{'f TEXAS
INSTRUMENTS

MSP430x2xx Family

User’s Guide

2008 Mixed Signal Products
SLAU144E

About This Manual

Preface

Read This First

This manual discusses modules and peripherals of the MSP430x2xx family of
devices. Each discussion presents the module or peripheral in a general
sense. Not all features and functions of all modules or peripherals are present
on all devices. In addition, modules or peripherals may differ in their exact
implementation between device families, or may not be fully implemented on
an individual device or device family.

Pin functions, internal signal connections, and operational paramenters differ
from device to device. The user should consult the device-specific datasheet
for these details.

Related Documentation From Texas Instruments

FCC Warning

For related documentation see the web site http://www.ti.com/msp430.

This equipment is intended for use in a laboratory test environment only. It
generates, uses, and can radiate radio frequency energy and has not been
tested for compliance with the limits of computing devices pursuant to subpart
J of part 15 of FCC rules, which are designed to provide reasonable protection
against radio frequency interference. Operation of this equipment in other
environments may cause interference with radio communications, in which
case the user at his own expense will be required to take whatever measures
may be required to correct this interference.

Notational Conventions

Program examples, are shown in a special typeface.

Glossary

Glossary

ACLK
ADC
BOR
BSL
CPU
DAC
DCO
dst
FLL
GIE
INT(N/2)
I/0
ISR
LSB
LSD
LPM
MAB
MCLK
MDB
MSB
MSD
NMI
PC
POR
PUC
RAM
SCG
SFR
SMCLK
SP
SR
src
TOS
WDT

Auxiliary Clock
Analog-to-Digital Converter
Brown-Out Reset
Bootstrap Loader

Central Processing Unit

Digital-to-Analog Converter

Digitally Controlled Oscillator

Destination

Frequency Locked Loop
General Interrupt Enable
Integer portion of N/2
Input/Output

Interrupt Service Routine
Least-Significant Bit
Least-Significant Digit
Low-Power Mode
Memory Address Bus
Master Clock

Memory Data Bus
Most-Significant Bit
Most-Significant Digit
(Non)-Maskable Interrupt
Program Counter
Power-On Reset
Power-Up Clear

Random Access Memory
System Clock Generator
Special Function Register
Sub-System Master Clock
Stack Pointer

Status Register

Source

Top-of-Stack

Watchdog Timer

See Basic Clock Module

See System Resets, Interrupts, and Operating Modes
See www.ti.com/msp430 for application reports
See RISC 16-Bit CPU

See Basic Clock Module
See RISC 16-Bit CPU
See FLL+in MSP430x4xx Family User’s Guide

See System Resets Interrupts and Operating Modes

See Digital /0

See System Resets Interrupts and Operating Modes

See Basic Clock Module

See System Resets Interrupts and Operating Modes
See RISC 16-Bit CPU

See System Resets Interrupts and Operating Modes
See System Resets Interrupts and Operating Modes

See System Resets Interrupts and Operating Modes

See Basic Clock Module
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See RISC 16-Bit CPU
See Watchdog Timer

Register Bit Conventions

Register Bit Conventions

Each register is shown with a key indicating the accessibility of the each
individual bit, and the initial condition:

Register Bit Accessibility and Initial Condition

Key

Bit Accessibility

rw
r
ro
r1
w
w0

wi

W)

ho
h1
-0,-1

Read/write
Read only
Read as 0
Read as 1
Write only
Write as 0
Write as 1

No register bit implemented; writing a 1 results in a pulse.
The register bit is always read as O.

Cleared by hardware
Set by hardware
Condition after PUC

—(0),-(1) Condition after POR

vi

Contents

Contents

Introductionoiiiiii i i i i e e r 1-1
1.1 ArChIteCtUre . .o e 1-2
1.2 Flexible Clock System e 1-2
1.3 Embedded Emulation 1-3
1.4 AdAreSS SPaCEttt et e e 1-4
1.4.1 Flash/ROM 1-4

1.4.2 RAM L 1-5

1.4.3 PeripheralModules i 1-5

1.4.4 Special Function Registers (SFRS), 1-5

1.4.5 Memory Organizationo, 1-5

1.5 MSP430x2xx Family Enhancements i 1-7
System Resets, Interrupts, and OperatingModesccciiiiiant, 2-1
2.1 System Reset and Initialization i 2-2
2.1.1 Brownout Reset (BOR)ttt 2-3

2.1.2 Device Initial Conditions After System Reset 2-4

2.2 M eITUDES oo 2-5
2.2.1 (Non)-Maskable Interrupts (NMI) 2-6

222 Maskable Interrupts 2-9

2.2.3 Interrupt Processingot 2-10

224 Interrupt VECIOrs o 2-12

2.3 Operating Modest 2-14
2.3.1 Entering and Exiting Low-Power Modes 2-16

2.4 Principles for Low-Power Applications i, 2-17
2.5 Connectionof Unused Pins i 2-17
RISC16-Bit CPUciiiiiiiiii i ii ittt aasaasansasssnnsnssannnnnsnnns 3-1
3.1 CPUINtroduCtion e 3-2
3.2 CPU REQISIEIS ..ot 3-4
3.2.1 Program Counter (PC)o 3-4

3.2.2 Stack Pointer (SP)t 3-5

3.2.3 Status Register (SR)o 3-6

3.2.4 Constant Generator Registers CG1andCG2 3-7

3.2.5 General-Purpose Registers R4to R15 i, 3-8

3.3 Addressing Modes e 3-9
3.3.1 RegisterMode 3-10

3.32 Indexed MOde o 3-11

3.3.3 SymbolicMode 3-12

3.3.4 Absolute Mode 3-13

3.3.5 Indirect RegisterMode 3-14

3.3.6 Indirect AutoincrementMode 3-15

3.3.7 Immediate Mode 3-16

3.4 Instruction Set 3-17
3.4.1 Double-Operand (Format I) Instructions 3-18

3.4.2 Single-Operand (Format Il) Instructions 3-19

B4 3 JUMIPS . o 3-20

3.4.4 Instruction Cyclesand Lengths i, 3-72

3.4.5 Instruction Set Description 3-74

Vi

Contents

4

viii

16-Bit MSP430X CPUttt ittt eai i s nasansrsnnsnssannnnnennns 4-1
4.1 CPUINtroduCtion e 4-2
4.2 I erTUDES oo 4-4
4.3 CPUREQISIEIS ..ot 4-5
4.3.1 Program Counter PC 4-5
4.3.2 Stack Pointer (SP) 4-7
4.3.3 Status Register (SR)o 4-9
4.3.4 The Constant Generator Registers CG1and CG2 4-11
4.3.5 General-Purpose Registers R4to R15 i, 4-12
4.4 Addressing Modes e 4-15
441 RegisterMode 4-16
442 Indexed MOde i 4-18
443 SymbolicMode 4-24
444 Absolute Mode 4-29
445 Indirect RegisterMode 4-32
4.4.6 Indirect, AutoincrementMode 4-33
447 Immediate Mode 4-34
4.5 MSP430 and MSP430X Instructions i 4-36
4.5.1 MSP430 INStructionsttt 4-37
4.5.2 MSP430X Extended Instructions, 4-44
4.6 Instruction Set Description 4-58
4.6.1 Extended Instruction Binary Descriptions 4-59
4.6.2 MSPA430 INStructionsottt 4-61
4.6.3 Extended Instructions i 4-113
4.6.4 Address Instructions 4-156
Basic Clock Module+t ii it iiasinrsaainsrannnnnrnnns 5-1
5.1 Basic Clock Module+ Introduction i, 5-2
5.2 Basic Clock Module+ Operation et 5-4
5.2.1 Basic Clock Module+ Features for Low-Power Applications 5-4
5.2.2 Internal Very Low Power, Low Frequency Oscillator 5-4
52.3 LFXT1Oscillator.o 5-5
524 XT2O0scillator 5-6
5.2.5 Digitally-Controlled Oscillator (DCO)« 5-6
52.6 DCOMOAUIAtOr it 5-9
5.2.7 Basic Clock Module+ Fail-Safe Operation 5-10
5.2.8 Synchronization of Clock Signals oo, 5-12
5.3 Basic Clock Module+ Registerst 5-13

Contents

6 DMA Controllercciiiiiiiiii it aaain s saasaseannnnsrannnnnsnnns
6.1 DMA INtrodUCtIONo
6.2 DMA Operation

6.2.1 DMA AddressingModes
6.22 DMA Transfer Modes e
6.2.3 Initiating DMA Transfers i
6.2.4 Stopping DMA Transferst
6.2.5 DMA Channel Priorities
6.26 DMA TransferCycle Timet i
6.2.7 Using DMA with System Interrupts L.
6.2.8 DMA Controller Interruptst
6.2.9 Using the USCI_B 12C Module with the DMA Controller
6.2.10 Using ADC12 with the DMA Controllert
6.2.11 Using DAC12 With the DMA Controller,
6.2.12 Writing to Flash With the DMA Controller
6.3 DMA Registerso

7 Flash Memory Controllerc.oiiiiiiii it iai i aeainseannnaneanns
7.1 Flash Memory Introduction it
7.2 Flash Memory Segmentation i

7.2 SegmMeENtA e
7.3 Flash Memory Operation i
7.3.1 Flash Memory Timing Generatorccoiiiiiiiiiinaaann.
7.3.2 Erasing Flash Memory i
7.3.3 Writing Flash Memory
7.3.4 Flash Memory Access During WriteorErase
7.3.5 StoppingaWriteorErase Cycle i,
7.3.6 MarginalRead Mode
7.3.7 Configuring and Accessing the Flash Memory Controller
7.3.8 Flash Memory Controller Interruptso,
7.3.9 Programming Flash Memory Devices,
7.4 Flash Memory Registers i e

8 Digital Oii i e aia s ia e e
8.1 Digital I/O Introduction i
8.2 Digital I/O Operationt

8.2.1 Input Register PxIN
8.2.2 Output Registers PXOUT i
8.2.3 Direction Registers PXDIR
8.2.4 Pull-Up/Down Resistor Enable Registers PXREN
8.2.5 Function Select Registers PxXSEL and PxSEL2
8.2.6 PlandP2interrupts
8.2.7 ConfiguringUnused PortPins i,
8.3 Digital /O Registers

6-1
6-2
6-4
6-4
6-5
6-12
6-14
6-14
6-15
6-16
6-16
6-17
6-18
6-18
6-18
6-19

7-1
7-2
7-3
7-4
7-5
7-5
7-7
7-10
7-16
7-17
7-17
7-17
7-18
7-18
7-20

Contents

9 Supply Voltage SUPerviSOrcuitiiiriieraanraanreanrranrransannnnnnns 9-1
9.1 SVS INtrodUCHioNo 9-2

9.2 SVS Operation 9-4
9.2.1 Configuringthe SVS 9-4

9.2.2 SVS Comparator Operationo, 9-4

9.2.3 Changingthe VLDX Bitst 9-5

9.24 SVSOperating Rangeot 9-6

9.3 SVS RegiSters . ..ot 9-7

10 Watchdog Timer+ouviii ittt e i e i eas s nsnrnsn s nanrnansnannnns 10-1
10.1 Watchdog Timer+ Introduction i 10-2
10.2 Watchdog Timer+ Operation e 10-4
10.2.1 Watchdog timer+ Counter 10-4

10.2.2 WatchdogMode i e 10-4

10.2.3 Interval TimerMode 10-4

10.2.4 Watchdog Timer+ Interrupts 10-5

10.2.5 Watchdog Timer+ Clock Fail-Safe Operation 10-5

10.2.6 Operationin Low-PowerModes, 10-6

10.2.7 Software Examples 10-6

10.3 Watchdog Timer+ Registers e 10-7

11 Hardware Multiplier ... i it i i i e n e nannnas 11-1
11.1 Hardware Multiplier Introduction 11-2
11.2 Hardware Multiplier Operationc i 11-3
11.2.1 Operand Registers i 11-3

11.2.2 Result Registers 11-4

11.2.3 Software Examples 11-5

11.2.4 Indirect Addressing of RESLO i, 11-6

11.2.5 Using Interrupts o 11-6

11.3 Hardware Multiplier Registers i 11-7

L7 T 1 1= L N 12-1
12,1 Timer_A Introduction e 12-2
12.2 Timer_A Operationt e 12-4
12.2.1 16-Bit Timer Countert i 12-4

12.2.2 Startingthe Timer e 12-5

12.2.3 Timer Mode Controlt e 12-5

12.2.4 Capture/Compare BIoCkS 12-11

1225 Output Unit ..o 12-13

12.2.6 Timer_A Interrupts e 12-17

12.3 Timer_A Registers e 12-19

13

14

15

Contents

0.1 1= = 13-1
13.1 Timer_B Introduction i e 13-2
13.1.1 Similarities and Differences From Timer_A 13-2
13.2 Timer_B Operationt e 13-4
13.21 16-Bit TimerCounter i i i 13-4
13.2.2 Startingthe Timer e 13-5
13.2.3 TimerMode Control i i i 13-5
13.2.4 Capture/Compare BIOoCkS 13-11
13.2.5 Output Unit ..o 13-14
13.2.6 Timer_B Interrupts e 13-18
13.3 Timer_B Registers e 13-20
Universal Serial Interfaceot it ie i eae e eaennannnnnn 14-1
14.1 USlIntroduction e 14-2
14.2 USIOperation e 14-5
14.21 USl Initialization 14-5
14.2.2 USIClock Generation 14-6
1423 SPIMOGE . ..o e 14-6
1424 12C MOAE . ..ot e 14-9
14.3 USI ReQiSters . ..ot e 14-13
Universal Serial Communication Interface, UARTMode 15-1
15.1 USCIOVEIVIEW . .. e e e 15-2
15.2 USCI Introduction: UART Modet e 15-3
15.3 USCI Operation: UART Modet i e 15-5
15.3.1 USCI Initializationand Reset 15-5
15.3.2 Character Format 15-5
15.3.3 Asynchronous Communication Formats 15-6
15.8.4 Automatic Baud Rate Detection, 15-10
15.3.5 IrDA Encodingand Decodingc.ooiuiiiiiiiiiniien. 15-12
15.8.6 Automatic ErrorDetection 15-13
15.3.7 USCIReceiveEnable 15-14
15.3.8 USCI TransmitEnable 15-15
15.3.9 UART Baud Rate Generation i, 15-15
15.3.10 SettingaBaud Rate i 15-18
15.3.11 Transmit Bit Timing oo e 15-19
15.3.12 Receive Bit TImingo o 15-20
15.3.13 Typical Baud Ratesand Errors 15-21
15.3.14 Using the USCI Module in UART Mode with Low Power Modes 15-25
15.3.15 USCI INterruptso 15-25
15.4 USCI Registers: UART MOdEttt 15-27

xi

Contents

16 Universal Serial Communication Interface, SPIMode 16-1
16.1 USCI OVEIVIBW . . oot e e e e e e et 16-2
16.2 USCI Introduction: SPIMode i 16-3
16.3 USCI Operation: SPIMOde e 16-5

16.3.1 USCI Initializationand Reset i i, 16-6
16.3.2 Character Format 16-6
16.3.3 Master Mode e 16-7
16.3.4 Slave Mode o 16-9
16.3.5 SPIEnable 16-10
16.3.6 Serial Clock Control i 16-11
16.3.7 Using the SPI Mode with Low Power Modes 16-12
16.3.8 SPlINterrupts 16-13
16.4 USCI Registers: SPIMOdEttt e 16-15

17 Universal Serial Communication Interface,I2CModecooo.... 17-1
171 USCIOVEIVIBW . oottt et et e et e e e it 17-2
17.2 USCI Introduction: I2C Modet e 17-3
17.3 USCI Operation: I2C Modet i e 17-5

17.3.1 USCI Initializationand Reset i i, 17-6
17.3.2 12C Serial Datat 17-7
17.3.3 12C Addressing Modescoiiiiiii i 17-8
17.3.4 12C Module Operating Modest 17-9
17.3.5 12C Clock Generation and Synchronization 17-21
17.3.6 Using the USCI Module in 12C Mode with Low Power Modes 17-22
17.3.7 USCl Interrupts in I2CModecco i, 17-23
17.4 USCI Registers: I2C Modet i 17-25

1 Z010 18-1
18.1 OA INtroduction o e 18-2
18.2 OA OPEerationttt e 18-4

18.2.1 OA Amplifier 18-4
18.2.2 OA INPUL Lo 18-4
18.2.3 OA Output and Feedback Routing, 18-5
18.2.4 OA Configurationsot e 18-6
18.3 OA RegiSters . . oo e 18-12

19 Comparator A+ttt it aasaa s a s e s 19-1
19.1 Comparator_A+ Introduction i 19-2
19.2 Comparator_A+ Operation e 19-4

19.2.1 COMPAratOrttt e e 19-4
19.2.2 Input Analog Switches i 19-4
19.2.3 Input Short Switch 19-5
19.2.4 Output Filtero 19-6
19.2.5 Voltage Reference Generator, 19-6
19.2.6 Comparator_A+, Port Disable Register CAPD 19-7
19.2.7 Comparator_ A+ Interrupts 19-7
19.2.8 Comparator_A+ Used to Measure Resistive Elements 19-8
19.3 Comparator_A+ Registers e 19-10

Xii

20

21

22

23

Contents

40 L 20-1
20.1 ADCT0 Introductionttt 20-2
20.2 ADCTI0 Operationttt 20-4
20.2.1 10-Bit ADC COre . . oottt e 20-4
20.2.2 ADC10 Inputs and Multiplexeroiiiiiiiiiiiiinnn. 20-5
20.2.3 Voltage Reference Generatorooiiiiiiiiiiiiinaann. 20-6
20.2.4 Auto Power-DOWNn 20-6
20.2.5 Sample and Conversion TIMINGttt 20-7
20.2.6 Conversion MOdesttt 20-9
20.2.7 ADC10 Data Transfer Controller, 20-15
20.2.8 Using the Integrated Temperature Sensorcovovnn.. 20-21
20.2.9 ADC10 Grounding and Noise Considerations 20-22
20.2.10 ADC10 INterrupts oe i e 20-23
20.3 ADCTI0 Registersttt 20-24
0 211
21.1 ADCI2 Introductiont 21-2
21.2 ADCI12 Operationt 21-4
21.21 12-Bit ADC COre . .ottt 21-4
21.2.2 ADC12 Inputs and Multiplexeroo i, 21-5
21.2.3 Voltage Reference Generator, 21-6
21.2.4 Sample and Conversion TiMINGt 21-7
21.2.5 Conversion MemOryttt 21-10
21.2.6 ADC12 Conversion MOdesSttt 21-10
21.2.7 Using the Integrated Temperature Sensor, 21-16
21.2.8 ADC12 Grounding and Noise Considerations 21-17
21.2.9 ADCI2 INterrupts 21-18
21.3 ADCI2 Registerst 21-20
TLV Structure ... ittt et i a e a s 22-1
221 TLV INtroducCtion i e 22-2
222 SUPPOMEA TagS - - oot ettt e et e e e e 22-3
22.2.1 DCO Calibration TLV Structurecoiiiiiiiiiinn.. 22-3
22.2.2 TAG_ADC12_1 Calibration TLV structure 22-4
22.3 957 Checking Integrity of SegmentA
22.4 Parsing TLV Structure of Segment A 22-8
0 Y O 23-1
23.1 DACT12Introductionttt 23-2
23.2 DACTI2 0perationttt 23-4
23.2.1 DACTI2 GO0 . ettt it et e et e e 23-4
23.2.2 DAC12Referencecooiiiii 23-5
23.2.3 Updating the DAC12 Voltage Output, 23-5
23.2.4 DAC12 xDAT Data Formato, 23-6
23.2.5 DAC12 Output Amplifier Offset Calibration 23-7
23.2.6 Grouping Multiple DAC12 Modules, 23-8
23.2.7 DACI2INterruptsooti i 23-9
23.3 DACTI2 Registersttt 23-10

xiii

Contents

P2 0 < 2441
241 SD16_A Introduction i 24-2
242 SD16_A Operationttt 24-4

2421 ADC COrE .ottt e 24-4
24.2.2 AnalogInput Range and PGA i 24-4
24.2.3 Voltage Reference Generator, 24-4
24.2.4 Auto Power-DOWNn 24-4
24.2.5 Analog Input Pair Selection i 24-5
24.2.6 Analog Input Characteristics o i 24-6
24.2.7 Digital Filter 24-7
24.2.8 Conversion Memory Register: SD16MEMO 24-11
24.2.9 Conversion MOAESttt 24-12
24.2.10 Using the Integrated Temperature Sensorcou... 24-14
24211 Interrupt Handlingo 24-15
24.3 SD16_A Registers 24-16

25 Embedded Emulation Module (EEM)ccoiiiiiiiiiniriiiinrrnnannnennns 25-1
251 EEM Introduction 25-2
252 EEMBUIIdINg BIOCKS 25-4

25, 2.1 THgOEIS ottt e 25-4
25.2.2 Trigger SEQUENCETottt e et 25-5
25.2.3 State Storage (Internal Trace Buffer) coiiaL. 25-5
25.2.4 Clock Control 25-5
25.3 EEM Configurationst 25-6

Xiv

Chapter 1

Introduction

This chapter describes the architecture of the MSP430.

