \]
\[\Theta \quad -12.5 \, V \]
\[\Theta \quad 12.5 \, V \]

\[V_2 + V_3 - 5 = 0 \quad \Rightarrow \quad \sqrt{V_2} = 17.5 \, V \]
Next time: Chapter 27 READ!

(20 Intro to PSpice (office hour)

START HERE #1, WE OFF FOR QUESTIONS