EECS 100/43 Lab 7 Strain Gauge Report

NAME(S):_	/SECTION
	Make sure that there is a strain gauge apparatus on your workbench.
Measure the	resistance of the strain gauge at rest, at the maximum pull and maximum
	e clamp to make sure the strain gauge is firmly seated on the bench. Record to measurements in table 1.

Position	Rstrain (Ω)
Maximum Pull	
Rest	
Maximum Push	

Table 1. Rstrain values that indicate the position

<u>b.</u>	TASK 2	2 Based	on your	measurer	nents, p	oick a	value	for R6	, R7	and 1	R8 (R6	= R7	7 =
R	8) in your	Wheats	stone brid	dge from	figure 3	. Get	this va	lue che	ecked	off b	by the T	A.	

R for	Wheatstone	bridge:	

c. TASK 3 Build the circuit shown in figure 3. You may have to change the values of the resistors in the op-amp circuits depending on your strain gauge.

The design criterion is that your output voltage at node 7 (V7) in figure 3 should swing from approx. -5 V to 5 V as you push and pull the strain gauge.