Topic Page
ol GEIEEITR cooooono00C 1-2
1.2 Flexible Clock Systemciiiiiiiiiiiiiiiii i naens 1-2
1.3 Embedded Emulationcccoiiiiiiiiiiiiiiiiiiiiie 1-3
U LCBEEB&EEES 0o00C 14
1.5 MSP430x2xx Family Enhancementsc000tt 1-7

1-1

Architecture

1.1 Architecture

The MSP430 incorporates a 16-bit RISC CPU, peripherals, and a flexible clock
system that interconnect using a von-Neumann common memory address
bus (MAB) and memory data bus (MDB). Partnering a modern CPU with
modular memory-mapped analog and digital peripherals, the MSP430 offers
solutions for demanding mixed-signal applications.

Key features of the MSP430x2xx family include:

(1 Ultralow-power architecture extends battery life
W 0.1-pA RAM retention
B 0.8-pA real-time clock mode

W 250-pA/MIPS active

(1 High-performance analog ideal for precision measurement

Bm Comparator-gated timers for measuring resistive elements

[0 16-bit RISC CPU enables new applications at a fraction of the code size.
W Large regqister file eliminates working file bottleneck
Compact core design reduces power consumption and cost

Optimized for modern high-level programming

Only 27 core instructions and seven addressing modes

B Extensive vectored-interrupt capability

[In-system programmable Flash permits flexible code changes, field
upgrades and data logging

1.2 Flexible Clock System

The clock system is designed specifically for battery-powered applications. A
low-frequency auxiliary clock (ACLK) is driven directly from a common 32-kHz
watch crystal. The ACLK can be used for a background real-time clock self
wake-up function. An integrated high-speed digitally controlled oscillator
(DCO) can source the master clock (MCLK) used by the CPU and high-speed
peripherals. By design, the DCO is active and stable in less than 2 us at 1 Mhz.
MSP430-based solutions effectively use the high-performance 16-bit RISC
CPU in very short bursts.

(1 Low-frequency auxiliary clock = Ultralow-power stand-by mode

[High-speed master clock = High performance signal processing

1-2 Introduction

Embedded Emulation

Figure 1-1. MSP430 Architecture

r-—--—-""-"--"-"-"--\"-"\"="-—F"="-"°FF¥F""""-"""-""""¥"=""”""""" A
| |
Clock [# ACLK Flash/ : . .
RAM Peripheral[—|Peripheral[—|Peripheral

= System |, cycik| ROM P [|7erP | [FenP =
| MCLK VANPAN AN JANK | VANIE IVANEE | |
I I
! ol mews| @ > F— — | |
| | RISC CPU § |
| 16-Bit & |
| s I
5H - | - N |

l [VDB16Bit Bus K MDB 8-Bit) |
JTAG |
I N NS \l\/ NS 8 AR) AR / |
I ACLK —¥ — —] |
: SMCLK —» Watchdog [| Peripheral Peripheral[—|Peripheral[|Peripheral I
I I
e e <

1.3 Embedded Emulation

Dedicated embedded emulation logic resides on the device itself and is
accessed via JTAG using no additional system resources.

The benefits of embedded emulation include:

[Unobtrusive development and debug with full-speed execution,
breakpoints, and single-steps in an application are supported.

(1 Development is in-system subject to the same characteristics as the final
application.

(1 Mixed-signal integrity is preserved and not subject to cabling interference.

Introduction 1-3

Address Space

1.4 Address Space

The MSP430 von-Neumann architecture has one address space shared with
special function registers (SFRs), peripherals, RAM, and Flash/ROM memory
as shown in Figure 1-2. See the device-specific data sheets for specific
memory maps. Code access are always performed on even addresses. Data
can be accessed as bytes or words.

The addressable memory space is currently 128 KB.

Figure 1-2. Memory Map

1.4.1

1-4

Flash/ROM

Introduction

Access
1FFFFh
Flash/ROM Word/Byte
10000h
OFFFFh
Interrupt Vector Table Word/Byte
OFFEOh
OFFDFh
Flash/ROM Word/Byte
;
v RAM Word/Byte
0200h
01FFh
16-Bit Peripheral Modules Word
0100h
OFFh .)
8-Bit Peripheral Modules Byte
010h
OFh . i)
oh Special Function Registers Byte

The start address of Flash/ROM depends on the amount of Flash/ROM
present and varies by device. The end address for Flash/ROM is Ox1FFFF.
Flash can be used for both code and data. Word or byte tables can be stored
and used in Flash/ROM without the need to copy the tables to RAM before
using them.

The interrupt vector table is mapped into the upper 16 words of Flash/ROM
address space, with the highest priority interrupt vector at the highest
Flash/ROM word address (0x1FFFF).

Address Space

1.4.2 RAM

RAM starts at 0200h. The end address of RAM depends on the amount of RAM
present and varies by device. RAM can be used for both code and data.

1.4.3 Peripheral Modules

Peripheral modules are mapped into the address space. The address space
from 0100 to 01FFh is reserved for 16-bit peripheral modules. These modules
should be accessed with word instructions. If byte instructions are used, only
even addresses are permissible, and the high byte of the result is always 0.

The address space from 010h to OFFh is reserved for 8-bit peripheral modules.
These modules should be accessed with byte instructions. Read access of
byte modules using word instructions results in unpredictable data in the high
byte. If word data is written to a byte module only the low byte is written into
the peripheral register, ignoring the high byte.

1.4.4 Special Function Registers (SFRs)

Some peripheral functions are configured in the SFRs. The SFRs are located
in the lower 16 bytes of the address space, and are organized by byte. SFRs
must be accessed using byte instructions only. See the device-specific data
sheets for applicable SFR bits.

1.4.5 Memory Organization

Bytes are located at even or odd addresses. Words are only located at even
addresses as shown in Figure 1-3. When using word instructions, only even
addresses may be used. The low byte of a word is always an even address.
The high byte is at the next odd address. For example, if a data word is located
at address xxx4h, then the low byte of that data word is located at address
xxx4h, and the high byte of that word is located at address xxx5h.

Introduction 1-5

Address Space

Figure 1-3. Bits, Bytes, and Words in a Byte-Organized Memory

(XY} XxxAh

15 14 ..Bits.. | 9 8 xxx9h
7 6 .. Bits . . 1 0 xxx8h
Byte XXX7h

Byte Xxx6h

Word (High Byte) xxx5h

Word (Low Byte) xxx4h

(XY} xxx3h

1-6 Introduction

MSP430x2xx Family Enhancements

1.5 MSP430x2xx Family Enhancements

Table 1-1 highlights enhancements made to the MSP430x2xx family. The
enhancements are discussed fully in the following chapters, or in the case of
improved device parameters, shown in the device-specific data sheet.

Table 1-1. MSP430x2xx Family Enhancements

Subject Enhancement

Reset — Brownout reset is included on all MSP430x2xx devices.
— PORIFG and RSTIFG flags have been added to IFG1 to indicate
the cause of a reset.
— An instruction fetch from the address range 0x0000 — OxO1FF
will reset the device.

Watchdog — All MSP430x2xx devices integrate the Watchdog Timer+

Timer module (WDT+). The WDT+ ensures the clock source for the
timer is never disabled.

Basic Clock — The LFXT1 oscillator has selectable load capacitors in LF mode.

System — The LFXT1 supports up to 16-MHz crystals in HF mode.

— The LFXT1 includes oscillator fault detection in LF mode.

— The XIN and XOUT pins are shared function pins on 20- and
28-pin devices.

— The external Rpgc feature of the DCO not supported on some
devices. Software should not set the LSB of the BCSCTL2
register in this case. See the device-specific data sheet for
details.

— The DCO operating frequency has been significantly increased.

— The DCO temperature stability has been significantly improved.

Flash Memory - The information memory has 4 segments of 64 bytes each.
— SegmentA is individually locked with the LOCKA bit.
— All information if protected from mass erase with the LOCKA bit.
— Segment erases can be interrupted by an interrupt.
— Flash updates can be aborted by an interrupt.
— Flash programming voltage has been lowered to 2.2 V
— Program/erase time has been reduced.
— Clock failure aborts a flash update.

Digital I/0 — All ports have integrated pullup/pulldown resistors.
— P2.6 and P2.7 functions have been added to 20- and 28- pin
devices. These are shared functions with XIN and XOUT.
Software must not clear the P2SELXx bits for these pins if crystal
operation is required.

Comparator_ A — Comparator_A has expanded input capability with a new input
multiplexer.
Low Power — Typical LPM3 current consumption has been reduced almost
50% at 3 V.
— DCO startup time has been significantly reduced.
Operating — The maximum operating frequency is 16 MHz at 3.3 V.
frequency
BSL — An incorrect password causes a mass erase.

— BSL entry sequence is more robust to prevent accidental entry
and erasure.

Introduction 1-7

1-8 Introduction

Chapter 2

System Resets, Interrupts,
and Operating Modes

This chapter describes the MSP430x2xx system resets, interrupts, and
operating modes.

Topic Page
2.1 System Reset and Initializationiiiiaa, 2-2
2.2 Interruptsciiiiiiiiiai it et a e a s 2-5
72 (i) et E8a00a0000000000000000000000000000000000000004C 2-14
2.4 Principles for Low-Power Applications 2-17
2.5 ConnectionofUnusedPinsccoviiiiiiiiiiininnnnnn, 2-17

2-1

System Reset and Initialization

2.1 System Reset and Initialization

The system reset circuitry shown in Figure 2—1 sources both a power-on reset
(POR) and a power-up clear (PUC) signal. Different events trigger these reset
signals and different initial conditions exist depending on which signal was
generated.

Figure 2—-1. Power-On Reset and Power-Up Clear Schematic

Vee

Brownout

Reset o POR
S Latch » POR

| >R
oV ~50 ps

SVS_POR? ﬂ E

RST/NMI
WDTNMIT

WDTTMSEL #———(O ™\
wbDTQnt

WDTIFGT —E _/ Resetwd!
aur B

KEYV

(from flash module) T

Invalid i ion fetch
nvalid instruction fetc MCLK

PUC

b ® 0 0o

¢ YVVYYVYY

T From watchdog timer peripheral module
¥ Devices with SVS only

A POR is a device reset. A POR is only generated by the following three
events:

(1 Powering up the device
[A low signal on the RST/NMI pin when configured in the reset mode
O An SVS low condition when PORON = 1.

A PUC is always generated when a POR is generated, but a POR is not
generated by a PUC. The following events trigger a PUC:

(1 A POR signal
[Watchdog timer expiration when in watchdog mode only
(1 Watchdog timer security key violation

(1 A Flash memory security key violation

U

A CPU instruction fetch from the peripheral address range Oh — 01FFh

2-2 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.1.1 Brownout Reset (BOR)

The brownout reset circuit detects low supply voltages such as when a supply
voltage is applied to or removed from the V¢ terminal. The brownout reset
circuit resets the device by triggering a POR signal when power is applied or
removed. The operating levels are shown in Figure 2-2.

The POR signal becomes active when V¢ crosses the Viogstart) level. It
remains active until Vgc crosses the V(g 14 threshold and the delay tgor)
elapses. The delay tgoR is adaptive being longer for a slow ramping Vcc. The
hysteresis Vs _1T-) ensures that the supply voltage must drop below
V(e_iT-) to generate another POR signal from the brownout reset circuitry.

Figure 2-2. Brownout Timing

A
| | V, | |
| | <e | |
Vhys(lB_IT—) : : I
Ve v | S T
VBT trt—— A ———————————— <
I I | |
Vec(starty |- ——— - == N

Set Signal for
POR circuitry

As the V(g_T_ level is significantly above the Vi, level of the POR circuit, the
BOR provides a reset for power failures where V¢ does not fall below Vpin.
See device-specific data sheet for parameters.

System Resets, Interrupts, and Operating Modes 2-3

System Reset and Initialization

2.1.2 Device Initial Conditions After System Reset

After a POR, the initial MSP430 conditions are:

4
J

L

Software Initialization

2-4

The RST/NMI pin is configured in the reset mode.
I/0 pins are switched to input mode as described in the Digital I/O chapter.

Other peripheral modules and registers are initialized as described in their
respective chapters in this manual.

Status register (SR) is reset.
The watchdog timer powers up active in watchdog mode.

Program counter (PC) is loaded with address contained at reset vector
location (OFFFENh). If the reset vectors content is OFFFFh the device will
be disabled for minimum power consumption.

After a system reset, user software must initialize the MSP430 for the
application requirements. The following must occur:

J
4
a

Initialize the SP, typically to the top of RAM.
Initialize the watchdog to the requirements of the application.

Configure peripheral modules to the requirements of the application.

Additionally, the watchdog timer, oscillator fault, and flash memory flags can
be evaluated to determine the source of the reset.

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

2.2 Interrupts

The interrupt priorities are fixed and defined by the arrangement of the
modules in the connection chain as shown in Figure 2—-3. The nearer a module
is to the CPU/NMIRS, the higher the priority. Interrupt priorities determine what
interrupt is taken when more than one interrupt is pending simultaneously.

There are three types of interrupts:

[System reset
1 (Non)-maskable NMI
(1 Maskable

Figure 2-3. Interrupt Priority

Priority High

_ Low

CPU

GMIRS
C— GIE
Module Module WDT Module Module

NMIRS 1 2 Timer m n

A4

PUC

A

| TNE NA Fax, AL AT,

<o

PUC

Circuit

OSCfault
Flash ACCV

Nl Reset/NMI

T

T

PN

WDT Security Key

Flash Security Key N~ N4 NN NN NS S

MAB - 5LSBs >

System Resets, Interrupts, and Operating Modes 2-5

System Reset and Initialization

2.2.1 (Non)-Maskable Interrupts (NMI)

Reset/NMI Pin

(Non)-maskable NMI interrupts are not masked by the general interrupt enable
bit (GIE), but are enabled by individual interrupt enable bits (NMIIE, ACCVIE,
OFIE). When a NMI interrupt is accepted, all NMI interrupt enable bits are
automatically reset. Program execution begins at the address stored in the
(non)-maskable interrupt vector, OFFFCh. User software must set the required
NMI interrupt enable bits for the interrupt to be re-enabled. The block diagram
for NMI sources is shown in Figure 2—4.

A (non)-maskable NMI interrupt can be generated by three sources:
[An edge on the RST/NMI pin when configured in NMI mode
1 An oscillator fault occurs

[An access violation to the flash memory

At power-up, the RST/NMI pin is configured in the reset mode. The function
of the RST/NMI pins is selected in the watchdog control register WDTCTL. If
the RST/NMI pin is set to the reset function, the CPU is held in the reset state
as long as the RST/NMI pin is held low. After the input changes to a high state,
the CPU starts program execution at the word address stored in the reset
vector, OFFFEh, and the RSTIFG flag is set.

If the RST/NMI pin is configured by user software to the NMI function, a signal
edge selected by the WDTNMIES bit generates an NMlI interrupt if the NMIIE
bit is set. The RST/NMI flag NMIIFG is also set.

Note: Holding RST/NMI Low

When configured in the NMI mode, a signal generating an NMI event should
not hold the RST/NMI pin low. If a PUC occurs from a different source while
the NMI signal is low, the device will be held in the reset state because a PUC
changes the RST/NMI pin to the reset function.

Note: Modifying WDTNMIES

When NMI mode is selected and the WDTNMIES bit is changed, an NMI can
be generated, depending on the actual level at the RST/NMI pin. When the
NMI edge select bit is changed before selecting the NMI mode, no NMI is
generated.

2-6 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Figure 2—-4. Block Diagram of (Non)-Maskable Interrupt Sources

ACCV j

ACCVIFG
D
FCTL3.2 —
S
PORIFG
ACCVIE IFG1.2 [
IE1.5
Clear
PUC I
RST/NMI Flash Module
[>—e—o *
S
o1 s RSTIFG POR PUC
Clear
\ yV KEYV SVS_POR BOR
POR I I I
> —» PUC
- System Reset
_F d Generator
*———Pp —» POR
A A
A
s' NMIIFG
IFG1.4 Clear WDTTMSEL
WDTNMIES WDTNMI wDTQn EQU PUC POR
I I | j L AI
PUC
NMIIE r“——I———T ————— e
I < WDTIFG I
IE1.4 I }mo I
Clear I IFG1.0 — I
| Clear |
PUC J 1 | wDT I
| Counter |
OSCFault j I POR |
OFIFG I I
S —\ | I
IFG1.1 |/ I I
: IRQA I
I
OFIE | WDTTMSEL |
| WDTIE |
1IE1.1 | |
Clear
| IE1.0 |
Clear
oue 4 4 NmLIRaA) | |
I I
I Watchdog Timer Module PUC I
IRQA: Interrupt Request Accepted L - - - - - |
System Resets, Interrupts, and Operating Modes 2-7

System Reset and Initialization

Flash Access Violation

The flash ACCVIFG flag is set when a flash access violation occurs. The flash
access violation can be enabled to generate an NMI interrupt by setting the
ACCVIE bit. The ACCVIFG flag can then be tested by NMI the interrupt service
routine to determine if the NMI was caused by a flash access violation.

Oscillator Fault

The oscillator fault signal warns of a possible error condition with the crystal
oscillator. The oscillator fault can be enabled to generate an NMI interrupt by
setting the OFIE bit. The OFIFG flag can then be tested by NMI the interrupt
service routine to determine if the NMI was caused by an oscillator fault.

A PUC signal can trigger an oscillator fault, because the PUC switches the
LFXT1 to LF mode, therefore switching off the HF mode. The PUC signal also
switches off the XT2 oscillator.

2-8 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Example of an NMI Interrupt Handler

The NMI interrupt is a multiple-source interrupt. An NMI interrupt automatically
resets the NMIIE, OFIE and ACCVIE interrupt-enable bits. The user NMI
service routine resets the interrupt flags and re-enables the interrupt-enable
bits according to the application needs as shown in Figure 2-5.

Figure 2-5. NMI Interrupt Handler

Reset by HW:

Start of NMI Interrupt Handler
OFIE, NMIIE, ACCVIE

[
|

Reset OFIFG

Reset ACCVIFG

Reset NMIIFG

.

-

+

User’s Software,

User’s Software,

User’s Software,

Oscillator Fault Flash Access External NMI
Handler Violation Handler Handler
Optional v
RETI)
End of NMI Interrupt
Handler

Note: Enabling NMI Interrupts with ACCVIE, NMIIE, and OFIE

To prevent nested NMI interrupts, the ACCVIE, NMIIE, and OFIE enable bits
should not be set inside of an NMI interrupt service routine.

2.2.2 Maskable Interrupts

Maskable interrupts are caused by peripherals with interrupt capability
including the watchdog timer overflow in interval-timer mode. Each maskable
interrupt source can be disabled individually by an interrupt enable bit, or all
maskable interrupts can be disabled by the general interrupt enable (GIE) bit
in the status register (SR).

Each individual peripheral interrupt is discussed in the associated peripheral
module chapter in this manual.

System Resets, Interrupts, and Operating Modes 2-9

System Reset and Initialization

2.2.3 Interrupt Processing

When an interrupt is requested from a peripheral and the peripheral interrupt
enable bit and GIE bit are set, the interrupt service routine is requested. Only
the individual enable bit must be set for (non)-maskable interrupts to be
requested.

Interrupt Acceptance

The interrupt latency is 5 cycles (CPUXx) or 6 cycles (CPU), starting with the
acceptance of an interrupt request, and lasting until the start of execution of
the first instruction of the interrupt-service routine, as shown in Figure 2-6.
The interrupt logic executes the following:

1) Any currently executing instruction is completed.
2) The PC, which points to the next instruction, is pushed onto the stack.
3) The SR is pushed onto the stack.

4) The interrupt with the highest priority is selected if multiple interrupts
occurred during the last instruction and are pending for service.

5) The interrupt request flag resets automatically on single-source flags.
Multiple source flags remain set for servicing by software.

6) The SR is cleared. This terminates any low-power mode. Because the GIE
bit is cleared, further interrupts are disabled.

7) The content of the interrupt vector is loaded into the PC: the program
continues with the interrupt service routine at that address.

Figure 2-6. Interrupt Processing

Before After
Interrupt Interrupt
Item1 Item1
SP —» Item2 TOS Item2
PC
SP —» SR TOS

2-10 System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Return From Interrupt
The interrupt handling routine terminates with the instruction:
RETI (return from an interrupt service routine)

The return from the interrupt takes 5 cycles (CPU) or 3 cycles (CPUx) to
execute the following actions and is illustrated in Figure 2-7.

1) The SR with all previous settings pops from the stack. All previous settings
of GIE, CPUOFF, etc. are now in effect, regardless of the settings used
during the interrupt service routine.

2) The PC pops from the stack and begins execution at the point where it was
interrupted.

Figure 2-7. Return From Interrupt

Before After
Return From Interrupt

ltem1 ltem1
Item2 SP —» Item2 TOS
PC PC
SP —» SR TOS SR

Interrupt Nesting

Interrupt nesting is enabled if the GIE bit is set inside an interrupt service
routine. When interrupt nesting is enabled, any interrupt occurring during an
interrupt service routine will interrupt the routine, regardless of the interrupt
priorities.

System Resets, Interrupts, and Operating Modes 2-11

System Reset and Initialization

224

2-12

Interrupt Vectors

The interrupt vectors and the power-up starting address are located in the
address range OFFFFh to OFFCOh, as described in Table 2-1. A vector is
programmed by the user with the 16-bit address of the corresponding interrupt
service routine. See the device-specific data sheet for the complete interrupt
vector list.

It is recommended to provide an interrupt service routine for each interrupt
vector that is assigned to a module. A dummy interrupt service routine can
consist of just the RET]I instruction and several interrupt vectors can point to
it.

Unassigned interrupt vectors can be used for regular program code if
necessary.

Some module enable bits, interrupt enable bits, and interrupt flags are located
in the SFRs. The SFRs are located in the lower address range and are
implemented in byte format. SFRs must be accessed using byte instructions.
See the device-specific data sheet for the SFR configuration.

