Microelectronic Devices and Circuits- EECS105

Second Midterm Exam

Wednesday, November 15, 2000

Costas J. Spanos

University of California at Berkeley

College of Engineering

Department of Electrical Engineering and Computer Sciences

Your Name:	Official	Solutions	
	(last)	(first)	
Your Signature:	MY		

- 1. Print and sign your name on this page before you start.
- 2. You are allowed two 8.5"x11" handwritten sheets with formulas. No books or notes!
- 3. Do everything on this exam, and make your methods as clear as possible.

Problem 1 of 3 Answer each question briefly and clearly. Sketch a simple drawing if it helps you make your point. (30 points)

What physical mechanism limits the $f_{\mathbf{T}}$ of a BJT? (6pts)

The transit time of the minority larriers across the base.

What is "base-width modulation" and how does it affect the behavior of BJT?(6pts)

The reserve - biased B-C junction has a large depletion region. As VCB increases, the depletion region increases into the base making it shorter. This increases It us a function of Vos, and this gives the transistor or non-infinite to (small-signal cutput resistance).

You are given a 2-port, which has $R_{in}=1k\Omega$, $R_{out}=100k\Omega$, and an open circuit voltage gain $A_v=-10$. Please draw the equivalent <u>transconductance</u> 2-port and calculate its R_{in} , R_{out} , and G_m . (6pts)

$$\frac{Vout}{Vin} = -10 = -Gm Roul = 7$$

$$Gm = \frac{10}{Roul} = \frac{10}{10^5} = 10^{-4} S$$

Consider a CE amplifier. What is (are) the benefit(s) of using an ideal current source versus a resistor connected to the supply to bias the collector? (6 pts)

benefit to the yakn: $A_{\nu} = -g_{m} \left(\frac{7}{0} \right) | P_{D} \right)$ this is small and reduces

the yakn... $g_{m} \left(\frac{7}{0} \right) > g_{m} \left(\frac{7}{0} \right) | R_{\nu} \right)$

benefit to Rout: Pour = 70 > Rour = 70//Fp.

Sketch the small signal equivalent of the following amp (ignore all capacitors) (6 pts):

Problem 2 of 3 (40 points)

For each of the following questions, make sure that you show the expressions <u>before</u> you plug in the specific values. A correct expression is worth 70% of the credit, even if the numerical calculation is incorrect!

We want to "match" a car radio antenna to the radio input. The antenna acts as asmall signal current source with an $R_s = 50\Omega$. The radio input "looks" like an ohmic load with $R_L = 500\Omega$. We will use the following CG MOS amplifier in order to achieve decent current gain from the signal source to the load. Ignore all caps in answering the following questions:

a) Draw the equivalent small signal circuit of this amplifier (10pts)

b) Sketch the 2-port Current Amp equivalent, and write expressions for R_{in} , R_{out} and $A_{i.}$ Assume that $r_o >> R_{\vec{k}}$. (10 pts).

c) Calculate the overall (loaded) current gain, (note that V_{bs} =0V). (10pts)

$$ion = \frac{R_{S}}{R_{OUT} + R_{L}}$$

$$ion = \frac{R_{S}}{R_{S} + R_{IN}}$$

$$Ion = \frac{I}{R_{S} + R_{IN}}$$

$$Ion = \frac{Ion = I}{R_{S} + R_{IN}}$$

$$Ion = \frac{Ion = Ion =$$

d) You are now going to design part of the biasing circuit for this amplifier. The p-channel transistors transistors M_1 and M_2 have both the sameW/L. Find the value of R_{ref} so that this current source delivers the 1mA of supply current that is needed (assume that the load draws no DC current). (10pts).

W/L = 2000
$$V_{Tp} = -1V$$

$$\mu p Cox = 25 \mu A/V^{2}$$
Isupply needed = 1 mA
$$V_{SO} = V_{CO} =$$

Problem 3 of 3 (30 points)

For each of the following questions, make sure that you show the expressions <u>before</u> you plug in the specific values. A correct expression is worth 70% of the credit, even if the numerical calculation is incorrect!

a) Derive the transfer function Vout/Vin expression of the following amplifier (10 pts).

$$\frac{\widetilde{V_{out}}}{\widetilde{V_{in}}} = \frac{P_1}{P_1 + \frac{1}{jwC_1}} \left[-G_m \cdot \left(P_2 | l \frac{1}{jwC_2} \right) \right] = -G_m P_2 \frac{jw P_1 C_1}{(l + jw P_1 C_1) (l + jw P_2 C_2)}$$

time constants:
$$T_i = P_i C_i = \frac{1}{10^4 \text{ rad/sec}}$$
 $T_i = P_i C_i = \frac{1}{10^6 \text{ rad/sec}}$

6m Pr = 10

b) Plot amplitude and phase Bode plots when R_1 =10k $\Omega,~C_1$ = 0.01 $\mu F,~R_2$ =1k $\Omega,~C_2$ =0.001 $\mu F,~G_m$ =0.01S. (10 pts for each plot).