System Resets, Interrupts, and Operating Modes

System Reset and Initialization

Table 2—-1. Interrupt Sources, Flags, and Vectors

SYSTEM WORD

INTERRUPT SOURCE INTERRUPT FLAG INTERRUPT ADDRESS PRIORITY
ot watcndog, | PORIFG |
flash p.asswor_d, WDTIFG Reset OFFFEh 31, highest
illegal instruction KEYV

fetch

NMI, oscillator fault, NMIIFG (non)-maskable

flash memory access OFIFG (non)-maskable OFFFCh 30
violation ACCVIFG (non)-maskable

device-specific OFFFAh 29
device-specific OFFF8h 28
device-specific OFFF6h 27
Watchdog timer WDTIFG maskable OFFF4h 26
device-specific OFFF2h 25
device-specific OFFFOh 24
device-specific OFFEEh 23
device-specific OFFECh 22
device-specific OFFEAh 21
device-specific OFFES8h 20
device-specific OFFE6h 19
device-specific OFFE4h 18
device-specific OFFE2h 17
device-specific OFFEOh 16
device-specific OFFDEh 15
device-specific OFFDCh 14
device-specific OFFDAhRh 13
device-specific OFFD8h 12
device-specific OFFD6h 11
device-specific OFFD4h 10
device-specific OFFD2h 9
device-specific OFFDOh 8
device-specific OFFCEh 7
device-specific OFFCCh 6
device-specific OFFCAh 5
device-specific OFFC8h 4
device-specific OFFC6h 3
device-specific OFFC4h 2
device-specific OFFC2h 1
device-specific OFFCOh 0, lowest

System Resets, Interrupts, and Operating Modes 2-13

Operating Modes

2.3 Operating Modes

The MSP430 family is designed for ultralow-power applications and uses
different operating modes shown in Figure 2-9.

The operating modes take into account three different needs:
1 Ultralow-power
(1 Speed and data throughput

(1 Minimization of individual peripheral current consumption

The MSP430 typical current consumption is shown in Figure 2-8.

Figure 2-8. Typical Current Consumption of 21x1 Devices vs Operating Modes

lcc/uA at 1 MHz

315 -
270 -
225 1
180 1
135

300

90 1
45

0.9 0.7 0.10.1

—

AM LPMO LPM2 LPM3 LPM4
Operating Modes

The low-power modes 0 to 4 are configured with the CPUOFF, OSCOFF,
SCGO, and SCGH1 bits in the status register The advantage of including the
CPUOFF, OSCOFF, SCGO0, and SCG1 mode-control bits in the status register
is that the present operating mode is saved onto the stack during an interrupt
service routine. Program flow returns to the previous operating mode if the
saved SR value is not altered during the interrupt service routine. Program flow
can be returned to a different operating mode by manipulating the saved SR
value on the stack inside of the interrupt service routine. The mode-control bits
and the stack can be accessed with any instruction.

When setting any of the mode-control bits, the selected operating mode takes
effect immediately. Peripherals operating with any disabled clock are disabled
until the clock becomes active. The peripherals may also be disabled with their
individual control register settings. All I/O port pins and RAM/registers are
unchanged. Wake up is possible through all enabled interrupts.

2-14 System Resets, Interrupts, and Operating Modes

Operating Modes

Figure 2-9. MSP430x2xx Operating Modes For Basic Clock System

RST/NMI SVS_POR
Reset Active
POR
WDT
Time Expired, Overflow WDTIFG = 1 WDTIFG =0
PUC) RST/NMIis Reset Pin
WDTIFG = 1 WDT is Active
. RST/NMI
WDT Active, NMI Active
Security Key Violation
Active Mode
CPUOFF = 1 _ CPUlsActive CPUOFF = 1
SCGO =0 Peripheral Modules Are Active OSCOFF = 1
SCG1=0 SCGO =1
SCG1 =1
LPMO
LPM4
S%F;;ULS% Mgéﬁ?g CPU Off, MCLK Off, DCO
n. n Off, SMCLK Off,
ACLK Off
CPUOFF =1 DG G tor Off
ggg? — g) CPUOFF = 1 enerator
- CPUOFF = 1 SCGO =1
CPU Off, MCLK Off, SCG1 =1 CPU Off, MCLK Off, SMCLK
DCO off, SMCLK On, Off, DCO Off, ACLK On
ACLK On LPM2
CPU Off, MCLK Off, SMCLK
DC Generator Off if DCO Off, DCO Off, ACLK On DC Generator Off
not used for SMCLK
SCG1 SCG0 OSCOFF CPUOFF Mode CPU and Clocks Status
0 0 0 0 Active CPU is active, all enabled clocks are active
0 0 0 1 LPMO CPU, MCLK are disabled
SMCLK , ACLK are active
0 1 0 1 LPM1 CPU, MCLK are disabled, DCO and DC generator

are disabled if the DCO is not used for SMCLK.
ACLK is active

1 0 0 1 LPM2 CPU, MCLK, SMCLK, DCO are disabled
DC generator remains enabled
ACLK is active

1 1 0 1 LPM3 CPU, MCLK, SMCLK, DCO are disabled
DC generator disabled
ACLK is active

1 1 1 1 LPM4 CPU and all clocks disabled

System Resets, Interrupts, and Operating Modes 2-15

Operating Modes

2.3.1

2-16

Entering and Exiting Low-Power Modes

An enabled interrupt event wakes the MSP430 from any of the low-power

operating modes. The program flow is:

(1 Enter interrupt service routine:

B The PC and SR are stored on the stack
B The CPUOFF, SCG1, and OSCOFF bits are automatically reset

(O Options for returning from the interrupt service routine:

W The original SR is popped from the stack, restoring the previous
operating mode.

B The SR bits stored on the stack can be modified within the interrupt
service routine returning to a different operating mode when the RETI
instruction is executed.

Enter LPMO Example
BIS #GIE+CPUOFF, SR ; Enter LPMO
; Program stops here

Exit LPMO Interrupt Service Routine
BIC #CPUOFF, 0 (SP) ; Exit LPMO on RETI
RETT

Enter LPM3 Example
BIS #GIE+CPUOFF+SCG1+SCG0O,SR ; Enter LPM3
; Program stops here

Exit LPM3 Interrupt Service Routine
BIC #CPUOFF+SCG1+SCGO, 0 (SR) ; Exit LPM3 on RETI
RETT

System Resets, Interrupts, and Operating Modes

Principles for Low-Power Applications

2.4 Principles for Low-Power Applications

Often, the most important factor for reducing power consumption is using the
MSP430’s clock system to maximize the time in LPM3. LPM3 power
consumption is less than 2 pA typical with both a real-time clock function and
all interrupts active. A 32-kHz watch crystal is used for the ACLK and the CPU
is clocked from the DCO (normally off) which has a 6-us wake-up.

[d Use interrupts to wake the processor and control program flow.

(4 Peripherals should be switched on only when needed.

[d Use low-power integrated peripheral modules in place of software driven
functions. For example Timer_A and Timer_B can automatically generate
PWM and capture external timing, with no CPU resources.

[Calculated branching and fast table look-ups should be used in place of
flag polling and long software calculations.

1 Avoid frequent subroutine and function calls due to overhead.

(4 For longer software routines, single-cycle CPU registers should be used.

2.5 Connection of Unused Pins

The correct termination of all unused pins is listed in Table 2-2.

Table 2-2. Connection of Unused Pins

Pin Potential Comment

AVce DVce

AVgs DVss

VREF+ Open

VeRer.+ DVss

VRrer/Verer- DVss

XIN DVcc

XOouT Open

XT2IN DVss

XT20UT Open

Px.0to Px.7 Open Switched to port function, output direction
or input with pullup/pulldown enabled

RST/NMI DVgcorVee 47 kQ pullup with 10 nF (2.2 nFT) pulldown

Test Open 20xx, 21xx, 22xx devices

TDO Open

TDI Open

TMS Open

TCK Open

T The pulldown capacitor should not exceed 2.2 nF when using devices with Spy-Bi-Wire
interface in Spy-Bi-Wire mode or in 4-wire JTAG mode with Tl tools like FET interfaces or
GANG programmers.

System Resets, Interrupts, and Operating Modes 2-17

2-18 System Resets, Interrupts, and Operating Modes

RISC 16-Bit CPU

This chapter describes the MSP430 CPU, addressing modes, and
instruction set.

Topic Page
3.1 CPUlIntroductioncciiiiiiiiiiiiiiiiiiiiannninnnnnnnns 3-2
3.2 CPUReQISterscoiiiiiiiiiiiiaiinraasnrnnannnrannnnnsnns 34
g8 LAlEssIne) WEeES cooooo00000000000000000000000000000000000000¢ 3-9
34 InstructionSeto 3-17

3-1

CPU Introduction

3.1 CPU Introduction

3-2

The CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The CPU can address the complete
address range without paging.

The CPU features include:

J
a

a
-

RISC architecture with 27 instructions and 7 addressing modes

Orthogonal architecture with every instruction usable with every
addressing mode

Full register access including program counter, status registers, and stack
pointer

Single-cycle register operations
Large 16-bit register file reduces fetches to memory

16-bit address bus allows direct access and branching throughout entire
memory range

16-bit data bus allows direct manipulation of word-wide arguments

Constant generator provides six most used immediate values and
reduces code size

Direct memory-to-memory transfers without intermediate register holding

Word and byte addressing and instruction formats

The block diagram of the CPU is shown in Figure 3-1.

RISC 16-Bit CPU

Figure 3—1. CPU Block Diagram

MDB - Memory Data Bus

AN

15 0

CPU Introduction

Memory Address Bus — MAB

AN

RO/PC Program Counter |0

R1/SP Stack Pointer 0

R2/SR/CG1 Status

R3/CG2 Constant Generator

R4 General Purpose

R5 General Purpose

R6 General Purpose

R7 General Purpose

R8 General Purpose

R9 General Purpose

QA

L0000 III0EITTY

R10 General Purpose
Ll | -
R11 General Purpose
Ll | -
R12 General Purpose
Ll | -
R13 General Purpose
Ll | -
R14 General Purpose
Ll | -
R15 General Purpose
~
16 |] N6
Zero, Z —
832??]0%, v 16-bit ALU MCLK
Negative, N
<
A4

RISC 16-Bit CPU

3-3

CPU Registers

3.2 CPU Registers

The CPU incorporates sixteen 16-bit registers. RO, R1, R2 and R3 have
dedicated functions. R4 to R15 are working registers for general use.

3.2.1 Program Counter (PC)

The 16-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, or six),
and the PC is incremented accordingly. Instruction accesses in the 64-KB
address space are performed on word boundaries, and the PC is aligned to
even addresses. Figure 3-2 shows the program counter.

Figure 3-2. Program Counter
15 A"

Program Counter Bits 15 to 1 0

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV #LABEL, PC ; Branch to address LABEL
MOV LABEL,PC ; Branch to address contained in LABEL
MOV @R14, PC ; Branch indirect to address in R14

3-4 RISC 16-Bit CPU

3.2.2 Stack Pointer (SP)

CPU Registers

The stack pointer (SP/R1) is used by the CPU to store the return addresses
of subroutine calls and interrupts. It uses a predecrement, postincrement
scheme. In addition, the SP can be used by software with all instructions and
addressing modes. Figure 3-3 shows the SP. The SP is initialized into RAM
by the user, and is aligned to even addresses.

Figure 3—-4 shows stack usage.

Figure 3-3. Stack Pointer

15 1 0
Stack Pointer Bits 15 to 1 0
MOV 2(SP),R6 ; Item I2 -> R6
MOV R7,0(SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h onto TOS
POP R8 ; R8 = 0123h
Figure 3-4. Stack Usage
Address PUSH #0123h POP R8
Oxxxh | i 1
Oxxxh — 2 12 12 12
Oxxxh — 4 13 <— SP 13 I3 <— SP
Oxxxh — 6 0123h [&— SP| 0123h
Oxxxh — 8

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 3-5.

Figure 3-5. PUSH SP - POP SP Sequence

PUSH SP

SPOId —b

SP; —¥ SPq

The stack pointer is changed after
a PUSH SP instruction.

POP SP

SP, —¥ SP4

The stack pointer is not changed after a POP SP

instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

RISC 16-Bit CPU 3-5

CPU Registers

3.2.3 Status Register (SR)

The status register (SR/R2), used as a source or destination register, can be
used in the register mode only addressed with word instructions. The remain-
ing combinations of addressing modes are used to support the constant gen-
erator. Figure 3—6 shows the SR bits.

Figure 3-6. Status Register Bits

15

9 8 7 0

OSC|CPU

SCa1 OFF [OFF

Reserved \% SCGO GIE| N|Z|C

rw-0

Table 3—1 describes the status register bits.

Table 3—1. Description of Status Register Bits

Bit

Description

\%

SCG1
SCGO

OSCOFF

CPUOFF

GIE

Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.

Set when:

Positive + Positive = Negative
Negative + Negative = Positive,
otherwise reset

ADD(.B) ,ADDC(.B)

Set when:

Positive — Negative = Negative
Negative — Positive = Positive,
otherwise reset

SUB(.B) ,SUBC(.B),CMP(.B)

System clock generator 1. This bit, when set, turns off the SMCLK.

System clock generator 0. This bit, when set, turns off the DCO dc
generator, if DCOCLK is not used for MCLK or SMCLK.

Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator,
when LFXT1CLK is not use for MCLK or SMCLK

CPU off. This bit, when set, turns off the CPU.

General interrupt enable. This bit, when set, enables maskable
interrupts. When reset, all maskable interrupts are disabled.

Negative bit. This bit is set when the result of a byte or word operation

is negative and cleared when the result is not negative.

Word operation: N is set to the value of bit 15 of the
result

N is set to the value of bit 7 of the
result

Byte operation:

Zero bit. This bit is set when the result of a byte or word operation is 0
and cleared when the result is not 0.

Carry bit. This bit is set when the result of a byte or word operation
produced a carry and cleared when no carry occurred.

3-6 RISC 16-Bit CPU

3.2.4 Constant Generator Registers CG1 and CG2

CPU Registers

Six commonly-used constants are generated with the constant generator
registers R2 and R3, without requiring an additional 16-bit word of program
code. The constants are selected with the source-register addressing modes
(As), as described in Table 3-2.

Table 3-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 o0 -—---- Register mode

R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 OFFFFh -1, word processing

The constant generator advantages are:

(1 No special instructions required

[No additional code word for the six constants

(1 No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as

source-only registers.

Constant Generator — Expanded Instruction Set

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR

dst

is emulated by the double-operand instruction with the same length:

MOV

R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.

INC
is replaced by:

ADD

dst

0(R3) ,dst

RISC 16-Bit CPU 3-7

CPU Registers

3.2.5 General-Purpose Registers R4 to R15

The twelve registers, R4 to R15, are general-purpose registers. All of these
registers can be used as data registers, address pointers, or index values and
can be accessed with byte or word instructions as shown in Figure 3-7.

Figure 3-7. Register-Byte/Byte-Register Operations

Register-Byte Operation Byte-Register Operation
High Byte Low Byte High Byte Low Byte
Unused Register Byte Memory
Byte Memory Oh Register
Example Register-Byte Operation Example Byte-Register Operation
R5 = 0A28Fh R5 = 01202h
R6 = 0203h R6 = 0223h
Mem(0203h) = 012h Mem(0223h) = 05Fh
ADD.B RS, 0 (R6) ADD.B @R6, RS
08Fh 05Fh
+012h + 002h
0Ath 00061h
Mem (0203h) = 0A1h R5 = 00061h
C=0,Z=0,N=1 C=0,Z=0,N=0
(Low byte of register) (Addressed byte)
+ (Addressed byte) + (Low byte of register)
—>(Addressed byte) —>(Low byte of register, zero to High byte)

3-8 RISC 16-Bit CPU

3.3 Addressing Modes

Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand can address the complete address space with no
exceptions. The bit numbers in Table 3-3 describe the contents of the As

(source)

and Ad (destination) mode bits.

Table 3-3. Source/Destination Operand Addressing Modes

As/Ad Addressing Mode Syntax Description

00/0 Register mode Rn Register contents are operand

01/1 Indexed mode X(Rn) (Rn + X) points to the operand. X
is stored in the next word.

01/ Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word. Indexed
mode X(PC) is used.

01/1 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word. Indexed
mode X(SR) is used.

10/- Indirect register @Rn Rn is used as a pointer to the

mode operand.

11/- Indirect @Rn+ Rnis used as a pointer to the

autoincrement operand. Rn is incremented
afterwards by 1 for .B instructions
and by 2 for .W instructions.

11/- Immediate mode #N The word following the instruction

contains the immediate constant
N. Indirect autoincrement mode
@PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note:

Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

RISC 16-Bit CPU 3-9

Addressing Modes

3.3.1 Register Mode

The register mode is described in Table 3-4.

Table 3—-4. Register Mode Description

Assembler Code Content of ROM
MOV R10,R11 MOV R10,R11
Length: One or two words
Operation: Move the content of R10 to R11. R10 is not affected.
Comment: Valid for source and destination
Example: MOV R10,R11
Before: After:

R10 0A023h R10 0A023h
R11 OFA15h R11 0A023h

PC PCOId PC PCold +2

Note: Data in Registers

The data in the register can be accessed using word or byte instructions. If
byte instructions are used, the high byte is always 0 in the result. The status
bits are handled according to the result of the byte instruction.

3-10 RISC 16-Bit CPU

3.3.2 Indexed Mode

Addressing Modes

The indexed mode is described in Table 3-5.

Table 3-5. Indexed Mode Description

Assembler Code Content of ROM
MOV 2 (R5),6 (R6) MOV X (R5),Y(R6)
X=2
Y=6

Length: Two or three words
Operation: Move the contents of the source address (contents of R5 + 2)
to the destination address (contents of R6 + 6). The source
and destination registers (R5 and R6) are not affected. In
indexed mode, the program counter is incremented
automatically so that program execution continues with the
next instruction.
Comment: Valid for source and destination
Example: MOV 2 (R5),6(R6) ;
Before: After:
Address Register Address Register
Space Space
Oxxxxh | PC
OFF16h | 00006h R5| 01080h OFF16h | 00006h R5] 01080h
OFF14h | 00002h R6| 0108Ch OFF14h | 00002h R6| 0108Ch
OFF12h | 04596h | PC OFF12h | 04596h
0108Ch
01094h Oxxxxh +0006h 01094h | Oxxxxh
01092h | 05555h 01092h 91092n [01234h
01090h | Oxxxxh 01090h | Oxxxxh
01080h
01084h | Oxxxxh +0002h 01084h | Oxxxxh
01082h
01082h | 01234h 01082h | 01234h
01080h | Oxxxxh 01080h | Oxxxxh

RISC 16-Bit CPU 3-11

Addressing Modes

3.3.3 Symbolic Mode

The symbolic mode is described in Table 3-6.

Table 3—-6. Symbolic Mode Description

3-12

Assembler Code

Content of ROM

MOV EDE, TONI

MOV X (PC),Y(PC)

X =EDE -PC
Y =TONI - PC

Two or three words

Move the contents of the source address EDE (contents of
PC + X) to the destination address TONI (contents of PC +Y).
The words after the instruction contain the differences
between the PC and the source or destination addresses.
The assembler computes and inserts offsets X and Y
automatically. With symbolic mode, the program counter (PC)
is incremented automatically so that program execution
continues with the next instruction.

Valid for source and destination

MOV EDE, TONI

Length:
Operation:
Comment:
Example:
Before:
Address
Space
OFF16h 011FEh
OFF14h | OF102h
OFF12h 04090h
OF018h Oxxxxh
0F016h 0A123h
OF014h Oxxxxh
01116h Oxxxxh
01114h | 05555h
01112h Oxxxxh

RISC 16-Bit CPU

;Dest.
Register After:

OFF16h
OFF14h
PC OFF12h

OFF14h
+0F102h O0F018h
OF018h oro16n
0F014h

OFF16h
+011FEh 01116h
01114n 01114h
01112h

;Source address EDE
address TONI=01114h

Address
Space

Oxxxxh

O011FEh

O0F102h

04090h

Oxxxxh

0A123h

Oxxxxh

Oxxxxh

0A123h

Oxxxxh

PC

3.3.4 Absolute Mode

Addressing Modes

The absolute mode is described in Table 3-7.

Table 3-7. Absolute Mode Description

Assembler Code Content of ROM
MOV &EDE, &TONI MOV X (0),Y(0)
X = EDE
Y = TONI

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

0F018h
0F016h
0F014h

01116h
01114h
01112h

Two or three words

Move the contents of the source address EDE to the
destination address TONI. The words after the instruction
contain the absolute address of the source and destination
addresses. With absolute mode, the PC is incremented
automatically so that program execution continues with the

next instruction.

Valid for source and destination

MOV &EDE, &TONI ;Source address EDE=0F016h,
;dest. address TONI=01114h
Address Register ter Address Register
Space Space
Oxxxxh | PC
01114h OFF16h | 01114h
0F016h OFF14h | OF016h
04292h | PC OFF12h | 04292h
Oxxxxh 0F018h Oxxxxh
0A123h OF016h | 0A123h
Oxxxxh 0F014h Oxxxxh
Oxxxxh 01116h Oxxxxh
01234h 01114h | 0A123h
Oxxxxh 01112h Oxxxxh

This address mode is mainly for hardware peripheral modules that are located
at an absolute, fixed address. These are addressed with absolute mode to
ensure software transportability (for example, position-independent code).

RISC 16-Bit CPU 3-13

Addressing Modes

3.3.5

Table 3-8. Indirect Mode Description

3-14

Indirect Register Mode

The indirect register mode is described in Table 3-8.

Assembler Code

Content of ROM

MOV @R10,0(R11)

MOV @R10,0(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

0FA34h
0FA32h
OFA30h

002A8h
002A7h
002A6h

RISC 16-Bit CPU

Address
Space
Oxxxxh

One or two words

Move the contents of the source address (contents of R10) to
the destination address (contents of R11). The registers are
not modified.

Valid only for source operand. The substitute for destination
operand is O(Rd).

MOV.B @R10,0(R11)

0000h

R10

04AEBh

PC R11

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

012h

Oxxh

Register

OFA33h

002A7h

ter:

OFF16h
OFF14h
OFF12h

O0FA34h
0FA32h
OFA30h

002A8h
002A7h
002A6h

Address

Space
Oxxxxh

0000h

04AEBh

Oxxxxh

Oxxxxh

05BC1h

Oxxxxh

Oxxh

05Bh

Oxxh

PC
R10
R11

Register

OFA33h

002A7h

3.3.6 Indirect Autoincrement Mode

Addressing Modes

The indirect autoincrement mode is described in Table 3-9.

Table 3-9. Indirect Autoincrement Mode Description

Assembler Code

Content of ROM

MOV @R10+,0(R11)

MOV @R10+,0(R11)

Length:

Operation:

Comment:

Example:

Before:

OFF18h
OFF16h

OFF14h
OFF12h

O0FA34h
0FA32h
OFA30h

010AAN
010A8h
010A6h

One or two words

Move the contents of the source address (contents of R10) to

the destination address (contents of R11). Register R10 is
incremented by 1 for a byte operation, or 2 for a word
operation after the fetch; it points to the next address without

any overhead. This is useful for table processing.

Valid only for source operand. The substitute for destination

operand is O(Rd) plus second instruction INCD Rd.

Address
Space

Oxxxxh

00000h

04ABBh

Oxxxxh

Oxxxxh

05BC1h

O0xxxxh

Oxxxxh

01234h

Oxxxxh

R10
pPC R11

MOV @R10+,0(R11)

Register

0FA32h

010A8h

OFF18h
OFF16h

OFF14h
OFF12h

O0FA34h
O0FA32h
OFA30h

010AAhN
010A8h
010A6h

Address
Space

Oxxxxh

PC

00000h

R10

04ABBh

R11

Oxxxxh

Oxxxxh

05BC1h

0xxxxh

Oxxxxh

05BC1h

Oxxxxh

Register

OFA34h

010A8h

The autoincrementing of the register contents occurs after the operand is

fetched. This is shown in Figure 3-8.

Figure 3-8. Operand Fetch Operation

Instruction

\ 4

Address

Operand

+1/ +2

RISC 16-Bit CPU

Addressing Modes

3.3.7

Table 3-10.Immediate Mode Description

3-16

Immediate Mode

The immediate mode is described in Table 3-10.

Assembler Code

Content of ROM

MOV #45h, TONI

MOV @PC+,X (PC)

X=TONI - PC

45

Length:

Operation:

Comment:

Example:

Before:

OFF16h
OFF14h
OFF12h

010AAhN
010A8h
010A6h

RISC 16-Bit CPU

Two or three words
It is one word less if a constant of CG1 or CG2 can be used.

Move the immediate constant 45h, which is contained in the
word following the instruction, to destination address TONI.
When fetching the source, the program counter points to the
word following the instruction and moves the contents to the
destination.

Valid only for a source operand.

MOV #45h, TONI

Address
Space

01192h

00045h

040BOh

Oxxxxh

01234h

Oxxxxh

Register

PC

OFF16h
+01192h

010A8h

After:

OFF18h
OFF16h

OFF14h
OFF12h

010AAhN
010A8h
010A6h

Address
Space
Oxxxxh

01192h

00045h

040B0Oh

Oxxxxh

00045h

Oxxxxh

Register

PC

Instruction Set

3.4 Instruction Set

The complete MSP430 instruction set consists of 27 core instructions and 24
emulated instructions. The core instructions are instructions that have unique
op-codes decoded by the CPU. The emulated instructions are instructions that
make code easier to write and read, but do not have op-codes themselves,
instead they are replaced automatically by the assembler with an equivalent
core instruction. There is no code or performance penalty for using emulated
instruction.

There are three core-instruction formats:
(] Dual-operand

4 Single-operand

d Jump

All single-operand and dual-operand instructions can be byte or word
instructions by using .B or .W extensions. Byte instructions are used to access
byte data or byte peripherals. Word instructions are used to access word data
or word peripherals. If no extension is used, the instruction is a word
instruction.

The source and destination of an instruction are defined by the following fields:

src The source operand defined by As and S-reg

dst The destination operand defined by Ad and D-reg

As The addressing bits responsible for the addressing mode used
for the source (src)

S-reg The working register used for the source (src)

Ad The addressing bits responsible for the addressing mode used
for the destination (dst)

D-reg The working register used for the destination (dst)

B/W Byte or word operation:

0: word operation
1: byte operation

Note: Destination Address

Destination addresses are valid anywhere in the memory map. However,
when using an instruction that modifies the contents of the destination, the
user must ensure the destination address is writable. For example, a
masked-ROM location would be a valid destination address, but the contents
are not modifiable, so the results of the instruction would be lost.

RISC 16-Bit CPU 3-17

Instruction Set

3.4.1 Double-Operand (Format I) Instructions

Figure 3-9 illustrates the double-operand instruction format.

Figure 3-9. Double Operand Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Op-code S-Reg Ad | BIW As D-Reg

Table 3-11 lists and describes the double operand instructions.

Table 3-11. Double Operand Instructions

Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
MOV (.B) src,dst src — dst - - - -
ADD (.B) src,dst src + dst — dst * * * *
ADDC(.B) src,dst src+dst+C — dst * * * *
SUB (.B) src,dst dst+.not.src + 1 — dst * * * *
SUBC(.B) src,dst dst+ .not.src +C — dst * * * *
CMP (.B) src,dst dst-src * * * *
DADD (.B) src,dst src+dst+ C — dst (decimally) * * * *
BIT(.B) src,dst src.and. dst 0 * * *
BIC(.B) src,dst .not.src .and. dst — dst - - - -
BIS(.B) src,dst src.or. dst — dst - - - -
XOR (.B) src,dst src .xor. dst — dst * * * *
AND (.B) src,dst src.and. dst — dst 0 * * *

*

The status bit is affected

— The status bit is not affected
0 The status bit is cleared

1 The status bit is set

)
Note: Instructions cMP and SUB

The instructions cMP and SUB are identical except for the storage of the
result. The same is true for the BIT and AND instructions.

3-18 RISC 16-Bit CPU

3.4.2 Single-Operand (Format Il) Instructions

Figure 3-10 illustrates the single-operand instruction format.

Figure 3-10. Single Operand Instruction Format

Instruction Set

15 14 13 12 11 10 9 8 7 6 4 3 2 1 0
Op-code B/W Ad D/S-Reg
Table 3-12 lists and describes the single operand instructions.
Table 3-12.Single Operand Instructions
Mnemonic S-Reg, Operation Status Bits
D-Reg V N z ¢
RRC(.B) dst C->MSB —....... LSB - C * * * *
RRA (.B) dst MSB - MSB —....LSB - C 0 * * *
PUSH(.B) src SP -2 - SP, src > @SP - - - -
SWPB dst Swap bytes - - - -
CALL dst SP -2 -5 SP, PC+2 - @SP - - - -
dst - PC
RETI TOS - SR, SP +2 - SP * * * *
TOS - PC,SP +2 - SP
SXT dst Bit 7 — Bit 8........ Bit 15 0 * * *

The status bit is affected

- The status bit is not affected
0 The status bit is cleared
1 The status bit is set

All addressing modes are possible for the CALL instruction. If the symbolic
mode (ADDRESS), the immediate mode (#N), the absolute mode (&EDE) or
the indexed mode x(RN) is used, the word that follows contains the address

information.

RISC 16-Bit CPU 3-19

Instruction Set

3.43 Jumps

Figure 3—11 shows the conditional-jump instruction format.

Figure 3—11. Jump Instruction Format

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op-code C 10-Bit PC Offset

Table 3-13 lists and describes the jump instructions.

Table 3-13.Jump Instructions

Mnemonic S-Reg, D-Reg Operation

JEQ/JZ Label Jump to label if zero bit is set
JNE/JNZ Label Jump to label if zero bit is reset
Jc Label Jump to label if carry bit is set
JNC Label Jump to label if carry bit is reset
JN Label Jump to label if negative bit is set
JGE Label Jump to label if (N .XOR. V) =0
JL Label Jump to label if (N .XOR. V) =1
JMP Label Jump to label unconditionally

Conditional jumps support program branching relative to the PC and do not
affect the status bits. The possible jump range is from —-511 to +512 words
relative to the PC value at the jump instruction. The 10-bit program-counter
offset is treated as a signed 10-bit value that is doubled and added to the
program counter:

PCnew = PCOId +2+ PCoffset X 2

3-20 RISC 16-Bit CPU

* ADC[.W]
*ADC.B
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry to destination
Add carry to destination

ADC dst or ADC.W dst
ADC.B dst

dst + C —> dst

ADDC #0,dst
ADDC.B #0,dst

The carry bit (C) is added to the destination operand. The previous contents
of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Set if dst was incremented from OFFFFh to 0000, reset otherwise
Set if dst was incremented from OFFh to 00, reset otherwise

V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is added to a 32-bit counter pointed to
by R12.

ADD @R13,0(R12) ; Add LSDs

ADC 2(R12) ; Add carry to MSD

The 8-bit counter pointed to by R13 is added to a 16-bit counter pointed to by
R12.

ADD.B @R13,0(R12) ; Add LSDs

ADC.B 1(R12) ; Add carry to MSD

RISC 16-Bit CPU 3-21

Instruction Set

ADD[.W]
ADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Add source to destination
Add source to destination

ADD src,dst or ADD.W src,dst
ADD.B src,dst

src + dst —> dst

The source operand is added to the destination operand. The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setifresult is zero, reset otherwise

C: Setif there is a carry from the result, cleared if not
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is increased by 10. The jump to TONI is performed on a carry.

ADD #10,R5
JC TONI ; Carry occurred
...... ; No carry

R5 is increased by 10. The jump to TONI is performed on a carry.

ADD.B #10,R5 ; Add 10 to Lowbyte of R5
JC TONI ; Carry occurred, if (R5) > 246 [0Ah+0F6h]
...... ; No carry

3-22 RISC 16-Bit CPU

ADDCI[.W]
ADDC.B
Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add source and carry to destination
Add source and carry to destination

ADDC src,dst or ADDC.W src,dst
ADDC.B src,dst

src + dst + C —> dst

The source operand and the carry bit (C) are added to the destination operand.
The source operand is not affected. The previous contents of the destination
are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

The 32-bit counter pointed to by R13 is added to a 32-bit counter, eleven words
(20/2 + 2/2) above the pointer in R13.

ADD @R13+,20(R13) ; ADD LSDs with no carry in
ADDC @R13+,20(R13) ; ADD MSDs with carry
; resulting from the LSDs

The 24-bit counter pointed to by R13 is added to a 24-bit counter, eleven bytes
above the pointer in R13.

ADD.B @R13+,10(R13) ; ADD LSDs with no carry in
ADDC.B @R13+,10(R13) ; ADD medium Bits with carry
ADDC.B @R13+,10(R13) ; ADD MSDs with carry

; resulting from the LSDs

RISC 16-Bit CPU 3-23

Instruction Set

ANDL[.W] Source AND destination
AND.B Source AND destination
Syntax AND src,dst or AND.W src,dst
AND.B src,dst
Operation src .AND. dst —> dst
Description The source operand and the destination operand are logically ANDed. The

result is placed into the destination.

Status Bits N: Set if result MSB is set, reset if not set
Z: Setif result is zero, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)

V: Reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Example The bits set in R5 are used as a mask (#0AA55h) for the word addressed by
TOM. If the result is zero, a branch is taken to label TONI.
MOV #0AA55h,R5 ; Load mask into register R5
AND R5,TOM ; mask word addressed by TOM with R5
Jz TONI ;

...... ; Result is not zero

; or
AND #0AA55h, TOM
JZ TONI

Example The bits of mask #0A5h are logically ANDed with the low byte TOM. If the result
is zero, a branch is taken to label TONI.
AND.B #0A5h, TOM ; mask Lowbyte TOM with 0A5h
JZ TONI ;

...... ; Result is not zero

3-24 RISC 16-Bit CPU

BIC[.W]
BIC.B

Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Clear bits in destination
Clear bits in destination

BIC src,dst or BIC.W src,dst
BIC.B src,dst

.NOT.src . AND. dst —> dst

The inverted source operand and the destination operand are logically
ANDed. The result is placed into the destination. The source operand is not
affected.

Status bits are not affected.

OSCOFF, CPUOFF, and GIE are not affected.

The six MSBs of the RAM word LEO are cleared.

BIC #OFCOO0h,LEO ; Clear 6 MSBs in MEM(LEOQ)
The five MSBs of the RAM byte LEO are cleared.

BIC.B #0F8h,LEO ; Clear 5 MSBs in Ram location LEO

RISC 16-Bit CPU 3-25

Instruction Set

BIS[.W] Set bits in destination
BIS.B Set bits in destination
Syntax BIS src,dst or BIS.W src,dst
BIS.B src,dst
Operation src .OR. dst —> dst
Description The source operand and the destination operand are logically ORed. The

result is placed into the destination. The source operand is not affected.

Status Bits Status bits are not affected.
Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example The six LSBs of the RAM word TOM are set.
BIS #003Fh,TOM; set the six LSBs in RAM location TOM
Example The three MSBs of RAM byte TOM are set.
BIS.B #0EOh,TOM ; set the 3 MSBs in RAM location TOM

3-26 RISC 16-Bit CPU

BIT[.W]
BIT.B

Syntax
Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Test bits in destination
Test bits in destination

BIT src,dst or BIT.W src,dst
src .AND. dst

The source and destination operands are logically ANDed. The result affects
only the status bits. The source and destination operands are not affected.

N: Setif MSB of result is set, reset otherwise

Z: Setif result is zero, reset otherwise

C: Setif result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.
If bit 9 of R8 is set, a branch is taken to label TOM.

BIT #0200h,R8 ; bit 9 of R8 set?

JNZ TOM ; Yes, branch to TOM
; No, proceed

If bit 3 of R8 is set, a branch is taken to label TOM.

BIT.B #8,R8

JC TOM

A serial communication receive bit (RCV) is tested. Because the carry bit is
equal to the state of the tested bit while using the BIT instruction to test a single
bit, the carry bit is used by the subsequent instruction; the read information is
shifted into register RECBUF.

Serial communication with LSB is shifted first:
TXXXX OXXXX XXXX XXXX

BIT.B #RCV,RCCTL ; Bit info into carry
RRC RECBUF ; Carry —> MSB of RECBUF
; CXXX XXXX
...... ; repeat previous two instructions
...... ; 8 times
; CCCC ccece
; N N
; MSB LSB
; Serial communication with MSB shifted first:
BIT.B #RCV,RCCTL ; Bit info into carry
RLC.B RECBUF ; Carry —> LSB of RECBUF
7 XXXX XXXC
...... ; repeat previous two instructions
...... ; 8 times
; cCcC ccee
i LSB
; MSB

RISC 16-Bit CPU 3-27

Instruction Set

*BR, BRANCH Branch to destination

Syntax BR dst

Operation dst —> PC

Emulation MOV dst,PC

Description An unconditional branch is taken to an address anywhere in the 64K address

space. All source addressing modes can be used. The branch instruction is
a word instruction.

Status Bits Status bits are not affected.
Example Examples for all addressing modes are given.
BR #EXEC ;Branch to label EXEC or direct branch (e.g. #0A4h)

: Core instruction MOV @PC+,PC

BR EXEC ; Branch to the address contained in EXEC
; Core instruction MOV X(PC),PC
; Indirect address

BR &EXEC ; Branch to the address contained in absolute
; address EXEC
; Core instruction MOV X(0),PC
; Indirect address

BR R5 ; Branch to the address contained in R5
; Core instruction MOV R5,PC
; Indirect R5
BR @R5 ; Branch to the address contained in the word

; pointed to by R5.
; Core instruction MOV @R5+,PC
; Indirect, indirect R5

BR @R5+ ; Branch to the address contained in the word pointed
; to by R5 and increment pointer in R5 afterwards.
; The next time—S/W flow uses R5 pointer—it can
; alter program execution due to access to
; next address in a table pointed to by R5
; Core instruction MOV @R5,PC
; Indirect, indirect R5 with autoincrement

BR X(R5) ; Branch to the address contained in the address
; pointed to by R5 + X (e.g. table with address
; starting at X). X can be an address or a label
; Core instruction MOV X(R5),PC
; Indirect, indirect R5 + X

3-28 RISC 16-Bit CPU

CALL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Subroutine

CALL dst

dst —>tmp dst is evaluated and stored
SP-2 —> SP

PC -> @SP PC updated to TOS

tmp -> PC dst saved to PC

A subroutine call is made to an address anywhere in the 64K address space.
All addressing modes can be used. The return address (the address of the
following instruction) is stored on the stack. The call instruction is a word
instruction.

Status bits are not affected.

Examples for all addressing modes are given.

CALL

CALL

CALL

CALL

CALL

CALL

CALL

#EXEC ; Call on label EXEC or immediate address (e.g. #0A4h)
; SP-2 —» SP, PC+2 —» @SP, @PC+ — PC

EXEC ; Call on the address contained in EXEC
; SP-2 —» SP, PC+2 —» @SP, X(PC) —» PC
; Indirect address

&EXEC ; Call on the address contained in absolute address
; EXEC
; SP-2 — SP, PC+2 — @SP, X(0) - PC
; Indirect address

R5 ; Call on the address contained in R5
; SP-2 - SP, PC+2 - @SP, R5 —» PC
; Indirect R5
@R5 ; Call on the address contained in the word

; pointed to by R5
: SP-2 - SP, PC+2 - @SP, @R5 — PC
; Indirect, indirect R5

@R5+ ; Call on the address contained in the word
; pointed to by R5 and increment pointer in R5.
; The next time—S/W flow uses R5 pointer—
; it can alter the program execution due to
; access to next address in a table pointed to by R5
; SP-2 — SP, PC+2 —» @SP, @R5 —» PC
; Indirect, indirect R5 with autoincrement

X(R5) ; Call on the address contained in the address pointed
; to by R5 + X (e.g. table with address starting at X)
; X can be an address or a label
; SP-2 — SP, PC+2 — @SP, X(R5) —» PC
; Indirect, indirect R5 + X

RISC 16-Bit CPU 3-29

Instruction Set

* CLR[.W] Clear destination
*CLR.B Clear destination
Syntax CLR dst or CLR.W dst
CLR.B dst
Operation 0 —> dst
Emulation MOV #0,dst
MOV.B #0,dst
Description The destination operand is cleared.
Status Bits Status bits are not affected.
Example RAM word TONI is cleared.
CLR TONI ; 0 —> TONI
Example Register R5 is cleared.
CLR R5
Example RAM byte TONI is cleared.
CLR.B TONI ; 0 —> TONI

3-30 RISC 16-Bit CPU

*CLRC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Clear carry bit

CLRC

0—>C

BIC #1,SR

The carry bit (C) is cleared. The clear carry instruction is a word instruction.

N: Not affected
Z: Not affected
C: Cleared

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit decimal counter pointed to by R13 is added to a 32-bit counter
pointed to by R12.

CLRC ; C=0: defines start
DADD @R13,0(R12) ; add 16-bit counter to low word of 32-bit counter
DADC 2(R12) ; add carry to high word of 32-bit counter

RISC 16-Bit CPU 3-31

Instruction Set

* CLRN
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

SUBR

SUBRET

Clear negative bit
CLRN

0—>N
or
(.NOT.src .AND. dst —> dst)

BIC #4,SR

The constant 04h is inverted (OFFFBh) and is logically ANDed with the
destination operand. The result is placed into the destination. The clear
negative bit instruction is a word instruction.

N: Resetto 0
Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

The Negative bit in the status register is cleared. This avoids special treatment
with negative numbers of the subroutine called.

CLRN

CALL SUBR

JN SUBRET ; If input is negative: do nothing and return
RET

3-32 RISC 16-Bit CPU

* CLRZ
Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Clear zero bit
CLRZ

0527
or
(.NOT.src .AND. dst —> dst)

BIC #2,SR

The constant 02h is inverted (OFFFDh) and logically ANDed with the
destination operand. The result is placed into the destination. The clear zero
bit instruction is a word instruction.

N: Not affected
Z: Resetto0
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.
The zero bit in the status register is cleared.

CLRZ

RISC 16-Bit CPU 3-33

Instruction Set

CMP[.W]
CMP.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Compare source and destination
Compare source and destination

CMP src,dst or CMP.W src,dst
CMP.B src,dst

dst + .NOT.src + 1

or

(dst - src)

The source operand is subtracted from the destination operand. This is
accomplished by adding the 1s complement of the source operand plus 1. The
two operands are not affected and the result is not stored; only the status bits
are affected.

N: Set if result is negative, reset if positive (src >= dst)

Z: Setif result is zero, reset otherwise (src = dst)

C: Setif there is a carry from the MSB of the result, reset otherwise
V: Set if an arithmetic overflow occurs, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 and R6 are compared. If they are equal, the program continues at the label
EQUAL.

CMP R5,R6 ; R5 = R67?
JEQ EQUAL ; YES, JUMP

Two RAM blocks are compared. If they are not equal, the program branches
to the label ERROR.

MOV #NUM,R5 ; number of words to be compared
MOV #BLOCK1,R6 ; BLOCK1 start address in R6
MOV #BLOCK2,R7 ; BLOCK2 start address in R7

L$1 CMP @R6+,0(R7) ; Are Words equal? R6 increments
JNZ ERROR ; No, branch to ERROR
INCD R7 ; Increment R7 pointer
DEC R5 ; Are all words compared?
JNZ L$1 ; No, another compare

The RAM bytes addressed by EDE and TONI are compared. If they are equal,
the program continues at the label EQUAL.

CMP.B EDE,TONI ; MEM(EDE) = MEM(TONI)?
JEQ EQUAL ; YES, JUMP

3-34 RISC 16-Bit CPU

* DADC[.W]
* DADC.B

Syntax

Operation

Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Add carry decimally to destination
Add carry decimally to destination

DADC dst or DADC.W src,dst
DADC.B dst

dst + C —> dst (decimally)

DADD #0,dst
DADD.B #0,dst

The carry bit (C) is added decimally to the destination.

N: Setif MSBis 1

Z: Set if dstis 0, reset otherwise

C: Set if destination increments from 9999 to 0000, reset otherwise
Set if destination increments from 99 to 00, reset otherwise

V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The four-digit decimal number contained in R5 is added to an eight-digit deci-
mal number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD R5,0(R8) ;Add LSDs + C
DADC 2(R8) ; Add carry to MSD

The two-digit decimal number contained in R5 is added to a four-digit decimal
number pointed to by R8.

CLRC ; Reset carry

; next instruction’s start condition is defined
DADD.B R5,0(R8) ;Add LSDs + C
DADC.B 1(R8) ; Add carry to MSDs

RISC 16-Bit CPU 3-35

Instruction Set

DADDI[.W]
DADD.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Source and carry added decimally to destination
Source and carry added decimally to destination

DADD src,dst or DADD.W src,dst
DADD.B src,dst

src + dst + C —> dst (decimally)

The source operand and the destination operand are treated as four binary
coded decimals (BCD) with positive signs. The source operand and the carry
bit (C) are added decimally to the destination operand. The source operand
is not affected. The previous contents of the destination are lost. The result is
not defined for non-BCD numbers.

N: Set if the MSB is 1, reset otherwise
Z: Setif result is zero, reset otherwise
C: Setif the result is greater than 9999

Set if the result is greater than 99
V: Undefined

OSCOFF, CPUOFF, and GIE are not affected.

The eight-digit BCD number contained in R5 and R6 is added decimally to an
eight-digit BCD number contained in R3 and R4 (R6 and R4 contain the
MSDs).

CLRC ; clear carry

DADD R5,R3 ; add LSDs

DADD R6,R4 ; add MSDs with carry

JC OVERFLOW ; If carry occurs go to error handling routine

The two-digit decimal counter in the RAM byte CNT is incremented by one.

CLRC ; Clear carry

DADD.B #1,CNT ; increment decimal counter
or

SETC

DADD.B #0,CNT :=DADC.B CNT

3-36 RISC 16-Bit CPU

* DEC[.W]
* DEC.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Instruction Set

Decrement destination
Decrement destination

DEC dst or DEC.W dst
DEC.B dst
dst — 1 —> dst

SuB #1,dst
SUB.B #1,dst

The destination operand is decremented by one. The original contents are
lost.

Set if result is negative, reset if positive

Set if dst contained 1, reset otherwise

Reset if dst contained 0, set otherwise

Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08000h, otherwise reset.
Set if initial value of destination was 080h, otherwise reset.

OSCOFF, CPUOFF, and GIE are not affected.
R10 is decremented by 1

DEC R10 : Decrement R10

; Move a block of 255 bytes from memory location starting with EDE to memory location starting with
; TONI. Tables should not overlap: start of destination address TONI must not be within the range EDE

; to EDE+OFEh

L$1

MOV #EDE,R6

MOV #255,R10

MOV.B @R6+,TONI-EDE-1(R6)
DEC R10

JNZ L$1

; Do not transfer tables using the routine above with the overlap shown in Figure 3—12.

Figure 3-12. Decrement Overlap

EDE
4+—
TONI
EDE+254
TONI+254

RISC 16-Bit CPU 3-37

Instruction Set

* DECD[.W] Double-decrement destination
*DECD.B Double-decrement destination
Syntax DECD dst or DECD.W dst
DECD.B dst
Operation dst — 2 —> dst
Emulation SUB #2,dst
Emulation SUB.B #2,dst
Description The destination operand is decremented by two. The original contents are lost.
Status Bits N: Set if result is negative, reset if positive
Z: Setif dst contained 2, reset otherwise
C: Reset if dst contained 0 or 1, set otherwise
V: Set if an arithmetic overflow occurs, otherwise reset.

Set if initial value of destination was 08001 or 08000h, otherwise reset.
Set if initial value of destination was 081 or 080h, otherwise reset.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example R10 is decremented by 2.
DECD R10 ; Decrement R10 by two

; Move a block of 255 words from memory location starting with EDE to memory location
; starting with TONI

; Tables should not overlap: start of destination address TONI must not be within the

; range EDE to EDE+OFEh

MOV #EDE,R6
MOV #510,R10
L$1 MOV @R6+,TONI-EDE-2(R6)
DECD R10
JNZ L$1
Example Memory at location LEO is decremented by two.
DECD.B LEO ; Decrement MEM(LEO)

Decrement status byte STATUS by two.

DECD.B STATUS

3-38 RISC 16-Bit CPU

* DINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Instruction Set

Disable (general) interrupts
DINT

0—- GIE
or
(OFFF7h .AND. SR - SR / .NOT.src .AND. dst —> dst)

BIC #8,SR

All interrupts are disabled.
The constant 08h is inverted and logically ANDed with the status register (SR).
The result is placed into the SR.

Status bits are not affected.
GIE is reset. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is cleared to allow
a nondisrupted move of a 32-bit counter. This ensures that the counter is not
modified during the move by any interrupt.

DINT ; All interrupt events using the GIE bit are disabled
NOP

MOV COUNTHI,R5 ; Copy counter

MOV COUNTLO,R6

EINT ; All interrupt events using the GIE bit are enabled

Note: Disable Interrupt

If any code sequence needs to be protected from interruption, the DINT
should be executed at least one instruction before the beginning of the
uninterruptible sequence, or should be followed by a NOP instruction.

RISC 16-Bit CPU 3-39

Instruction Set
* EINT
Syntax

Operation

Emulation

Description

Status Bits
Mode Bits

Example

Enable (general) interrupts
EINT

1 - GIE
or
(0008h .OR. SR —> SR / .src .OR. dst —> dst)

BIS #8,SR

All interrupts are enabled.
The constant #08h and the status register SR are logically ORed. The result
is placed into the SR.

Status bits are not affected.
GIE is set. OSCOFF and CPUOFF are not affected.

The general interrupt enable (GIE) bit in the status register is set.

; Interrupt routine of ports P1.2 to P1.7
; P1IN is the address of the register where all port bits are read. P1IFG is the address of
; the register where all interrupt events are latched.

)

MaskOK

PUSH.B &P1IN

BIC.B @SP,&P1IFG ; Reset only accepted flags

EINT ; Preset port 1 interrupt flags stored on stack
; other interrupts are allowed

BIT #Mask,@SP

JEQ MaskOK ; Flags are present identically to mask: jump

BIC #Mask,@SP

INCD SP ; Housekeeping: inverse to PUSH instruction
; at the start of interrupt subroutine. Corrects
; the stack pointer.

RETI

Note: Enable Interrupt

The instruction following the enable interrupt instruction (EINT) is always
executed, even if an interrupt service request is pending when the interrupts
are enable.

3-40 RISC 16-Bit CPU

* INC[.W]
*INC.B

Syntax

Operation
Emulation
Description

Status Bits

Mode Bits

Example

Instruction Set

Increment destination
Increment destination

INC dst or INC.W dst
INC.B dst
dst + 1 —> dst

ADD #1,dst
The destination operand is incremented by one. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

C: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise

V: Set if dst contained 07FFFh, reset otherwise
Set if dst contained 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The status byte, STATUS, of a process is incremented. When it is equal to 11,
a branch to OVFL is taken.

INC.B STATUS
CMPB #11,STATUS
JEQ OVFL

RISC 16-Bit CPU 3-41

Instruction Set

*INCD[.W]
*INCD.B

Syntax

Operation

Emulation
Emulation

Example

Status Bits

Mode Bits

Example

Example

Double-increment destination
Double-increment destination

INCD dst or INCD.W dst
INCD.B dst
dst + 2 —> dst

ADD #2,dst
ADD.B #2,dst

The destination operand is incremented by two. The original contents are lost.

N: Set if result is negative, reset if positive

Z: Set if dst contained OFFFEh, reset otherwise
Set if dst contained OFEh, reset otherwise

C: Set if dst contained OFFFEh or OFFFFh, reset otherwise
Set if dst contained OFEh or OFFh, reset otherwise

V: Set if dst contained 07FFEh or 07FFFh, reset otherwise
Set if dst contained 07Eh or 07Fh, reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

The item on the top of the stack (TOS) is removed without using a register.

PUSH R5 ; R5 is the result of a calculation, which is stored
; in the system stack

INCD SP ; Remove TOS by double-increment from stack
; Do not use INCD.B, SP is a word-aligned
; register

RET

The byte on the top of the stack is incremented by two.

INCD.B 0(SP) ; Byte on TOS is increment by two

3-42 RISC 16-Bit CPU

* INV[.W]
* INV.B

Syntax

Operation

Emulation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Invert destination
Invert destination

INV dst
INV.B dst

.NOT.dst —> dst

XOR #OFFFFh,dst
XOR.B #OFFh,dst

The destination operand is inverted. The original contents are lost.

N: Set if result is negative, reset if positive
Z: Set if dst contained OFFFFh, reset otherwise
Set if dst contained OFFh, reset otherwise
C: Setif result is not zero, reset otherwise (= .NOT. Zero)
Set if result is not zero, reset otherwise (= .NOT. Zero)
V: Set if initial destination operand was negative, otherwise reset

OSCOFF, CPUOFF, and GIE are not affected.

Content of R5 is negated (twos complement).

MOV #00AEh,R5 ; R5 = 000AEh
INV R5 ; Invert R5, R5 = 0FF51h
INC R5 ; R5is now negated, = R5 = 0OFF52h

Content of memory byte LEO is negated.

MOV.B #0AEh,LEO ; MEM(LEO) = 0AEh
INV.B LEO : Invert LEO, MEM(LEO) = 051h
INC.B LEO : MEM(LEO) is negated, MEM(LEO) = 052h

RISC 16-Bit CPU 3-43

Instruction Set
JC

JHS

Syntax

Operation

Description

Status Bits

Example

Example

Jump if carry set
Jump if higher or same

JC label
JHS label

If C=1: PC + 2 x offset —> PC
If C = 0: execute following instruction

The status register carry bit (C) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is reset,
the next instruction following the jump is executed. JC (jump if carry/higher or
same) is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.
The P1IN.1 signal is used to define or control the program flow.

BIT.B #02h,&P1IN ; State of signal —> Carry
JC PROGA ; If carry=1 then execute program routine A
...... ; Carry=0, execute program here

R5 is compared to 15. If the content is higher or the same, branch to LABEL.

CMP #15,R5
JHS LABEL ; Jump is taken if R5 > 15
...... ; Continue here if R5 < 15

3-44 RISC 16-Bit CPU

JEQ, JZ
Syntax

Operation

Description

Status Bits

Example

Example

Example

Instruction Set
Jump if equal, jump if zero
JEQ label, JZ label

IfZ=1: PC + 2 x offset —> PC
If Z = 0: execute following instruction

The status register zero bit (Z) is tested. If it is set, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is not
set, the instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 contains zero.

TST R7 ; Test R7
JZ TONI ; if zero: JUMP

Jump to address LEO if R6 is equal to the table contents.

CMP R6,Table(R5) ; Compare content of R6 with content of
; MEM (table address + content of R5)

JEQ LEO ; Jump if both data are equal

...... ; No, data are not equal, continue here

Branch to LABEL if R5 is 0.

TST R5
Jz LABEL

RISC 16-Bit CPU 3-45

Instruction Set

JGE
Syntax

Operation

Description

Status Bits

Example

Jump if greater or equal
JGE label

If (N .XOR. V) =0 then jump to label: PC + 2 x offset —> PC
If (N .XOR. V) = 1 then execute the following instruction

The status register negative bit (N) and overflow bit (V) are tested. If both N
and V are set or reset, the 10-bit signed offset contained in the instruction LSBs
is added to the program counter. If only one is set, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is greater or equal to the memory pointed to by R7,
the program continues at label EDE.

CMP @R7,R6 ; R6 > (R7)?, compare on signed numbers
JGE EDE ; Yes, R6 > (R7)
...... ; No, proceed

3-46 RISC 16-Bit CPU

JL
Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if less
JL label

If (N .XOR. V) =1 then jump to label: PC + 2 x offset —> PC
If (N .XOR. V) = 0 then execute following instruction

The status register negative bit (N) and overflow bit (V) are tested. If only one
is set, the 10-bit signed offset contained in the instruction LSBs is added to the
program counter. If both N and V are set or reset, the instruction following the
jump is executed.

This allows comparison of signed integers.
Status bits are not affected.

When the content of R6 is less than the memory pointed to by R7, the program
continues at label EDE.

CMP @R7,R6 ; R6 < (R7)?, compare on signed numbers
JL EDE ; Yes, R6 < (R7)
...... ; No, proceed

RISC 16-Bit CPU 3-47

Instruction Set

JMP Jump unconditionally

Syntax JMP label

Operation PC + 2 x offset —> PC

Description The 10-bit signed offset contained in the instruction LSBs is added to the

program counter.
Status Bits Status bits are not affected.

Hint: This one-word instruction replaces the BRANCH instruction in the range of
-511 to +512 words relative to the current program counter.

3-48 RISC 16-Bit CPU

JN
Syntax

Operation

Description

Status Bits

Example

L$1

Instruction Set
Jump if negative
JN label

if N=1: PC + 2 x offset —> PC
if N = 0: execute following instruction

The negative bit (N) of the status register is tested. If it is set, the 10-bit signed
offset contained in the instruction LSBs is added to the program counter. If N
is reset, the next instruction following the jump is executed.

Status bits are not affected.

The result of a computation in R5 is to be subtracted from COUNT. If the result
is negative, COUNT is to be cleared and the program continues execution in
another path.

SUB R5,COUNT ; COUNT - R5 —> COUNT
JN L$1 ; If negative continue with COUNT=0 at PC=L$1
...... ; Continue with COUNT=0

RISC 16-Bit CPU 3-49

Instruction Set

JNC
JLO

Syntax

Operation

Description

Status Bits

Example

ERROR

CONT

Example

Jump if carry not set
Jump if lower

JNC label
JLO label

if C =0: PC + 2 x offset —> PC
if C = 1: execute following instruction

The status register carry bit (C) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If C is set,
the next instruction following the jump is executed. JNC (jump if no carry/lower)
is used for the comparison of unsigned numbers (0 to 65536).

Status bits are not affected.

The result in R6 is added in BUFFER. If an overflow occurs, an error handling
routine at address ERROR is used.

ADD R6,BUFFER ; BUFFER + R6 —> BUFFER
JNC CONT ; No carry, jump to CONT
...... ; Error handler start

...... ; Continue with normal program flow

Branch to STL2 if byte STATUS contains 1 or 0.

CMP.B #2,STATUS
JLO STL2 : STATUS < 2
...... : STATUS > 2, continue here

3-50 RISC 16-Bit CPU

JNE

JNZ

Syntax

Operation

Description

Status Bits

Example

Instruction Set

Jump if not equal
Jump if not zero

JNE label
JNZ label

If Z=0: PC + 2 x offset —> PC
If Z = 1: execute following instruction

The status register zero bit (Z) is tested. If it is reset, the 10-bit signed offset
contained in the instruction LSBs is added to the program counter. If Z is set,
the next instruction following the jump is executed.

Status bits are not affected.
Jump to address TONI if R7 and R8 have different contents.

CMP R7,R8 ; COMPARE R7 WITH R8
JNE TONI ; if different: jump
...... ; if equal, continue

RISC 16-Bit CPU 3-51

Instruction Set
MOV[.W]
MOV.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Loop

Example

Loop

Move source to destination
Move source to destination

MOV src,dst or MOV.W src,dst
MOV.B src,dst
src —> dst

The source operand is moved to the destination.
The source operand is not affected. The previous contents of the destination
are lost.

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.

The contents of table EDE (word data) are copied to table TOM. The length
of the tables must be 020h locations.

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter
MOV @R10+,TOM-EDE-2(R10) ; Use pointer in R10 for both tables

DEC R9 ; Decrement counter
JNZ Loop ; Counter # 0, continue copying
...... ; Copying completed

The contents of table EDE (byte data) are copied to table TOM. The length of
the tables should be 020h locations

MOV #EDE,R10 ; Prepare pointer
MOV #020h,R9 ; Prepare counter
MOV.B @R10+,TOM-EDE-1(R10) ; Use pointer in R10 for

; both tables
DEC R9 ; Decrement counter
JNZ Loop ; Counter # 0, continue
; copying

...... ; Copying completed

3-52 RISC 16-Bit CPU

*NOP
Syntax
Operation
Emulation

Description

Status Bits

Instruction Set

No operation
NOP

None

MOV #0, R3

No operation is performed. The instruction may be used for the elimination of
instructions during the software check or for defined waiting times.

Status bits are not affected.

The NOP instruction is mainly used for two purposes:

[Tofill one, two, or three memory words
(d To adjust software timing

Note: Emulating No-Operation Instruction

Other instructions can emulate the NOP function while providing different
numbers of instruction cycles and code words. Some examples are:

Examples:

MOV #0,R3 ; 1 cycle, 1 word
MOV 0(R4),0(R4) ; 6 cycles, 3 words
MOV @R4,0(R4) ; 5 cycles, 2 words
BIC #0,EDE(R4) ; 4 cycles, 2 words
JMP $+2 ; 2 cycles, 1 word
BIC #0,R5 ; 1 cycle, 1 word

However, care should be taken when using these examples to prevent
unintended results. For example, if MOV 0(R4), 0(R4) is used and the value
in R4 is 120h, then a security violation will occur with the watchdog timer
(address 120h) because the security key was not used.

RISC 16-Bit CPU 3-53

Instruction Set

* POP[.W]
* POP.B
Syntax

Operation

Emulation
Emulation

Description

Status Bits

Example

Example

Example

Example

Pop word from stack to destination
Pop byte from stack to destination

POP dst

POP.B dst

@SP —>temp

SP+2 —>SP

temp —> dst

MOV @SP+,dst or MOV.W @SP+,dst
MOV.B @SP+,dst

The stack location pointed to by the stack pointer (TOS) is moved to the
destination. The stack pointer is incremented by two afterwards.

Status bits are not affected.
The contents of R7 and the status register are restored from the stack.

POP R7
POP SR

; Restore R7
; Restore status register

The contents of RAM byte LEO is restored from the stack.

POP.B LEO ; The low byte of the stack is moved to LEO.

The contents of R7 is restored from the stack.

POP.B R7 ; The low byte of the stack is moved to R7,

; the high byte of R7 is 00h

The contents of the memory pointed to by R7 and the status register are
restored from the stack.

POP.B 0(R7) ; The low byte of the stack is moved to the
; the byte which is pointed to by R7
: Example: R7 =203h
; Mem(R7) = low byte of system stack
: Example: R7 =20Ah
; Mem(R7) = low byte of system stack

POP SR ; Last word on stack moved to the SR

Note: The System Stack Pointer

The system stack pointer (SP) is always incremented by two, independent
of the byte suffix.

3-54 RISC 16-Bit CPU

PUSH[.W]
PUSH.B
Syntax
Operation

Description

Status Bits
Mode Bits

Example

Example

Instruction Set

Push word onto stack
Push byte onto stack

PUSH src or PUSHW src
PUSH.B src

SP-2-SP
src - @SP

The stack pointer is decremented by two, then the source operand is moved
to the RAM word addressed by the stack pointer (TOS).

Status bits are not affected.
OSCOFF, CPUOFF, and GIE are not affected.
The contents of the status register and R8 are saved on the stack.

PUSH SR ; save status register
PUSH R8 ; save R8

The contents of the peripheral TCDAT is saved on the stack.

PUSH.B &TCDAT ; save data from 8-bit peripheral module,
; address TCDAT, onto stack

Note: The System Stack Pointer

The system stack pointer (SP) is always decremented by two, independent
of the byte suffix.

RISC 16-Bit CPU 3-55

Instruction Set

*RET Return from subroutine
Syntax RET
Operation @SP— PC
SP+2 > SP
Emulation MOV @SP+,PC
Description The return address pushed onto the stack by a CALL instruction is moved to

the program counter. The program continues at the code address following the
subroutine call.

Status Bits Status bits are not affected.

3-56 RISC 16-Bit CPU

RETI
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Instruction Set

Return from interrupt

RETI

TOS — SR
SP +2 — SP
TOS — PC
SP +2 — SP

The status register is restored to the value at the beginning of the interrupt
service routine by replacing the present SR contents with the TOS contents.
The stack pointer (SP) is incremented by two.

The program counter is restored to the value at the beginning of interrupt
service. This is the consecutive step after the interrupted program flow.
Restoration is performed by replacing the present PC contents with the TOS
memory contents. The stack pointer (SP) is incremented.

N:
Z:
C:
V:

restored from system stack
restored from system stack
restored from system stack
restored from system stack

OSCOFF, CPUOFF, and GIE are restored from system stack.

Figure 3-13 illustrates the main program interrupt.

Figure 3-13. Main Program Interrupt

PC —6 000
PC -4
Interrupt Request
PC -2 /
PC Interrupt Accepted
PC +2 PC+2 is Stored PC = PCi PYY)
Onto Stack
PC +4
PC +6
PC +8 o
[]
[]
RETI

RISC 16-Bit CPU

3-57

Instruction Set

* RLAL.W]
* RLA.B

Syntax

Operation

Emulation

Description

Rotate left arithmetically
Rotate left arithmetically

RLA dst or RLA.W dst
RLA.B dst

C <— MSB <- MSB-1 LSB+1 <-LSB<-0

ADD dst,dst
ADD.B dst,dst

The destination operand is shifted left one position as shown in Figure 3-14.
The MSB is shifted into the carry bit (C) and the LSB is filled with 0. The RLA
instruction acts as a signed multiplication by 2.

An overflow occurs if dst > 04000h and dst < 0C000h before operation is
performed: the result has changed sign.

Figure 3-14. Destination Operand—Arithmetic Shift Left

Status Bits

Mode Bits

Example

Example

Word 15 0
__________________ o
Byte 7 0

An overflow occurs if dst > 040h and dst < 0COh before the operation is
performed: the result has changed sign.

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs:

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.
R7 is multiplied by 2.

RLA R7 ; Shift left R7 (x 2)
The low byte of R7 is multiplied by 4.

RLA.B R7 Shift left low byte of R7 (x 2)
RLA.B R7 Shift left low byte of R7 (x 4)

' Note: RLA Substitution
The assembler does not recognize the instruction:
RLA @RS5+, RLA.B @R5+, or RLA(.B) @R5
It must be substituted by:
ADD @R5+,-2(R5) ADD.B @R5+,-1(R5) or ADD(.B) @R5

3-58 RISC 16-Bit CPU

* RLC[.W]
* RLC.B

Syntax

Operation
Emulation

Description

Instruction Set

Rotate left through carry
Rotate left through carry

RLC dst or RLC.W dst
RLC.B dst

C <- MSB <- MSB-1 LSB+1<-LSB<-C
ADDC dst,dst

The destination operand is shifted left one position as shown in Figure 3—15.
The carry bit (C) is shifted into the LSB and the MSB is shifted into the carry
bit (C).

Figure 3-15. Destination Operand—Carry Left Shift

Status Bits

Mode Bits

Example

Example

Example

Word 15 0
——————————————————
Byte 7 0

Set if result is negative, reset if positive

Set if result is zero, reset otherwise

Loaded from the MSB

Set if an arithmetic overflow occurs

the initial value is 04000h < dst < 0C000h; reset otherwise
Set if an arithmetic overflow occurs:

the initial value is 040h < dst < 0COh; reset otherwise

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted left one position.

RLC R5 ;(R5x2)+C->R5

The input P1IN.1 information is shifted into the LSB of R5.

BIT.B #2,&P1IN ; Information —> Carry
RLC R5 ; Carry=P0in.1 —> LSB of R5

The MEM(LEO) content is shifted left one position.

RLC.B LEO : Mem(LEO) x 2 + C —> Mem(LEO)

Note: RLC and RLC.B Substitution

The assembler does not recognize the instruction:

RLC @R5+, RLC.B @R5+, or RLC(.B) @R5
It must be substituted by:

ADDC @R5+,-2(R5) ADDC.B @R5+,-1(R5) or ADDC(.B) @R5

RISC 16-Bit CPU 3-59

Instruction Set

RRA[W]
RRA.B

Syntax

Operation

Description

Rotate right arithmetically
Rotate right arithmetically

RRA dst or RRA.W dst
RRA.B dst

MSB -> MSB, MSB —> MSB-1, ... LSB+1 ->LSB, LSB->C

The destination operand is shifted right one position as shown in Figure 3-16.
The MSB is shifted into the MSB, the MSB is shifted into the MSB-1, and the
LSB+1 is shifted into the LSB.

Figure 3-16. Destination Operand—Arithmetic Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0
S — >
Byte J
15 0

Set if result is negative, reset if positive
Set if result is zero, reset otherwise
Loaded from the LSB

Reset

OSCOFF, CPUOFF, and GIE are not affected.

R5 is shifted right one position. The MSB retains the old value. It operates
equal to an arithmetic division by 2.

RRA R5 ; R5/2 —> R5

The value in R5 is multiplied by 0.75 (0.5 + 0.25).

PUSH R5 ; Hold R5 temporarily using stack
RRA R5 :R5x0.5 —> R5

ADD @SP+,R5 ;R5x05+R5=15%xR5 —>R5
RRA R5 ;(1.5xR5)x0.5=0.75xR5 —>R5

The low byte of R5 is shifted right one position. The MSB retains the old value.
It operates equal to an arithmetic division by 2.

RRA.B R5 ; R5/2 —> R5: operation is on low byte only
; High byte of R5 is reset
PUSH.B R5 ;R5x0.5 —> TOS
RRA.B @SP ; TOSx05=05%xR5x05=0.25xR5 —>TOS
ADD.B @SP+,R5 ;R5x0.5+R5x%x0.25=0.75xR5 —>R5

3-60 RISC 16-Bit CPU

RRC[.W]
RRC.B

Syntax

Operation

Description

Instruction Set

Rotate right through carry
Rotate right through carry

RRC dst or RRC.W dst
RRC dst

C —->MSB —> MSB-1 LSB+1 —>LSB —>C

The destination operand is shifted right one position as shown in Figure 3-17.
The carry bit (C) is shifted into the MSB, the LSB is shifted into the carry bit (C).

Figure 3—17. Destination Operand—Carry Right Shift

Status Bits

Mode Bits

Example

Example

Word 15 0
——————————————————
Byte 7 0

N: Set if result is negative, reset if positive
Z: Setif result is zero, reset otherwise

C: Loaded from the LSB

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.
R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC R5 ; R5/2 + 8000h —> R5

R5 is shifted right one position. The MSB is loaded with 1.

SETC ; Prepare carry for MSB
RRC.B R5 ; R5/2 + 80h —> R5; low byte of R5 is used

RISC 16-Bit CPU 3-61

Instruction Set

* SBC[.W]
*SBC.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SBC dst or SBC.W dst
SBC.B dst

dst + OFFFFh + C —> dst
dst + OFFh + C —> dst

SUBC #0,dst
SUBC.B #0,dst

The carry bit (C) is added to the destination operand minus one. The previous
contents of the destination are lost.

N: Set if result is negative, reset if positive

Z: Setif result is zero, reset otherwise

C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

The 16-bit counter pointed to by R13 is subtracted from a 32-bit counter
pointed to by R12.

SUB @R13,0(R12) ; Subtract LSDs
SBC 2(R12) ; Subtract carry from MSD

The 8-bit counter pointed to by R13 is subtracted from a 16-bit counter pointed
to by R12.

SUB.B @R13,0(R12) ; Subtract LSDs
SBC.B 1(R12) ; Subtract carry from MSD

I
Note: Borrow Implementation.

The borrow is treated as a .NOT. carry: Borrow Carry bit
Yes 0
No 1

3-62 RISC 16-Bit CPU

*SETC
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Example

DSUB

Instruction Set

Set carry bit

SETC

1->C

BIS #1,SR

The carry bit (C) is set.

N: Not affected
Z: Not affected
C: Set

V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

Emulation of the decimal subtraction:
Subtract R5 from R6 decimally
Assume that R5 = 03987h and R6 = 04137h

ADD #06666h,R5 ; Move content R5 from 0-9 to 6—-0Fh
; R5 =03987h + 06666h = 09FEDh
INV R5 ; Invert this (result back to 0-9)
; R5 = .NOT. R5 = 06012h
SETC ; Prepare carry = 1
DADD R5,R6 ; Emulate subtraction by addition of:

; (010000h - R5 - 1)
;R6=R6+R5+1
; R6 = 0150h

RISC 16-Bit CPU 3-63

Instruction Set

*SETN
Syntax
Operation
Emulation
Description

Status Bits

Mode Bits

Set negative bit

SETN

1->N

BIS #4,SR

The negative bit (N) is set.

N: Set

Z: Not affected
C: Not affected
V: Not affected

OSCOFF, CPUOFF, and GIE are not affected.

3-64 RISC 16-Bit CPU

Instruction Set

* SETZ Set zero bit
Syntax SETZ
Operation 1->Z
Emulation BIS #2,SR
Description The zero bit (2) is set.
Status Bits N: Not affected

Z: Set

C: Not affected
V: Not affected

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

RISC 16-Bit CPU 3-65

Instruction Set

SUB[.W] Subtract source from destination

SUB.B Subtract source from destination

Syntax SuB src,dst or SUB.W src,dst
SUB.B src,dst

Operation dst + .NOT.src + 1 —> dst
or

[(dst — src —> dst)]

Description The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the constant 1. The source operand is
not affected. The previous contents of the destination are lost.

Status Bits N: Set if result is negative, reset if positive
Z: Set if result is zero, reset otherwise
C: Setif there is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.
V: Set if an arithmetic overflow occurs, otherwise reset

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.
Example See example at the SBC instruction.
Example See example at the SBC.B instruction.

Note: Borrow Is Treated as a .NOT.

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

3-66 RISC 16-Bit CPU

SUBC[.W]SBB[.W]
SUBC.B,SBB.B

Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Instruction Set

Subtract source and borrow/.NOT. carry from destination
Subtract source and borrow/.NOT. carry from destination

SUBC src,dst or SUBC.W src,dst or
SBB src,dst or SBB.W src,dst
SUBC.B src,dst or SBB.B src,dst

dst + .NOT.src + C —> dst
or
(dst—src — 1 + C —> dst)

The source operand is subtracted from the destination operand by adding the
source operand’s 1s complement and the carry bit (C). The source operand
is not affected. The previous contents of the destination are lost.

N: Set if result is negative, reset if positive.

Z: Setif result is zero, reset otherwise.

C: Setifthere is a carry from the MSB of the result, reset otherwise.
Set to 1 if no borrow, reset if borrow.

V: Set if an arithmetic overflow occurs, reset otherwise.

OSCOFF, CPUOFF, and GIE are not affected.

Two floating point mantissas (24 bits) are subtracted.
LSBs are in R13 and R10, MSBs are in R12 and R9.

SUBW R13,R10 ; 16-bit part, LSBs
SUBC.B R12,R9 ; 8-bit part, MSBs

The 16-bit counter pointed to by R13 is subtracted from a 16-bit counter in R10
and R11(MSD).

SUB.B @R13+,R10 ; Subtract LSDs without carry
SUBC.B @R13,R11 ; Subtract MSDs with carry
; resulting from the LSDs

Note: Borrow Implementation

The borrow is treated as a .NOT. carry : Borrow Carry bit
Yes 0
No 1

RISC 16-Bit CPU 3-67

Instruction Set

SWPB Swap bytes

Syntax SWPB dst

Operation Bits 15t0 8 <—> bits 7t0 0

Description The destination operand high and low bytes are exchanged as shown in
Figure 3-18.

Status Bits Status bits are not affected.

Mode Bits OSCOFF, CPUOFF, and GIE are not affected.

Figure 3—18. Destination Operand Byte Swap

15 8 7 0

Example

MOV #040BFh,R7 ; 0100000010111111 —> R7

SWPB R7 ; 1011111101000000 in R7
Example The value in R5 is multiplied by 256. The result is stored in R5,R4.

SWPB R5 ;

MOV R5,R4 ;Copy the swapped value to R4

BIC #0FFOOh,R5 ;Correct the result

BIC #00FFh,R4 ;:Correct the result

3-68 RISC 16-Bit CPU

SXT

Syntax
Operation
Description

Status Bits

Mode Bits

Instruction Set

Extend Sign

SXT dst

Bit7 —> Bit 8 Bit 15

The sign of the low byte is extended into the high byte as shown in Figure 3-19.

N: Set if result is negative, reset if positive

Z: Setif resultis zero, reset otherwise

C: Setif result is not zero, reset otherwise (.NOT. Zero)
V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

Figure 3—19. Destination Operand Sign Extension

Example

15 8 7 0

R7 is loaded with the P1IN value. The operation of the sign-extend instruction
expands bit 8 to bit 15 with the value of bit 7.
R7 is then added to R6.

MOV.B &P1IN,R7 ; P1IN = 080h:1000 0000
SXT R7 ; R7 = OFF80h: 1111 1111 1000 0000

RISC 16-Bit CPU 3-69

Instruction Set

*TSTL.W]
*TST.B
Syntax
Operation
Emulation

Description

Status Bits

Mode Bits

Example

Example

Test destination
Test destination

TST dst or TST.W dst
TST.B dst

dst + OFFFFh + 1
dst + OFFh + 1

CMP #0,dst
CMP.B #0,dst

The destination operand is compared with zero. The status bits are set accord-
ing to the result. The destination is not affected.

N: Set if destination is negative, reset if positive

Z: Set if destination contains zero, reset otherwise
C: Set

V: Reset

OSCOFF, CPUOFF, and GIE are not affected.

R7 is tested. If it is negative, continue at R7NEG; if it is positive but not zero,
continue at R7POS.

TST R7 ; Test R7

JN R7NEG ; R7 is negative

JZ R7ZERO ; R7 is zero
R7POS ... ; R7 is positive but not zero
R7NEG ... ; R7 is negative
R7ZERO ... ; R7 is zero

The low byte of R7 is tested. If it is negative, continue at R7NEG; if it is positive
but not zero, continue at R7POS.

TST.B R7 ; Test low byte of R7

JN R7NEG ; Low byte of R7 is negative

Jz R7ZERO ; Low byte of R7 is zero
R7POS ... ; Low byte of R7 is positive but not zero
R7NEG ... ; Low byte of R7 is negative
R7ZERO ; Low byte of R7 is zero

3-70 RISC 16-Bit CPU

XOR[.W]
XOR.B
Syntax

Operation

Description

Status Bits

Mode Bits

Example

Example

Example

Instruction Set

Exclusive OR of source with destination
Exclusive OR of source with destination

XOR src,dst or XOR.W src,dst
XOR.B src,dst

src .XOR. dst —> dst

The source and destination operands are exclusive ORed. The result is placed
into the destination. The source operand is not affected.

N: Set if result MSB is set, reset if not set

Z: Setifresult is zero, reset otherwise

C: Setif result is not zero, reset otherwise (= .NOT. Zero)
V: Set if both operands are negative

OSCOFF, CPUOFF, and GIE are not affected.

The bits set in R6 toggle the bits in the RAM word TONI.

XOR R6,TONI ; Toggle bits of word TONI on the bits set in R6
The bits set in R6 toggle the bits in the RAM byte TONI.

XOR.B R6,TONI ; Toggle bits of byte TONI on the bits set in
; low byte of R6

Reset to 0 those bits in low byte of R7 that are different from bits in RAM byte
EDE.

XOR.B EDE,R7 ; Set different bit to “1s”
INV.B R7 ; Invert Lowbyte, Highbyte is Oh

RISC 16-Bit CPU 3-71

Instruction Set

3.4.4 Instruction Cycles and Lengths

The number of CPU clock cycles required for an instruction depends on the
instruction format and the addressing modes used - not the instruction itself.
The number of clock cycles refers to the MCLK.

Interrupt and Reset Cycles

Table 3-14 lists the CPU cycles for interrupt overhead and reset.

Table 3-14. Interrupt and Reset Cycles

No. of Length of
Action Cycles Instruction
Return from interrupt (RETTI) 5 1

Interrupt accepted 6
WDT reset 4 -
Reset (RST/NMI) 4

Format-ll (Single Operand) Instruction Cycles and Lengths

Table 3-15 lists the length and CPU cycles for all addressing modes of
format-Il instructions.

Table 3—-15. Format-II Instruction Cycles and Lengths

No. of Cycles

Addressing RRA, RRC Length of

Mode SWPB, SXT PUSH CALL Instruction Example
Rn 1 3 4 1 SWPB R5
@Rn 3 4 4 1 RRC @R9
@Rn+ 3 5 5 1 SWPB @R10+
#N (See note) 4 5 2 CALL #0F000h
X(Rn) 4 5 5 2 CALL 2(R7)
EDE 4 5 5 2 PUSH EDE
&EDE 4 5 5 2 SXT &EDE

Note: Instruction Format Il Inmediate Mode

Do not use instructions RRA, RRC, SWPB, and SXT with the immediate
mode in the destination field. Use of these in the immediate mode results in
an unpredictable program operation.

Format-lll (Jump) Instruction Cycles and Lengths

All jump instructions require one code word, and take two CPU cycles to
execute, regardless of whether the jump is taken or not.

3-72 RISC 16-Bit CPU

Format-l (Double Operand) Instruction Cycles and Lengths

Instruction Set

Table 3-16 lists the length and CPU cycles for all addressing modes of format-I

instructions.

Table 3-16.Format 1 Instruction Cycles and Lengths

Addressing Mode No. of Length of
Src Dst Cycles Instruction Example
Rn Rm 1 1 MOV R5,R8
PC 2 1 BR R9
x(Rm) 4 2 ADD R5,4 (R6)
EDE 4 2 XOR R8,EDE
&EDE 4 2 MOV R5, &EDE
@Rn Rm 2 1 AND @R4,R5
PC 2 1 BR @R8
x(Rm) 5 2 XOR @R5, 8 (R6)
EDE 5 2 MOV @R5,EDE
&EDE 5 2 XOR @R5, &EDE
@Rn+ Rm 2 1 ADD @R5+,R6
PC 3 1 BR @R9+
X(Rm) 5 2 XOR @R5, 8 (R6)
EDE 5 2 MOV @R9+, EDE
&EDE 5 2 MOV @R9+, &EDE
#N Rm 2 2 MOV #20,R9
PC 3 2 BR #2AEh
x(Rm) 5 3 MOV #0300h, 0 (SP)
EDE 5 3 ADD #33,EDE
&EDE 5 3 ADD #33, &EDE
x(Rn) Rm 3 2 MOV 2(R5),R7
PC 3 2 BR 2 (R6)
TONI 6 3 MOV 4 (R7),TONI
x(Rm) 6 3 ADD 4 (R4),6(R9)
&TONI 6 3 MOV 2 (R4) , &TONI
EDE Rm 3 2 AND EDE,R6
PC 3 2 BR EDE
TONI 6 3 CMP EDE, TONI
x(Rm) 6 3 MOV EDE, 0 (SP)
&TONI 6 3 MOV EDE, &TONI
&EDE Rm 3 2 MOV &EDE, R8
PC 3 2 BR &EDE
TONI 6 3 MOV &EDE, TONI
x(Rm) 6 3 MOV &EDE, 0 (SP)
&TONI 6 3 MOV &EDE, &TONT

RISC 16-Bit CPU 3-73

Instruction Set

3.4.5 Instruction Set Description

The instruction map is shown in Figure 3—-20 and the complete instruction set
is summarized in Table 3-17.

Figure 3-20. Core Instruction Map

000 040 080 0OCO 100 140 180 1CO 200 240 280 2CO 300 340 380 3CO

(09704

4xxx

8XxX

Cxxx

1xxx | RRC |RRC.B | swPB RRA | RRAB| SXT PUSH |PUSH.B| CALL RETI
14xx

18xx

1Cxx

20xx JNE/JNZ

24xx JEQ/JZ

28xx JNC

2Cxx JC

30xx JN

34xx JGE

38xx JL

3Cxx JMP

4xxx MOV, MOV.B
BXXX ADD, ADD.B
BXXX ADDC, ADDC.B
TXXX SUBC, SUBC.B
8xxx SUB, SUB.B
9XXX CMP, CMP.B
AXXX DADD, DADD.B
Bxxx BIT, BIT.B

Cxxx BIC, BIC.B
Dxxx BIS, BIS.B
Exxx XOR, XOR.B
Fxxx AND, AND.B

3-74 RISC 16-Bit CPU

Table 3—17.MSP430 Instruction Set

Instruction Set

Mnemonic Description Vv N z C
apc(.B)t dast Add C to destination dst + C — dst * * * *
ADD(.B) src,dst Add source to destination src + dst — dst * * * *
ADDC (.B) src,dst Add source and C to destination src + dst + C — dst * * * *
AND (.B) src,dst AND source and destination src .and. dst — dst 0 * * *
BIC(.B) src,dst Clear bits in destination .not.src .and. dst — dst - - - -
BIS(.B) src,dst Set bits in destination src .or. dst — dst - - - -
BIT(.B) src,dst Test bits in destination src .and. dst 0 * * *
Brt dst Branch to destination dst — PC - - - -
CALL dst Call destination PC+2 — stack, dst - PC - - - -
ctr(.B)t dst Clear destination 0 — dst - - - -
cLret Clear C 0-C - - - 0
cLrit Clear N 0—N - 0 - -
cLrzt Clear Z 052 - - 0 -
CMP (.B) src,dst Compare source and destination dst — src * * * *
papc(.B)T dst Add C decimally to destination dst + C — dst (decimally) * * * *
DADD (.B) src,dst Add source and C decimally to dst. src + dst + C — dst (decimally) * * * *
pEC(.B)t dst Decrement destination dst-1 — dst * * * *
DECD(.B)T dst Double-decrement destination dst -2 — dst * * * *
pINTt Disable interrupts 0-GIE - - - -
EINTT Enable interrupts 1> GIE - - - -
inc(.B) T dst Increment destination dst +1 — dst * * * *
Nep (.B)T dst Double-increment destination dst+2 — dst * * * *
mwwv(.B)t dst Invert destination .not.dst — dst * * * *
Jc/JHs label Jump if C set/Jump if higher or same - - - -
JEQ/JZ label Jump if equal/dJump if Z set - - - -
JGE label Jump if greater or equal - - - -
JL label Jump if less - - - -
JMP label Jump PC + 2 x offset - PC - - - -
JN label Jump if N set - - - -
JNC/JLO label Jump if C not set/Jump if lower - - - -
JNE/JNZ label Jump if not equal/Jump if Z not set - - - -
MOV (.B) src,dst Move source to destination src — dst - - - -
nNopt No operation - - - -
pop(.B)T dst Pop item from stack to destination @SP — dst, SP+2 — SP - - - -
PUSH (.B) src Push source onto stack SP -2 — SP, src -» @SP - - - -
RETT Return from subroutine @SP —» PC,SP +2 —» SP - - - -
RETI Return from interrupt * * * *
RLA(.B)T dst Rotate left arithmetically * * * *
rRLC(.B)T dst Rotate left through C * * * *
RRA(.B) dst Rotate right arithmetically 0 * * *
RRC(.B) dst Rotate right through C * * * *
sec(.B)t dst Subtract not(C) from destination dst + OFFFFh + C — dst * * * *
serct SetC 1-C - - - 1
seTNT SetN 15N - 1 - -
serzt SetZ 1-C - - 1 -
SUB(.B) src,dst Subtract source from destination dst + .not.src + 1 — dst * * * *
SUBC (.B) src,dst Subtract source and not(C) from dst. dst + .not.src + C — dst * * * *
SWPB dst Swap bytes - - - -
SXT dst Extend sign 0 * * *
TsT(.B) T dst Test destination dst + OFFFFh + 1 0 * * 1
XOR (.B) src,dst Exclusive OR source and destination src .xor. dst — dst * * * *

1 Emulated Instruction

RISC 16-Bit CPU 3-75

3-76 RISC 16-Bit CPU

Chapter 4

16-Bit MSP430X CPU

This chapter describes the extended MSP430X 16-bit RISC CPU with 1-MB
memory access, its addressing modes, and instruction set. The MSP430X
CPU is implemented in all MSP430 devices that exceed 64-KB of address
space.

Topic Page
41 CPUlIntroductioncciiiiiiiiiinnnrrnnnnnnnnnnnnnns 4-2
42 Interruptsccciiiiiiiiiii it et e e e aanas 4-4
() (HU[REFSER 00000000000000000000000000003000000300000000000C 4-5
44 AddressingModesiiiiiiiii i i 4-14
4.5 MSP430 and MSP430X Instructionsccoiiiiiinn... 4-35
4.6 Instruction Set Descriptionccciiiiiiiiiiiiiiiannn 4-57

4-1

CPU Introduction

4.1 CPU Introduction

4-2

The MSP430X CPU incorporates features specifically designed for modern
programming techniques such as calculated branching, table processing and
the use of high-level languages such as C. The MSP430X CPU can address
a 1-MB address range without paging. In addition, the MSP430X CPU has
fewer interrupt overhead cycles and fewer instruction cycles in some cases
than the MSP430 CPU, while maintaining the same or better code density than
the MSP430 CPU. The MSP430X CPU is completely backwards compatible
with the MSP430 CPU.

The MSP430X CPU features include:

J
a

a
-

RISC architecture.
Orthogonal architecture.

Full register access including program counter, status register and stack
pointer.

Single-cycle register operations.
Large register file reduces fetches to memory.

20-bit address bus allows direct access and branching throughout the
entire memory range without paging.

16-bit data bus allows direct manipulation of word-wide arguments.

Constant generator provides the six most often used immediate values
and reduces code size.

Direct memory-to-memory transfers without intermediate register holding.

Byte, word, and 20-bit address-word addressing

The block diagram of the MSP430X CPU is shown in Figure 4-1.

16-Bit MSP430X CPU

Figure 4-1. MSP430X CPU Block Diagram

16

MDB - Memory Data Bus

19 16 15

Memory Address Bus - MAB

o

RO/PC Program Counter 0

T

R1/SP Pointer Stack 0

|

R2/SR Status Register

<:(> R3/CG2 Constant Generator :>
[| [|
<::l'> R4 General Purpose :>
1 1
<):1/’\ R5 General Purpose :>
[| [|
<::1/'\ R6 General Purpose :>
T T
<):1/'\ R7 General Purpose :>
[| [|
<::’1> R8 General Purpose :>
[| [|
<):1/'\ R9 General Purpose :>
[| [|
<)::> R10 General Purpose :>
[| [|
<):’l> R11 General Purpose :>
1 1
<::1/'\ R12 General Purpose :>
[| [|
<):’l> R13 General Purpose :>
1 1
<):1/'\ R14 General Purpose :>
1 1
<::l'> R15 General Purpose :>
Ny Y 20
Zero, Z dst src L
Carry, C .
Overflow,V 16/20-bit ALU MCLK
Negative,N
/l
N\
N

CPU Introduction

16-Bit MSP430X CPU

4-3

Interrupts

4.2 Interrupts
The MSP430X uses the same interrupt structure as the MSP430:
(O Vectored interrupts with no polling necessary
(1 Interrupt vectors are located downward from address OFFFEh

Interrupt operation for both MSP430 and MSP430X CPUs is described in
Chapter 2 System Resets, Interrupts, and Operating modes, Section 2
Interrupts. The interrupt vectors contain 16-bit addresses that point into the
lower 64-KB memory. This means all interrupt handlers must start in the lower
64-KB memory — even in MSP430X devices.

During an interrupt, the program counter and the status register are pushed
onto the stack as shown in Figure 4-2. The MSP430X architecture efficiently
stores the complete 20-bit PC value by automatically appending the PC bits
19:16 to the stored SR value on the stack. When the RETTI instruction is
executed, the full 20-bit PC is restored making return from interrupt to any
address in the memory range possible.

Figure 4-2. Program Counter Storage on the Stack for Interrupts

SPoiq —W Iltem n-1
PC.15:0
SP —» PC.19:16 SR.11:0

4-4 16-Bit MSP430X CPU

CPU Registers

4.3 CPU Registers

The CPU incorporates sixteen registers RO to R15. Registers RO, R1, R2, and
R3 have dedicated functions. R4 to R15 are working registers for general use.

4.3.1 Program Counter PC

The 20-bit program counter (PC/R0) points to the next instruction to be
executed. Each instruction uses an even number of bytes (two, four, six or
eight bytes), and the PC is incremented accordingly. Instruction accesses are
performed on word boundaries, and the PC is aligned to even addresses.
Figure 4-3 shows the program counter.

Figure 4-3. Program Counter PC
19 16 15 1.0

Program Counter Bits 19 to 1 0

The PC can be addressed with all instructions and addressing modes. A few
examples:

MOV.W #LABEL,PC ; Branch to address LABEL (lower 64 KB)
MOVA #LABEL,PC ; Branch to address LABEL (1MB memory)

MOV.W LABEL,PC ; Branch to address in word LABEL
; (lower 64 KB)

MOV.W @R14,PC ; Branch indirect to address in
; R14 (lower 64 KB)

ADDA #4,PC ; Skip two words (1 MB memory)

The BR and CALL instructions reset the upper four PC bits to 0. Only
addresses in the lower 64-KB address range can be reached with the BR or
CALL instruction. When branching or calling, addresses beyond the lower
64-KB range can only be reached using the BRA or CALLA instructions. Also,
any instruction to directly modify the PC does so according to the used
addressing mode. For example, MOV .W #value, PC will clear the upper four
bits of the PC because it is a . w instruction.

16-Bit MSP430X CPU 4-5

CPU Registers

The program counter is automatically stored on the stack with CALL, or CALLA
instructions, and during an interrupt service routine. Figure 4—4 shows the
storage of the program counter with the return address after a CALLA
instruction. A CALL instruction stores only bits 15:0 of the PC.

Figure 4-4. Program Counter Storage on the Stack for CALLA

SPolq —¥

ltemn

[pc.19:16

SP —»

PC.15:0

The RETA instruction restores bits 19:0 of the program counter and adds 4 to
the stack pointer. The RET instruction restores bits 15:0 to the program

counter and adds 2 to the stack pointer.

4-6 16-Bit MSP430X CPU

CPU Registers

4.3.2 Stack Pointer (SP)

The 20-bit stack pointer (SP/R1) is used by the CPU to store the return
addresses of subroutine calls and interrupts. It uses a predecrement,
postincrement scheme. In addition, the SP can be used by software with all
instructions and addressing modes. Figure 4-5 shows the SP. The SP is
initialized into RAM by the user, and is always aligned to even addresses.

Figure 4-6 shows the stack usage. Figure 4-7 shows the stack usage when
20-bit address-words are pushed.

Figure 4-5. Stack Pointer

19 10
Stack Pointer Bits 19 to 1 0
MOV.W 2 (SP),R6 ; Copy Item I2 to R6
MOV.W R7,0(SP) ; Overwrite TOS with R7
PUSH #0123h ; Put 0123h on stack
POP R8 ; R8 = 0123h

Figure 4-6. Stack Usage

Address PUSH #0123h POP R8

Oxxxh I 1 I

Oxxxh — 2 12 12 12

Oxxxh — 4 I3 <¢— SP 13 13 <— SP
Oxxxh — 6 0123h &¢— SP

Oxxxh — 8

Figure 4-7. PUSHX.A Format on the Stack

SPoig —® Item n-1

ltem.19:16

SP —p Item.15:0

16-Bit MSP430X CPU 4-7

CPU Registers

The special cases of using the SP as an argument to the PUSH and POP
instructions are described and shown in Figure 4-8.

Figure 4-8. PUSH SP - POP SP Sequence

PUSH SP

SPoig —W

SP1 — SP1

The stack pointer is changed after
a PUSH SP instruction.

4-8 16-Bit MSP430X CPU

POP SP

SP, —»

SP,

The stack pointer is not changed after a POP SP
instruction. The POP SP instruction places SP1 into the
stack pointer SP (SP2=SP1)

4.3.3 Status Register (SR)

CPU Registers

The 16-bit status register (SR/R2), used as a source or destination register,
can only be used in register mode addressed with word instructions. The
remaining combinations of addressing modes are used to support the
constant generator. Figure 4-9 shows the SR bits. Do not write 20-bit values
to the SR. Unpredictable operation can result.

Figure 4-9. Status Register Bits

15

OSC|CPU

Reserved V | SCG1 | SCGO OFF |loFF

GIE|N|Z|C

rw-0

Table 4-1 describes the status register bits.

Table 4-1. Description of Status Register Bits

Bit Description

Reserved Reserved

\Y Overflow bit. This bit is set when the result of an arithmetic operation
overflows the signed-variable range.
ADD(.B), ADDX(.B, .A), Set when:
ADDC(.B), ADDCX(.B.A), positive + positive = negative
ADDA negative + negative = positive

otherwise reset

SUB(.B), SUBX(.B, .A), Set when:
SUBC(.B) ,SUBCX(.B, .A), positive - negative = negative
SUBA, CMP(.B), negative — positive = positive
CMPX (.B, .A), CMPA otherwise reset

SCG1 System clock generator 1. This bit, when set, turns off the DCO dc
generator if DCOCLK is not used for MCLK or SMCLK.

SCGO0 System clock generator 0. This bit, when set, turns off the FLL+ loop
control.

OSCOFF Oscillator Off. This bit, when set, turns off the LFXT1 crystal oscillator
when LFXT1CLK is not used for MCLK or SMCLK.

CPUOFF CPU off. This bit, when set, turns off the CPU.

GIE General interrupt enable. This bit, when set, enables maskable inter-
rupts. When reset, all maskable interrupts are disabled.

N Negative bit. This bit is set when the result of an operation is negative
and cleared when the result is positive.

4 Zero bit. This bit is set when the result of an operation is zero and
cleared when the result is not zero.

C Carry bit. This bit is set when the result of an operation produced a

carry and cleared when no carry occurred.

16-Bit MSP430X CPU 4-9

CPU Registers

4.3.4 The Constant Generator Registers CG1 and CG2

Six commonly used constants are generated with the constant generator
registers R2 (CG1) and R3 (CG2), without requiring an additional 16-bit word
of program code. The constants are selected with the source register
addressing modes (As), as described in Table 4-2.

Table 4-2. Values of Constant Generators CG1, CG2

Register As Constant Remarks

R2 00 - Register mode

R2 01 (0) Absolute address mode
R2 10 00004h +4, bit processing

R2 11 00008h +8, bit processing

R3 00 00000h 0, word processing

R3 01 00001h +1

R3 10 00002h +2, bit processing

R3 11 FFh, FFFFh, FFFFFh -1, word processing

The constant generator advantages are:

(1 No special instructions required

[No additional code word for the six constants

(1 No code memory access required to retrieve the constant

The assembler uses the constant generator automatically if one of the six
constants is used as an immediate source operand. Registers R2 and R3,
used in the constant mode, cannot be addressed explicitly; they act as
source-only registers.

Constant Generator — Expanded Instruction Set

4-10

The RISC instruction set of the MSP430 has only 27 instructions. However, the
constant generator allows the MSP430 assembler to support 24 additional,
emulated instructions. For example, the single-operand instruction:

CLR dst

is emulated by the double-operand instruction with the same length:
MOV R3,dst

where the #0 is replaced by the assembler, and R3 is used with As=00.
INC dst

is replaced by:

ADD 0(R3) ,dst

16-Bit MSP430X CPU

CPU Registers

4.3.5 General-Purpose Registers R4 to R15

The twelve CPU registers R4 to R15, contain 8-bit, 16-bit, or 20-bit values. Any
byte-write to a CPU register clears bits 19:8. Any word-write to a register clears
bits 19:16. The only exception is the SXT instruction. The SXT instruction
extends the sign through the complete 20-bit register.

The following figures show the handling of byte, word and address-word data.
Note the reset of the leading MSBs, if a register is the destination of a byte or
word instruction.

Figure 4—-10 shows byte handling (8-bit data, .B suffix). The handling is shown
for a source register and a destination memory byte and for a source memory
byte and a destination register.

Figure 4-10. Register-Byte/Byte-Register Operation

Register-Byte Operation Byte-Register Operation
High Byte Low Byte High Byte Low Byte
19 16 15 87 0
U 1 Unused Register Memo

used ¢ v

19 16 15 87 0
Memo Un- 1 nused Register

v used 9
(Operation) Operation ’

Memory 0 0 Register

16-Bit MSP430X CPU 4-11

CPU Registers

Figure 4—11 and Figure 4-12 show 16-bit word handling (\W suffix). The
handling is shown for a source register and a destination memory word and
for a source memory word and a destination register.

Figure 4—-11. Register-Word Operation
Register-Word Operation

High Byte Low Byte
19 16 15 87 0

Un-
used

Register

Memory

A

(Operation)

Memory

Figure 4-12. Word-Register Operation
Word-Register Operation

High Byte Low Byte

Memory
19 16 15 8|7 0
Un- .
used Register
A
(Operation)
A
0 Register

4-12 16-Bit MSP430X CPU

CPU Registers

Figure 4-13 and Figure 4-14 show 20-bit address-word handling (.A suffix).
The handling is shown for a source register and a destination memory
address-word and for a source memory address-word and a destination

register.

Figure 4-13. Register — Address-Word Operation
Register — Address-Word Operation

High Byte Low Byte
19 16 15 87 0

Register

Memory +2 Unused Memory

A 4 N

(Operation)

Memory +2 0 Memory

Figure 4-14. Address-Word — Register Operation
Address-Word — Register Operation

High Byte Low Byte
19 16 15 87 0

Memory +2 Unused Memory

Register

y A 4

(Operation)

Register

16-Bit MSP430X CPU

4-13

CPU Registers

4.4 Addressing Modes

Seven addressing modes for the source operand and four addressing modes
for the destination operand use 16-bit or 20-bit addresses. The MSP430 and
MSP430X instructions are usable throughout the entire 1-MB memory range.

Table 4-3. Source/Destination Addressing

As/Ad
00/0
01/1

Addressing Mode Syntax Description

Register mode Rn
X(Rn)

Register contents are operand

Indexed mode (Rn + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the

next word.

01/1 Symbolic mode ADDR (PC + X) points to the operand. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(PC) is

used.

011 Absolute mode &ADDR The word following the instruction
contains the absolute address. X
is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indexed mode X(SR) is

used.

10/- @Rn

1/-

11/-

Indirect register
mode

Indirect @Rn+

autoincrement

Immediate mode #N

Rn is used as a pointer to the
operand.

Rn is used as a pointer to the
operand. Rn is incremented
afterwards by 1 for .B instructions.
by 2 for .W instructions, and by 4
for .A instructions.

N is stored in the next word, or
stored in combination of the
preceding extension word and the
next word. Indirect autoincrement
mode @PC+ is used.

The seven addressing modes are explained in detail in the following sections.
Most of the examples show the same addressing mode for the source and
destination, but any valid combination of source and destination addressing
modes is possible in an instruction.

Note: Use of Labels EDE, TONI, TOM, and LEO

Throughout MSP430 documentation EDE, TONI, TOM, and LEO are used
as generic labels. They are only labels. They have no special meaning.

4-14 16-Bit MSP430X CPU

CPU Registers

4.4.1 Register Mode

Operation: The operand is the 8-, 16-, or 20-bit content of the used CPU

register.
Length: One, two, or three words
Comment: Valid for source and destination

Byte operation: Byte operation reads only the 8 LSBs of the source register
Rsrc and writes the result to the 8 LSBs of the destination
register Rdst. The bits Rdst.19:8 are cleared. The register
Rsrc is not modified.

Word operation: Word operation reads the 16 LSBs of the source register Rsrc
and writes the result to the 16 LSBs of the destination register
Rdst. The bits Rdst.19:16 are cleared. The register Rsrc is not
modified.

Address-Word operation: Address-word operation reads the 20 bits of the
source register Rsrc and writes the result to the 20 bits of the
destination register Rdst. The register Rsrc is not modified

SXT Exception: The SXT instruction is the only exception for register
operation. The sign of the low byte in bit 7 is extended to the
bits Rdst.19:8.

Example: BIS.W R5,R6 ;

This instruction logically ORs the 16-bit data contained in R5 with the 16-bit
contents of R6. R6.19:16 is cleared.

Before: After:
Address Register Address Register
Space Space
21036h xxxxh R5| AA550h 21036h xxxxh PC R5| AA550h
21034h| D506h PC R6| 11111h 21034h | D506h R6| 0B551h

A550h.or.1111h = B551h

16-Bit MSP430X CPU 4-15

CPU Registers

4-16

Example:

BISX.A R5,R6 ;

This instruction logically ORs the 20-bit data contained in R5 with the 20-bit

contents of R6.

The extension word contains the A/L-bit for 20-bit data. The instruction word
uses byte mode with bits A/L:B/W = 01. The result of the instruction is:

Before:
Address

Space

21036h xxxxh

21034h| D546h

21032h| 1800h

16-Bit MSP430X CPU

PC

After:
Register Address
Space
R5| AA550h 21036h xxxxh
R6| 11111h 21034h| D546h
21032h| 1800h

AA550h.or.11111h = BB551h

PC R5
R6

Register

AA550h
BB551h

CPU Registers

4.4.2 Indexed Mode

The Indexed mode calculates the address of the operand by adding the signed
index to a CPU register. The Indexed mode has three addressing possibilities:

[Indexed mode in lower 64-KB memory

[MSP430 instruction with Indexed mode addressing memory above the
lower 64-KB memory.

[MSP430X instruction with Indexed mode

Indexed Mode in Lower 64 KB Memory

If the CPU register Rn points to an address in the lower 64 KB of the memory
range, the calculated memory address bits 19:16 are cleared after the addition
of the CPU register Rn and the signed 16-bit index. This means, the calculated
memory address is always located in the lower 64 KB and does not overflow
or underflow out of the lower 64-KB memory space. The RAM and the
peripheral registers can be accessed this way and existing MSP430 software
is usable without modifications as shown in Figure 4-15.

Figure 4-15. Indexed Mode in Lower 64 KB

Lower 64 KB.
Rn.19:16 =0
=t 19 16 15 0
CPU Register
0
Rn
S 16-bitbyte index | 160t
signed index
10000
OFFFF
m o
i‘r (16-bit signed add)
Rn.19:0 —» <
[
=
(o)
-
00000 0 Memory address
Length: Two or three words
Operation: The signed 16-bit index is located in the next word after the

instruction and is added to the CPU register Rn. The resulting
bits 19:16 are cleared giving a truncated 16-bit memory
address, which points to an operand address in the range
00000h to OFFFFh. The operand is the content of the
addressed memory location.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

16-Bit MSP430X CPU 4-17

CPU Registers

4-18

Example: ADD.B 1000h(R5),0F000h(R6) ;

The previous instruction adds the 8-bit data contained in source byte
1000h(R5) and the destination byte OFO00h(R6) and places the result into the
destination byte. Source and destination bytes are both located in the lower
64 KB due to the cleared bits 19:16 of registers R5 and R6.

Source: The byte pointed to by R5 + 1000h results in address 0479Ch
+ 1000h = 0579Ch after truncation to a 16-bit address.

Destination: The byte pointed to by R6 + FOOOh results in address 01778h
+ FOOOh = 00778 after truncation to a 16-bit address.

Before: After:
Address Register Address Register
Space Space
1103Ah Xxxxh R5| 0479Ch 1103Ah Xxxxh PC R5| 0479Ch
11038h FOOOh R6| 01778h 11038h FO0Oh R6| 01778h
11036h 1000h 11036h 1000h
11034h 55D6h | PC 11034h 55D6h
01778h 32h src
0077Ah Xxxxh +F000h 0077Ah xxxxh +45h dst
00778h | xx45h 00778h 00778h | xx77h 77h - Sum
0479Ch
0579Eh xxxxh +1000h 0579Eh xxxxh
0579Ch xx32h 0579Ch 0579Ch xx32h

16-Bit MSP430X CPU

MSP430 Instruction with Indexed Mode in Upper Memory

CPU Registers

If the CPU register Rn points to an address above the lower 64-KB memory,
the Rn bits 19:16 are used for the address calculation of the operand. The
operand may be located in memory in the range Rn £32 KB, because the
index, X, is a signed 16-bit value. In this case, the address of the operand can
overflow or underflow into the lower 64-KB memory space. See Figure 4-16
and Figure 4-17.

Figure 4-16. Indexed Mode in Upper Memory

Upper Memory
Rn.19:16 > 0
~ FFFFF
Rn.19:0—»] Rn +32 KB
10000
OFFFF
00000

Lower 64 KB

19

16 15

.. 15

S 16-bit byte index

A 4

20-bit signed add

Figure 4-17. Overflow and Underflow for the Indexed Mode

* FFFFF

10000

+32KB

0,FFFF

Rn.19:0 ¥

0000C

_____ Mu&\\\\&

Lower 64 KB

CPU Register
Rn

16-bit signed index
(sign extended to
20 bits)

Memory address

AN,
NN\

Rn.19:0

A 4

+32KB

NN

16-Bit MSP430X CPU

4-19

CPU Registers

Length:

Operation:

Comment:

Example:

Two or three words

The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the CPU register Rn. This
delivers a 20-bit address, which points to an address in the
range 0 to FFFFFh. The operand is the content of the
addressed memory location.

Valid for source and destination. The assembler calculates
the register index and inserts it.

ADD.W 8346h(R5),2100h(R6) ;

This instruction adds the 16-bit data contained in the source and the
destination addresses and places the 16-bit result into the destination. Source
and destination operand can be located in the entire address range.

Source:

Destination:

The word pointed to by R5 + 8346h. The negative index
8346h is sign-extended, which results in address 23456h +
F8346h = 1B79Ch.

The word pointed to by R6 + 2100h results in address
15678h + 2100h = 17778h.

Figure 4-18. Example for the Indexed Mode

Before: After:
Address Register Address Register
Space Space
1103Ah xxxxh R5| 23456h 1103Ah xxxxh PC R5| 23456h
11038h 2100h R6| 15678h 11038h 2100h R6| 15678h
11036h 8346h 11036h 8346h
11034h 5596h | PC 11034h 5596h
15678h 05432h src
1777Ah xxxxh +02100h 1777Ah xxxxh +02345h dst
17778h | 2345h 17778h 177780 | 77770 | 07777 Sum
23456h
1B79Eh XxXxxh +F8346h 1B79Eh xxxxh
1B79Ch | 5432h 1B79Ch ig7och | s432h

4-20 16-Bit MSP430X CPU

CPU Registers

MSP430X Instruction with Indexed Mode

When using an MSP430X instruction with Indexed mode, the operand can be
located anywhere in the range of Rn + 19 bits.

Length:

Operation:

Comment:

Example:

Three or four words

The operand address is the sum of the 20-bit CPU register
content and the 20-bit index. The four MSBs of the index are
contained in the extension word, the 16 LSBs are contained
in the word following the instruction. The CPU register is not
modified.

Valid for source and destination. The assembler calculates
the register index and inserts it.

ADDX.A 12346h(R5),32100h(R6) ;

This instruction adds the 20-bit data contained in the source and the
destination addresses and places the result into the destination.

Source:

Destination:

Two words pointed to by R5 + 12346h which results in
address 23456h + 12346h = 3579Ch.

Two words pointed to by R6 + 32100h which results in
address 45678h + 32100h = 77778h.

16-Bit MSP430X CPU 4-21

CPU Registers

The extension word contains the MSBs of the source index and of the
destination index and the A/L-bit for 20-bit data. The instruction word uses byte
mode due to the 20-bit data length with bits A/L:B/W = 01.

Before: After:
Address Register Address Register
Space Space
2103Ah xxxxh R5| 23456h 2103Ah xxxxh PC R5| 23456h
21038h 2100h R6| 45678h 21038h 2100h R6| 45678h
21036h 2346h 21036h 2346h
21034h 55D6h 21034h 55D6h
21032h 1883h | PC 21032h 1883h
45678h 65432h src
7777Ah 0001h +32100h 7777Ah 0007h +12345h _ dst
77778h | 2345h 77778h 77778h | 7777h 77777h - Sum
23456h
3579Eh 0006h +12346h 3579Eh 0006h
3579Ch
3579Ch 5432h 3579Ch 5432h

4-22 16-Bit MSP430X CPU

CPU Registers

4.4.3 Symbolic Mode

The Symbolic mode calculates the address of the operand by adding the
signed index to the program counter. The Symbolic mode has three
addressing possibilities:

(1 Symbolic mode in lower 64-KB memory

[MSP430 instruction with symbolic mode addressing memory above the
lower 64-KB memory.

[MSP430X instruction with symbolic mode

Symbolic Mode in Lower 64 KB

If the PC points to an address in the lower 64 KB of the memory range, the
calculated memory address bits 19:16 are cleared after the addition of the PC
and the signed 16-bit index. This means, the calculated memory address is
always located in the lower 64 KB and does not overflow or underflow out of
the lower 64-KB memory space. The RAM and the peripheral registers can be
accessed this way and existing MSP430 software is usable without
modifications as shown in Figure 4-15.

Figure 4-19. Symbolic Mode Running in Lower 64 KB

Lower 64 KB.
PC.19:16=0
— 19 16 15 0
FFFFF
0 Program
counter PC
S 16-bitbyte index | 16-bitsigned
PC index
__ 10000
OFFFF x
1s]
fr (16-bit signed add)
PC.19:0 —» ©
o
H
5]
-
00000 & 0 Memory address

Operation: The signed 16-bit index in the next word after the instruction is
added temporarily to the PC. The resulting bits 19:16 are cleared giving a
truncated 16-bit memory address, which points to an operand address in the
range 00000h, to OFFFFh. The operand is the content of the addressed
memory location.

Length: Two or three words

Comment: Valid for source and destination. The assembler calculates
the PC index and inserts it.

Example: ADD.B EDE,TONI ;

16-Bit MSP430X CPU 4-23

CPU Registers

4-24

The previous instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.
Bytes EDE and TONI and the program are located in the lower 64 KB.

Source: Byte EDE located at address 0,579Ch, pointed to by PC +
4766h where the PC index 4766h is the result of 0579Ch —
01036h = 04766h. Address 01036h is the location of the index
for this example.

Destination: Byte TONI located at address 00778h, pointed to by PC +
F740h, is the truncated 16-bit result of
00778h — 1038h = FF740h. Address 01038h is the location
of the index for this example.

Before: After:

Address Address
Space Space
0103Ah xxxxh 0103Ah xxxxh PC
01038h | F740h 01038h | F740h
01036h | 4766h 01036h | 4766h
01034h | o05DOh | PC 01034h | 50DOh
01038h 32h src
0077Ah xxxxh +0F740h 0077Ah xxxxh +45h dst
00778h | xx45h 00778n 00778h | xx77h 77h Sum
01036h
0579Eh xxxxh +04766h 0579Eh xxxxh
0579Ch xx32h 0579Ch 0579Ch xx32h

16-Bit MSP430X CPU

CPU Registers
MSP430 Instruction with Symbolic Mode in Upper Memory

If the PC points to an address above the lower 64-KB memory, the PC bits
19:16 are used for the address calculation of the operand. The operand may
be located in memory in the range PC £32 KB, because the index, X, is a
signed 16-bit value. In this case, the address of the operand can overflow or

underflow into the lower 64-KB memory space as shown in Figure 4-20 and
Figure 4-21.

Figure 4-20. Symbolic Mode Running in Upper Memory

Upper Memory
PC.19:16 >0
—— 19 1615 0
FFFFF
115 Program
counter PC
PC.19:0 —» PC 32 KB
s |s 16bitbyteindex | 16-Pitsigned PC
index (sign
10000 extended to
OFFFF <+ 20 bits)
m
X (20-bit signed add)
3
9]
2
S
-
00000 Memory address

Figure 4-21. Overflow and Underflow for the Symbolic Mode

ARy
NN

PC.19:0

v

~ FFFFF

10000 | oo R
NN NN
\

N

+32KB

+32KB

Lower 64 KB

0000C

16-Bit MSP430X CPU 4-25

CPU Registers

4-26

Length:

Operation:

Comment:

Example:

Two or three words

The sign-extended 16-bit index in the next word after the
instruction is added to the 20 bits of the PC. This delivers a
20-bit address, which points to an address in the range 0 to
FFFFFh. The operand is the content of the addressed
memory location.

Valid for source and destination. The assembler calculates
the PC index and inserts it

ADD.W EDE, &TONI ;

This instruction adds the 16-bit data contained in source word EDE and
destination word TONI and places the 16-bit result into the destination word
TONI. For this example, the instruction is located at address 2,F034h.

Source: Word EDE at address 3379Ch, pointed to by PC + 4766h
which is the 16-bit result of 3379Ch — 2F036h = 04766h.
Address 2F036h is the location of the index for this example.
Destination: Word TONI located at address 00778h pointed to by the
absolute address 00778h.
Before: After:
Address Address
Space Space
2F03Ah xxxxh 2F03Ah xxxxh PC
2F038h | 0778h 2F038h | 0778h
2F036h 4766h 2F036h 4766h
2F034h 5092h | PC 2F034h 5092h
2F036h
3379Eh Xxxxxh +04766h 3379Eh xxxxh
3379Ch 5432h 8379Ch 3379Ch 5432h
5432h src
0077Ah xxxxh 0077Ah xxxxh +2345h dst
00778h | 2345h 00778h | 7777h 7777h - Sum

16-Bit MSP430X CPU

CPU Registers

MSP430X Instruction with Symbolic Mode

When using an MSP430X instruction with Symbolic mode, the operand can
be located anywhere in the range of PC + 19 bits.

Length: Three or four words

Operation: The operand address is the sum of the 20-bit PC and the
20-bit index. The four MSBs of the index are contained in the
extension word, the 16 LSBs are contained in the word
following the instruction.

Comment: Valid for source and destination. The assembler calculates
the register index and inserts it.

Example: ADDX.B EDE,TONI ;

The instruction adds the 8-bit data contained in source byte EDE and
destination byte TONI and places the result into the destination byte TONI.

Source: Byte EDE located at address 3579Ch, pointed to by
PC + 14766h, is the 20-bit result of
3579Ch - 21036h = 14766h. Address 21036h is the address
of the index in this example.

Destination: Byte TONI located at address 77778h, pointed to by
PC + 56740h, is the 20-bit result of
77778h - 21038h = 56740h. Address 21038h is the address
of the index in this example..

Before: Address Space After: Address Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 6740h 21038h 6740h
21036h 4766h 21036h 4766h
21034h 50D0h 21034h 50D0h
21032h 18C5h PC 21032h 18C5h
21038h 32h src
7777Ah xxxxh +56740h _ 7777Ah xxxxh +45h dst
777780 | xx4sh 77780 orzen | xx77h 77h Sum
21036h
3579Eh xxxxh +14766h _ 3579Eh xxxxh
3579Ch
3579Ch xx32h 3579Ch xx32h

16-Bit MSP430X CPU 4-27

CPU Registers

4.4.4 Absolute Mode

The Absolute mode uses the contents of the word following the instruction as
the address of the operand. The Absolute mode has two addressing
possibilities:

(1 Absolute mode in lower 64-KB memory

[MSP430X instruction with Absolute mode

4-28 16-Bit MSP430X CPU

CPU Registers

Absolute Mode in Lower 64 KB

If an MSP430 instruction is used with Absolute addressing mode, the absolute
address is a 16-bit value and therefore points to an address in the lower 64 KB
of the memory range. The address is calculated as an index from 0 and is
stored in the word following the instruction The RAM and the peripheral
registers can be accessed this way and existing MSP430 software is usable
without modifications.

Length: Two or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates

the index from 0 and inserts it
Example: ADD.W &EDE, &TONI ;

This instruction adds the 16-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Word at address EDE

Destination: Word at address TONI

Before: Address Space After: Address Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 579Ch 21036h 579Ch
21034h 5292h | PC 21034h 5292h

5432h src
0777Ah xxxxh 0777Ah XXxxh +2345h dst
07778h | 2345h o7778h | 7777 | 7777R Sum
0579Eh xxxxh 0579Eh xxxxh
0579Ch 5432h 0579Ch 5432h

16-Bit MSP430X CPU 4-29

CPU Registers

MSP430X Instruction with Absolute Mode

4-30

If an MSP430X instruction is used with Absolute addressing mode, the
absolute address is a 20-bit value and therefore points to any address in the
memory range. The address value is calculated as an index from 0. The four
MSBs of the index are contained in the extension word, and the 16 LSBs are
contained in the word following the instruction.

Length: Three or four words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid for source and destination. The assembler calculates

the index from 0 and inserts it
Example: ADDX.A &EDE, &TONI ;

This instruction adds the 20-bit data contained in the absolute source and
destination addresses and places the result into the destination.

Source: Two words beginning with address EDE

Destination: Two words beginning with address TONI

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 579Ch 21036h 579Ch
21034h 52D2h 21034h 52D2h
21032h 1987h PC 21032h 1987h

65432h src
7777Ah 0001h 7777Ah 0007h +12345h dst
77778n | 2345h 777780 | 77770 | 77777h Sum
3579Eh 0006h 3579Eh 0006h
3579Ch 5432h 3579Ch 5432h
16-Bit MSP430X CPU

CPU Registers

4.4.5 Indirect Register Mode

The Indirect Register mode uses the contents of the CPU register Rsrc as the
source operand. The Indirect Register mode always uses a 20-bit address.

Length: One, two, or three words

Operation: The operand is the content the addressed memory location.
The source register Rsrc is not modified.

Comment: Valid only for the source operand. The substitute for the
destination operand is O(Rdst).

Example: ADDX.W @R5,2100h(R6)

This instruction adds the two 16-bit operands contained in the source and the
destination addresses and places the result into the destination.

Source: Word pointed to by R5. R5 contains address 3,579Ch for this
example.
Destination: Word pointed to by R6 + 2100h which results in address
45678h + 2100h = 7778h.
Before: After:
Address Register Address Register
Space Space
21038h xxxxh R5| 3579Ch 21038h xxxxh PC R5| 3579Ch
21036h | 2100h R6| 45678h 21036h | 2100h R6| 45678h
21034h | 55A6h | PC 21034h | 55A6h
45678h 5432h src
4777Ah | xxxxh +02100h 4777Ah | xxxxh +2345h _ dst
47778h | 2345h 47778h 477780 | 7777h 7777h Sum
3579Eh xxxxh 3579Eh Xxxxh
3579Ch 5432h | R5 3579Ch 5432h | R5
16-Bit MSP430X CPU 4-31

CPU Registers

4.4.6 Indirect, Autoincrement Mode

The Indirect Autoincrement mode uses the contents of the CPU register Rsrc
as the source operand. Rsrc is then automatically incremented by 1 for byte
instructions, by 2 for word instructions, and by 4 for address-word instructions
immediately after accessing the source operand. If the same register is used
for source and destination, it contains the incremented address for the
destination access. Indirect Autoincrement mode always uses 20-bit

addresses.

Length: One, two, or three words

Operation: The operand is the content of the addressed memory
location.

Comment: Valid only for the source operand.

Example: ADD.B @R5+,0(R6)

This instruction adds the 8-bit data contained in the source and the destination
addresses and places the result into the destination.

Source: Byte pointed to by R5. R5 contains address 3,579Ch for this
example.

Destination: Byte pointed to by R6 + Oh which results in address 0778h for
this example.

Before: After:

Address Register Address Register

Space Space
21038h xxxxh R5| 3579Ch 21038h xxxxh PC R5| 3579Dh
21036h 0000h R6| 00778h 21036h 0000h R6| 00778h
21034h 55F6h PC 21034h 55F6h

00778h 32h src

0077Ah xxxxh +0000h 0077Ah xxxxh +45h dst
00778h | xx45h 00778h 00778h | xx77h 77h - Sum
3579Dh xxh 3579Dh xxh R5
3579Ch 32h R5 3579Ch xx32h

4-32 16-Bit MSP430X CPU

CPU Registers
4.4.7 Immediate Mode

The Immediate mode allows accessing constants as operands by including
the constant in the memory location following the instruction. The program
counter PC is used with the Indirect Autoincrement mode. The PC points to
the immediate value contained in the next word. After the fetching of the
immediate operand, the PC is incremented by 2 for byte, word, or
address-word instructions. The Immediate mode has two addressing
possibilities:

] 8- or 16-bit constants with MSP430 instructions

[J 20-bit constants with MSP430X instruction

MSP430 Instructions with Immediate Mode

If an MSP430 instruction is used with Immediate addressing mode, the
constant is an 8- or 16-bit value and is stored in the word following the

instruction.

Length: Two or three words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 16-bit immediate source operand is used together with
the 16-bit destination operand.

Comment: Valid only for the source operand.

Example: ADD #3456h, &TONI

This instruction adds the 16-bit immediate operand 3456h to the data in the
destination address TONI.

Source: 16-bit immediate value 3456h.

Destination: Word at address TONI.

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 0778h 21038h 0778h
21036h 3456h 21036h 3456h
21034h 50B2h | PC 21034h 50B2h

3456h src

0077Ah xxxxh 0077Ah xxxxh +2345h dst
00778h | 2345h 00778h | 579Bn | 579Bh Sum

16-Bit MSP430X CPU 4-33

CPU Registers

MSP430X Instructions with Immediate Mode

4-34

If an MSP430X instruction is used with immediate addressing mode, the
constant is a 20-bit value. The 4 MSBs of the constant are stored in the
extension word and the 16 LSBs of the constant are stored in the word
following the instruction.

Length: Three or four words. One word less if a constant of the
constant generator can be used for the immediate operand.

Operation: The 20-bit immediate source operand is used together with
the 20-bit destination operand.

Comment: Valid only for the source operand.
Example: ADDX.A #23456h, &TONI ;

This instruction adds the 20-bit immediate operand 23456h to the data in the
destination address TONI.

Source: 20-bit immediate value 23456h.

Destination: Two words beginning with address TONI.

Before: After:

Address Address

Space Space
2103Ah xxxxh 2103Ah xxxxh PC
21038h 7778h 21038h 7778h
21036h 3456h 21036h 3456h
21034h 50F2h 21034h 50F2h
21032h 1907h PC 21032h 1907h

23456h src

7777Ah 0001h 7777Ah 0003h +12345h _ dst
77778 | 2345h 77778n | 579Bn | S579Bh Sum

16-Bit MSP430X CPU

MSP430 and MSP430X Instructions

4.5 MSP430 and MSP430X Instructions

MSP430 instructions are the 27 implemented instructions of the MSP430
CPU. These instructions are used throughout the 1-MB memory range unless
their 16-bit capability is exceeded. The MSP430X instructions are used when
the addressing of the operands or the data length exceeds the 16-bit capability
of the MSP430 instructions.

There are three possibilities when choosing between an MSP430 and
MSP430X instruction:

(1 To use only the MSP430 instructions: The only exceptions are the CALLA
and the RETA instruction. This can be done if a few, simple rules are met:

B Placement of all constants, variables, arrays, tables, and data in the
lower 64 KB. This allows the use of MSP430 instructions with 16-bit
addressing for all data accesses. No pointers with 20-bit addresses
are needed.

B Placement of subroutine constants immediately after the subroutine
code. This allows the use of the symbolic addressing mode with its
16-bit index to reach addresses within the range of PC £32 KB.

[d To use only MSP430X instructions: The disadvantages of this method are
the reduced speed due to the additional CPU cycles and the increased
program space due to the necessary extension word for any double
operand instruction.

[d Use the best fitting instruction where needed

The following sections list and describe the MSP430 and MSP430X
instructions.

16-Bit MSP430X CPU 4-35

MSP430 and MSP430X Instructions

4.5.1 MSP430 Instructions

The MSP430 instructions can be used, regardless if the program resides in the
lower 64 KB or beyond it. The only exceptions are the instructions CALL and
RET which are limited to the lower 64 KB address range. CALLA and RETA

instructions have been added to the MSP430X CPU to handle subroutines in
the entire address range with no code size overhead.

MSP430 Double Operand (Format I) Instructions

Figure 4-22 shows the format of the MSP430 double operand instructions.
Source and destination words are appended for the Indexed, Symbolic,

Absolute and Immediate modes. Table 4-4 lists the twelve MSP430 double

operand instructions.

Figure 4-22. MSP430 Double Operand Instruction Format

15 12 11 8 7 6 5 0
Op-code Rsrc Ad | B/W As Rdst
Source or Destination 15:0
Destination 15:0
Table 4-4. MSP430 Double Operand Instructions

Mnemonic S-Reg, Operation Status Bits

D-Reg N ya c
MOV (.B) src,dst src — dst - - -
ADD (.B) src,dst src+ dst — dst * * *
ADDC(.B) src,dst src+dst+C — dst